# Potential of Resolution-Enhanced Hyperspectral Data for Mineral Mapping Using Simulated EnMAP and Sentinel-2 Images

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

_{3}at 2.32–2.35 µm [6].

## 2. Hyperspectral and Multispectral Image Fusion

#### 2.1. Related Work

#### 2.2. The CNMF Algorithm

**B**and

**R**, can be estimated from the observed data sources when they are not given as prior knowledge [32].

**X**is formulated as

**N**is the residual. The endmember spectra and abundance fractions are nonnegative. By substituting Equation (3) into Equations (1) and (2), ${\mathbf{Y}}_{h}$ and ${\mathbf{Y}}_{m}$ can be approximated as

**E**) and the corresponding high-resolution abundance maps (

**A**) by the coupled spectral unmixing of the low-spatial-resolution hyperspectral image (${\mathbf{Y}}_{h}$) and the high-spatial-resolution multispectral image (${\mathbf{Y}}_{m}$). CNMF alternately unmixes ${\mathbf{Y}}_{h}$ and ${\mathbf{Y}}_{m}$ in the framework of nonnegative matrix factorization (NMF) [34,35] to estimate

**E**and

**A**under the constraints of the relative sensor characteristics given by Equations (6) and (7). NMF decomposes a nonnegative data matrix into a product of two nonnegative matrices, and it has been shown to be effective for spectral unmixing satisfying physical constraints without assuming the presence of pure pixels. The squared Frobenius norm of a residual matrix in a linear spectral mixture model is commonly used for a cost function. NMF unavoidably converges to local minima depending on the initialization. CNMF alternately takes advantage of the two images, i.e., the spectral resolution of the hyperspectral image and the spatial resolution of the multispectral image, to initialize the other spectral unmixing so that the optimization can converge to a better local minimum.

**E**can be initialized using endmember extraction methods, for example, vertex component analysis (VCA) [36]. In this work, since our interest is focused on the SWIR range of fused data, this endmember extraction process is carried out using only SWIR bands.

**E**and ${\mathbf{A}}_{h}$ are then alternately optimized by Lee and Seung’s multiplicative update rules [35]. Next,

**A**is estimated from the multispectral image. ${\mathbf{E}}_{m}$ is set by Equation (7) and

**A**is initialized by the spatially up-sampled matrix of ${\mathbf{A}}_{h}$ obtained by bilinear interpolation. The sequential unmixing for the hyperspectral image is performed after initializing ${\mathbf{A}}_{h}$ by Equation (6). After that, the two images are alternately unmixed until convergence. Finally, the target image is obtained by the multiplication of

**E**and

**A**. More details of the implementation are given in [18].

## 3. Materials and Validation Methods

#### 3.1. Study Area and Data Preparation

^{−2}and a rural aerosol model. The spatial and spectral modules include resampling of an image in the spatial and spectral domains using the sensor specific PSFs and SRFs, respectively. The radiometric module transformed the at-sensor radiance to DN by simulating instrumental noise and calibration coefficients. The modules are coupled with a backward simulation branch consisting of calibration modules such as nonlinearity, dark current and absolute radiometric calibration and a series of preprocessing modules such as radiometric calibration, co-registration, orthorectification and atmospheric correction. In case of Sentinel-2, all bands of the Level-1c- and Level-2a-products were spatially resampled to a uniform 10 m pixel grid. A reference hyperspectral image with a 10 m GSD for all bands was also prepared by applying only spatial and spectral resampling to the HyMap at-surface reflectance data. The HyMap data were spectrally resampled to a 1 nm resolution before the SRFs were applied for simulating the EnMAP and reference images.

