Validation of MODIS Aerosol Optical Depth Retrieval over Mountains in Central China Based on a Sun-Sky Radiometer Site of SONET
Abstract
:1. Introduction
2. Measurements and Data
3. Validation of MODIS AOD Products
4. Aerosol Properties at Song Mountain
4.1. Volume Particle Size Distribution
rf (μm) | rc (μm) | σf | σc | Vf (μm3/μm2) | Vc (μm3/μm2) | FMF | fDU, fBC, fAS, fAW | |
---|---|---|---|---|---|---|---|---|
Spring (March–May) | 0.18 | 3.38 | 0.50 | 0.70 | 0.10 | 0.19 | 0.68 | 0.68; 0.006; 0.25; 0.064 |
Summer (Junuary–August) | 0.22 | 3.44 | 0.52 | 0.62 | 0.13 | 0.08 | 0.81 | 0.2; 0.006; 0.35; 0.444 |
Autumn (September–November) | 0.19 | 3.05 | 0.53 | 0.67 | 0.10 | 0.11 | 0.73 | 0.53; 0.008; 0.29; 0.172 |
Winter (December–February) | 0.16 | 3.17 | 0.50 | 0.67 | 0.07 | 0.12 | 0.78 | 0.66; 0.011; 0.27; 0.059 |
Total | 0.18 | 3.10 | 0.51 | 0.67 | 0.09 | 0.12 | 0.75 | 0.58; 0.009; 0.27; 0.141 |
4.2. Single Scattering Albedo
4.3. Complex Refractive Indices
5. Song Mountain Aerosol Parameter Model
Song Mountain Aerosol Model | Aerosol Types Employed by MODIS | |||||||
---|---|---|---|---|---|---|---|---|
Total | Spring | Summer | Autumn | Winter | MAF | WAF | DC | |
τa(0.44) | 0.71 ± 0.50 | 0.79 ± 0.51 | 0.89 ± 0.50 | 0.73 ± 0.51 | 0.55 ± 0.45 | - | - | - |
α | 1.13 ± 0.29 | 1.02 ± 0.34 | 1.27 ± 0.31 | 1.16 ± 0.22 | 1.12 ± 0.24 | - | - | - |
SSA | 0.92/0.93/0.92/0.91 ± 0.04 | 0.93/0.93/0.93/0.92 ± 0.04 | 0.95/0.95/0.94/0.93 ± 0.03 | 0.93/0.93/0.93/0.92 ± 0.03 | 0.90/0.90/0.89/0.87 ± 0.04 | 0.92 (@0.55 µm) | 0.947 (@0.55 µm) | 0.95 (@0.55 µm) |
n | 1.48/1.50/1.52/1.52 ± 0.09 | 1.49/1.50/1.52/1.53 ± 0.08 | 1.43/1.44/1.45/1.45 ± 0.08 | 1.46/1.48/1.49/1.50 ± 0.07 | 1.52/1.54/1.56/1.57 ± 0.08 | 1.43 | 1.42 | 1.48τa(0.55)−0.021 |
k | 0.008/0.007/0.007/0.008 ± 0.005 | 0.006/0.005/0.005/0.006 ± 0.004 | 0.005/0.005/0.005/0.005 ± 0.003 | 0.008/0.006/0.006/0.007 ± 0.004 | 0.011/0.009/0.009/0.011 ± 0.006 | −0.002τa(0.55) + 0.008 | −0.0015τa(0.55) + 0.007 | 0.002 (@0.55 µm) |
Vf, Vc (μm3/μm2) | 0.14τa(0.44) ± 0.08; 0.12τa(0.44) ± 0.14 | 0.14τa(0.44) ± 0.08; 0.14τa(0.44) ± 0.12 | 0.16τa(0.44) ± 0.08; 0.04 + 0.03τa(0.44) ± 0.05 | 0.14τa(0.44) ± 0.07; 0.08τa(0.44) ± 0.08 | 0.13τa(0.44) ± 0.06; 0.13τa(0.44) ± 0.09 | 0.1642τa(0.55)0.775; 0.1482τa(0.55)0.684 | 0.1718τa(0.55)0.821; 0.0934τa(0.55)0.639 | 0.0871τa(0.55)1.026; 0.6786τa(0.55)1.0569 |
rf (µm), σf | 0.14 + 0.06τa(0.44) ± 0.05; 0.51 ± 0.08 | 0.14 + 0.05τa(0.44) ± 0.05; 0.50 ± 0.10 | 0.16 + 0.08τa(0.44) ± 0.07; 0.52 ± 0.08 | 0.15 + 0.06τa(0.44) ± 0.05; 0.51 ± 0.07 | 0.13 + 0.06τa(0.44) ± 0.04; 0.51 ± 0.07 | 0.0203τa(0.55) + 0.145; 0.1365τa(0.55) + 0.374 | 0.0434τa(0.55) + 0.160; 0.1529τa(0.55) + 0.364 | 0.1416τa(0.55)−0.0519; 0.7561τa(0.55)0.148 |
rc (µm), σc | 2.93 + 0.26τa(0.44) ± 0.51; 0.67 ± 0.07 | 2.67 + 0.34τa(0.44) ± 0.57; 0.70 ± 0.09 | 3.28 + 0.18τa(0.44) ± 0.45; 0.62 ± 0.06 | 2.78 + 0.35τa(0.44) ± 0.50; 0.67 ± 0.07 | 3.12 + 0.09τa(0.44) ± 0.41; 0.67 ± 0.06 | 0.3364τa(0.55) + 3.101; 0.098τa(0.55) + 0.729 | 0.1411τa(0.55) + 3.325; 0.1638τa(0.55) + 0.759 | 2.2; 0.554τa(0.55)−0.0519 |
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; et al. Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmos. Meas. Tech. 2014, 7, 4353–4365. [Google Scholar] [CrossRef]
- Chu, D.A.; Kaufman, Y.J.; Zibordi, G.; Chern, J.D.; Mao, J.; Li, C.; Holben, B.N. Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Wang, J.; Christopher, S.A. Intercomparison between satellite-derived aerosol optical thickness and PM2. 5 mass: Implications for air quality studies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Engel-Cox, J.A.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 2004, 38, 2495–2509. [Google Scholar] [CrossRef]
- Li, R.R.; Remer, L.; Kaufman, Y.J.; Mattoo, S.; Gao, B.C.; Vermote, E. Snow and ice mask for the MODIS aerosol products. IEEE Trans. Geosci. Remote Sens. 2005, 2, 306–310. [Google Scholar] [CrossRef]
- Remer, L.A.; Mattoo, S.; Levy, R.C.; Munchak, L.A. MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 2013, 6, 69–112. [Google Scholar] [CrossRef]
- Munchak, L.A.; Levy, R.C.; Mattoo, S.; Remer, L.A.; Holben, B.N.; Schafer, J.S.; Hostetler, C.A.; Ferrare, R.A. MODIS 3 km aerosol product: Applications over land in an urban/suburban region. Atmos. Meas. Tech. 2013, 6, 1747–1759. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.J.; Meister, G. Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency. J. Geophys