#### 3.2. Validation Methods

**X**denote a fused image and a reference image, respectively.

- (1)
- CC is a characterization of geometric distortion obtained for each band with an ideal value of 1. We used an average value of CCs for all bands, which is defined as$$\text{CC}\left(\widehat{X},\mathbf{X}\right)=\frac{1}{L}{\displaystyle \sum _{i=1}^{L}}\frac{{\sum}_{j=1}^{P}\left({\widehat{X}}_{ij}-\frac{1}{P}{\sum}_{j\prime =1}^{P}{\widehat{X}}_{ij\prime}\right)\left({X}_{ij}-\frac{1}{P}{\sum}_{j\prime =1}^{P}{X}_{ij\prime}\right)}{\sqrt{{\sum}_{j=1}^{P}{\left({\widehat{X}}_{ij}-\frac{1}{P}{\sum}_{j\prime =1}^{P}{\widehat{X}}_{ij\prime}\right)}^{2}{\sum}_{j=1}^{P}{\left({X}_{ij}-\frac{1}{P}{\sum}_{j\prime =1}^{P}{X}_{ij\prime}\right)}^{2}}}$$
- (2)
- SAM is a measure for the shape preservation of a spectrum calculated at each pixel with a unit degree and 0 as the ideal value. An average value of a whole image is defined as$$\text{SAM}\left(\widehat{X},\mathbf{X}\right)=\frac{1}{P}{\displaystyle \sum _{i=1}^{P}}\text{arccos}\left(\frac{{\widehat{x}}_{i}^{T}{\mathbf{x}}_{i}}{\Vert {\widehat{x}}_{i}\Vert \Vert {\mathbf{x}}_{i}\Vert}\right)$$
**X**and ‖·‖ is the ${l}_{2}$ norm. - (3)
- RMSE is calculated at each pixel as the difference of spectra between the fused image and the reference image. We used an average value of RMSEs for all pixels, which is defined as$$\text{RMSE}\left(\widehat{X},\mathbf{X}\right)=\frac{1}{P}{\displaystyle {\sum}_{j=1}^{P}}\sqrt{\frac{1}{L}{\displaystyle {\sum}_{i=1}^{L}}{\left({\widehat{X}}_{ij}-{X}_{ij}\right)}^{2}}$$

- (4)
- ERGAS provides a global statistical measure of the quality of fused data with the best value at 0, which is defined as$$\text{ERGAS}\left(\widehat{X},\mathbf{X}\right)=100\sqrt{\frac{P}{{P}_{h}}}\sqrt{\frac{1}{L}{\sum}_{i=1}^{L}{\left(\sqrt{\frac{1}{P}{\sum}_{j=1}^{P}{\left({\widehat{X}}_{ij}-{X}_{ij}\right)}^{2}}/\frac{1}{P}\sum _{j=1}^{P}{X}_{ij}\right)}^{2}}$$

## 4. Results and Discussion

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Goetz, A.F.H.; Vane, G.; Solomon, J.E.; Rock, B.N. Imaging spectrometry for earth remote sensing. Science
**1985**, 228, 1147–1153. [Google Scholar] [CrossRef] [PubMed] - Vane, G.; Goetz, A.F.H. Terrestrial imaging spectrometry: Current status, future trends. Remote Sens. Environ.
**1993**, 44, 117–126. [Google Scholar] [CrossRef] - Hunt, G.R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics
**1977**, 42, 501–513. [Google Scholar] [CrossRef] [Green Version] - Clark, R.N.; Swayze, G.A.; Livo, K.E.; Kokaly, R.F.; Sutley, S.J.; Dalton, J.B.; Mcdougal, R.R.; Gent, C.A. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. J. Geophys. Res. Planets
**2003**, 108. [Google Scholar] [CrossRef] - Kruse, F.A.; Boardman, J.W.; Huntington, J.F. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sens.
**2003**, 41, 1388–1400. [Google Scholar] [CrossRef] - Van der Meer, F.; Van der Werff, H.; Frank, J.A.; Van Ruitenbeek, F.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M.; Boudewijn de Smeth, J.; et al. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf.
**2012**, 14, 112–128. [Google Scholar] [CrossRef] - Guanter, L.; Kaufmann, H.; Segl, K.; Förster, S.; Rogaß, C.; Chabrillat, S.; Küster, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens.
**2015**, 7, 8830–8857. [Google Scholar] [CrossRef] - Pearlman, J.S.; Barry, P.S.; Segal, C.C.; Shepanski, J.; Beiso, D.; Carman, L. Hyperion, a space-based imaging spectrometer. IEEE Trans. Geosci. Remote Sens.
**2003**, 41, 1160–1173. [Google Scholar] [CrossRef] - Akgun, T.; Altunubasak, Y.; Mersereau, R.M. Super-resolution enhancement of hyperspectral CHRIS/Proba images with a thin-plate spline non-rigid transform model. IEEE Trans. Geosci. Remote Sens.
**2005**, 48, 1860–1875. [Google Scholar] - Chan, J.C.-W.; Ma, J.; Kempeneers, P.; Canters, F. Superresolution reconstruction of hyperspectral images. IEEE Trans. Geosci. Remote Sens.
**2005**, 14, 2569–2579. [Google Scholar] - Gu, Y.; Zhang, Y.; Zhang, J. Integration of spatial-spectral information for resolution enhancement in hyperspectral images. IEEE Trans. Geosci. Remote Sens.
**2008**, 46, 1347–1358. [Google Scholar] - Zhao, Y.; Zhang, L.; Kong, S.G. Band-subset-based clustering and fusion for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens.
**2011**, 49, 747–756. [Google Scholar] [CrossRef] - Vivone, G.; Alparone, L.; Chanussot, J.; Dalla Mura, M.; Garzelli, M.; Licciardi, G. A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens.
**2015**, 53, 2565–2586. [Google Scholar] [CrossRef] - Loncan, L.; Almeida, L.B.; Bioucas-Dias, J.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.; Simoes, M.; et al. Hyperspectral pansharpening: A review. IEEE Geosci. Remote Sens. Mag.
**2015**, 3, 27–46. [Google Scholar] [CrossRef] - Hardie, R.C.; Eismann, M.T.; Wilson, G.L. MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor. IEEE Trans. Image Process.
**2004**, 13, 1174–1184. [Google Scholar] [CrossRef] [PubMed] - Eismann, M.T.; Hardie, R.C. Application of the stochastic mixing model to hyperspectral resolution enhancement. IEEE Trans. Geosci. Remote Sens.
**2004**, 42, 1924–1933. [Google Scholar] [CrossRef] - Zhang, Y.; Backer, S.D.; Scheunders, P. Noise-resistant wavelet based Bayesian fusion of multispectral and hyperspectral images. IEEE Trans. Geosci. Remote Sens.
**2009**, 47, 3834–3843. [Google Scholar] [CrossRef] - Yokoya, N.; Yairi, T.; Iwasaki, A. Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens.
**2012**, 50, 528–537. [Google Scholar] [CrossRef] - Kawakami, R.; Wright, J.; Tai, Y.; Matsushita, Y.; Ben-Ezra, M.; Ikeuchi, K. High-resolution hyperspectral imaging via matrix factorization. In Proceedings of the IEEE International Conference Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 21–23 June 2011; pp. 2329–2336.
- Veganzones, M.; Simes, M.; Licciardi Yokoya, N.; Bioucas-Dias, J.M.; Chanussot, J. Hyperspectral super-resolution of locally low rank images from complementary multisource data. IEEE Trans. Image Process.
**2016**, 25, 274–288. [Google Scholar] [CrossRef] [PubMed] - Simoes, M.; Bioucas-Dias, J.M.; Almeida, L.; Chanussot, J. A convex formulation for hyperspectral image superresolution via subspace-based regularization. IEEE Trans. Geosci. Remote Sens.
**2015**, 53, 3373–3388. [Google Scholar] [CrossRef] - Wei, Q.; Bioucas-Dias, J.M.; Dobigeon, N.; Tourneret, J.-Y. Hyperspectral and multispectral image fusion based on a sparse representation. IEEE Trans. Geosci. Remote Sens.
**2015**, 53, 3658–3668. [Google Scholar] [CrossRef] - Chen, Z.; Pu, H.; Wang, B.; Jiang, G.-M. Fusion of hyperspectral and multispectral images: A novel framework based on generalization of pan-sharpening methods. IEEE Geosci. Remote Sens. Lett.
**2014**, 11, 1418–1422. [Google Scholar] [CrossRef] - Grohnfeldt, C.; Zhu, X.; Bamler, R. The J-SparseFI-HM hyperspectral resolution enhancement method—Now fully automated. In Proceedings of the IEEE Workshop Hyperspectral Image Signal Process: Evolution in Remote Sens. (WHISPERS), Lausanne, Switzerland, 24–27 June 2014; pp. 1–4.
- Van der Meer, F.D.; Van der Werff, H.M.A.; Van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2 for geological applications. Remote Sens. Environ.
**2014**, 148, 124–133. [Google Scholar] [CrossRef] - Guanter, L.; Segl, K.; Kaufmann, H. Simulation of optical remote sensing scenes with application to the EnMAP hyperspectral mission. IEEE Trans. Geosci. Remote Sens.
**2009**, 47, 2340–2351. [Google Scholar] [CrossRef] - Segl, K.; Guanter, L.; Kaufmann, H. Simulation of spatial sensor characteristics in the context of the EnMAP hyperspectral mission. IEEE Trans. Geosci. Remote Sens.
**2010**, 48, 3046–3054. [Google Scholar] [CrossRef] - Segl, K.; Guanter, L.; Rogass, C.; Kuester, T.; Roessner, S.; Kaufmann, H.; Sang, B.; Mogulsky, V.; Hofer, S. EeteS—The EnMAP end-to-end simulation tool. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens.
**2012**, 5, 522–530. [Google Scholar] [CrossRef] - Segl, K.; Guanter, L.; Gascon, F.; Kuester, T.; Rogass, C.; Mielke, C. S2eteS—An end-to-end modelling tool for the simulation of Sentinel-2 image products. IEEE Trans. Geosci. Remote Sens.
**2015**, 53, 5560–5571. [Google Scholar] [CrossRef] - Gomez, G.; Jazaeri, A.; Kafatos, M. Wavelet-based hyperspectral and multi-spectral image fusion. Proc. SPIE
**2001**. [Google Scholar] [CrossRef] - Zhang, Y.; He, M. Multi-spectral and hyperspectral image fusion using 3-D wavelet transform. J. Electron.
**2007**, 24, 218–224. [Google Scholar] [CrossRef] - Yokoya, N.; Mayumi, N.; Iwasaki, A. Cross-calibration for data fusion of EO-1/Hyperion and Terra/ASTER. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens.
**2013**, 6, 419–426. [Google Scholar] [CrossRef] - Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2012**, 5, 354–379. [Google Scholar] [CrossRef] - Lee, D.D.; Seung, H.S. Learning the parts of objects by nonnegative matrix factorization. Nature
**1999**, 401, 788–791. [Google Scholar] [PubMed] - Lee, D.D.; Seung, H.S. Algorithms for non-negative matrix factorization. In Proceedings of the Conference Advertising Neural Information Processing System, Vancouver, BC, Canada, 3–8 December 2001; Volume 13, pp. 556–562.
- Nascimento, J.M.P.; Bioucas-Dias, J.M. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens.
**2005**, 43, 898–910. [Google Scholar] [CrossRef] - Bedini, E.; Van der Meer, F.; Van Ruitenbeek, F. Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain. Int. J. Remote Sens.
**2009**, 30, 327–348. [Google Scholar] [CrossRef] - Arribas, A.; Cunningham, C.G.; Rytuba, J.J.; Rye, R.O.; Kelly, W.C.; Podwysocki, M.H.; Mckee, E.H.; Tosdal, R.M. Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain. Econ. Geol. Bull. Soc. Econ. Geol.
**1995**, 90, 795–822. [Google Scholar] [CrossRef] - Aiazzi, B.; Baronti, S.; Selva, M. Improving component substitution pansharpening through multivariate regression of MS+Pan data. IEEE Trans. Geosci. Remote Sens.
**2007**, 45, 3230–3239. [Google Scholar] [CrossRef] - Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF tailored multiscale fusion of high-resolution MS and Pan imagery. Photogramm. Eng. Remote Sens.
**2006**, 72, 591–596. [Google Scholar] [CrossRef] - Wald, L. Quality of high resolution synthesized images: Is there a simple criterion? In Proceedings of the Third Conference “Fusion of Earth Data”, Sophia Antipolis, France, 26–28 January 2000; pp. 99–105.
- Clark, R.N.; Gallagher, A.J.; Swayze, G.A. Material absorption band depth mapping of imaging spectrometer data using a complete band shape least-squares fit with library reference spectra. In Proceedings of the Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, Pasadena, CA, USA, 4–5 June 1990; pp. 176–186.
- Singer, R.B. Near-infrared spectral reflectance of mineral mixtures: Systematic combinations of pyroxenes, olivine, and iron oxides. J. Geophys. Res.
**1981**, 86, 7967–7982. [Google Scholar] [CrossRef] - Clark, R.N.; Roush, T.L. Reflectance spectroscopy-quantitative analysis techniques for remote-sensing applications. J. Geophys. Res.
**1984**, 89, 6329–6340. [Google Scholar] [CrossRef] - Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site. J. Geophys. Res.
**1986**, 91, 8098–8112. [Google Scholar] [CrossRef] - Roberts, D.A.; Gadner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, O.R. Mapping chaparral in the Santa Monica mountains using multiple endmember spectral mixture models. Remote Sens. Environ.
**1998**, 65, 267–279. [Google Scholar] [CrossRef] - Iwasaki, A.; Ohgi, N.; Tanii, J.; Kawashima, T.; Inada, H. Hyperspectral imager suite (HISUI)-Japanese hyper-multi spectral radiometer. In Proceedings of the International Geoscience Remote Sensing Symptom (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 1025–1028.
- Stefano, P.; Angelo, P.; Simone, P.; Filomena, R.; Federico, S.; Tiziana, S.; Umberto, A.; Vincenzo, C.; Acito, N.; Marco, D.; et al. The PRISMA hyperspectral mission: Science activities and opportunities for agriculture and land monitoring. In Proceedings of the International Geoscience Remote Sensing Symptom (IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 4558–4561.
- Green, R.; Asner, G.; Ungar, S.; Knox, R. NASA mission to measure global plant physiology and functional types. In Proceedings of the Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008; pp. 1–7.
- Michel, S.; Gamet, P.; Lefevre-Fonollosa, M.J. HYPXIM—A hyperspectral satellite defined for science, security and defence users. In Proceedings of the IEEE Workshop Hyperspectral Image Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon, Portugal, 6–9 June 2011; pp. 1–4.
- Eckardt, A.; Horack, J.; Lehmann, F.; Krutz, D.; Drescher, J.; Whorton, M.; Soutullo, M. DESIS (DLR Earth sensing imaging spectrometer for the ISS-MUSES platform. In Proceedings of the International Geoscience Remote Sensing Symptom (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1457–1459.

**Figure 1.**

**Top**: Schematic surface alteration map of the study area (modified from [38]). The dotted rectangle indicates the approximate outline of the study area;

**Bottom**: The scene is displayed in false color composite (R: 750 nm, G: 550 nm, B: 450 nm) made from the original HyMap image. Bright red represents cultivated cropland, and shades of red show distribution of various vegetated land covers. Numbered points in the enlarged image are 21 locations for validation of spectral signatures [37].

**Figure 3.**Color composite images (R: 2259 nm, G: 2201 nm, B: 2044 nm) obtained by (

**a**) nearest-neighbor interpolation; and (

**b**) bicubic interpolation of EnMAP data, and fusion of EnMAP and Sentinel-2 data using (

**c**) GSA; (

**d**) MTF-GLP; (

**e**) CNMF; and (

**f**) reference data. Shades of pink indicate the presence of minerals, such as alunite, kaolinite and smectite, Monotone areas indicate no absorption feature in the spectral range between 2259 nm and 2044 nm and brightness is influenced by topography and the sun elevation angle in addition to variations of land cover.

**Figure 4.**Color composite images (R: 2201 nm, G: 2159 nm, B: 2115 nm) of continuum removed images obtained by (

**a**) nearest-neighbor interpolation; and (

**b**) bicubic interpolation of EnMAP data; and fusion of EnMAP and Sentinel-2 data using (

**c**) GSA; (

**d**) MTF-GLP; (

**e**) CNMF; and (

**f**) reference data. Black, blue and light blue are corresponding to alunite, kaolinite and smectite, respectively.

**Figure 5.**Comparison of spectral signatures between (

**black**) reference; (

**blue**) bicubic interpolation; (

**green**) GSA; and (

**red**) CNMF images at 21 points [37].

**Figure 6.**Comparison of continuum-removed spectral signatures between (

**black**) reference; (

**blue**) bicubic interpolation; (

**green**) GSA; and (

**red**) CNMF images at 21 points [37].

**Figure 7.**Endmember spectra derived from (

**a**) reference; (

**b**) CNMF; (

**c**) GSA; and (

**d**) bicubic interpolation data.

**Figure 8.**Color composite images of abundance fractions obtained from (

**a**) nearest-neighbor interpolation; (

**b**) bicubic interpolation; (

**c**) GSA; (

**d**) CNMF; and (

**e**) reference images by MESMA for alunite (

**red**); kaolinite (

**green**); and smectite (

**blue**). Abundance fractions are linearly stretched between 0 to 0.7 for better visualization.

Band Number | Central Wavelength (nm) | Bandwidth (nm) | GSD (m) |
---|---|---|---|

1 | 443 | 20 | 60 |

2 | 490 | 65 | 10 |

3 | 560 | 35 | 10 |

4 | 665 | 30 | 10 |

5 | 705 | 15 | 20 |

6 | 740 | 15 | 20 |

7 | 783 | 20 | 20 |

8 | 842 | 115 | 10 |

8b | 865 | 20 | 20 |

9 | 945 | 20 | 60 |

10 | 1380 | 30 | 60 |

11 | 1610 | 90 | 20 |

12 | 2190 | 180 | 20 |

Data | Method | CC | SAM | RMSE | ERGAS |
---|---|---|---|---|---|

VNIR and SWIR | Cubic | 0.91749 | 2.8365 | 0.01909 | 3.3857 |

GSA | 0.98629 | 2.713 | 0.01372 | 2.0112 | |

MTF-GLP | 0.98571 | 2.692 | 0.01355 | 2.0151 | |

CNMF | 0.988 | 2.6994 | 0.01349 | 1.9793 | |

SWIR | Cubic | 0.90549 | 1.6368 | 0.01694 | 2.9814 |

GSA | 0.97374 | 1.629 | 0.01149 | 1.9339 | |

MTF-GLP | 0.97346 | 1.6381 | 0.01132 | 1.8958 | |

CNMF | 0.97329 | 1.6193 | 0.01165 | 1.9336 | |

Continuum removed SWIR | Cubic | 0.76578 | 0.65553 | 0.01015 | 0.45248 |

GSA | 0.7745 | 0.64832 | 0.01011 | 0.4504 | |

MTF-GLP | 0.7659 | 0.66141 | 0.01019 | 0.46186 | |

CNMF | 0.83494 | 0.60761 | 0.00915 | 0.40899 |

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yokoya, N.; Chan, J.C.-W.; Segl, K.
Potential of Resolution-Enhanced Hyperspectral Data for Mineral Mapping Using Simulated EnMAP and Sentinel-2 Images. *Remote Sens.* **2016**, *8*, 172.
https://doi.org/10.3390/rs8030172

**AMA Style**

Yokoya N, Chan JC-W, Segl K.
Potential of Resolution-Enhanced Hyperspectral Data for Mineral Mapping Using Simulated EnMAP and Sentinel-2 Images. *Remote Sensing*. 2016; 8(3):172.
https://doi.org/10.3390/rs8030172

**Chicago/Turabian Style**

Yokoya, Naoto, Jonathan Cheung-Wai Chan, and Karl Segl.
2016. "Potential of Resolution-Enhanced Hyperspectral Data for Mineral Mapping Using Simulated EnMAP and Sentinel-2 Images" *Remote Sensing* 8, no. 3: 172.
https://doi.org/10.3390/rs8030172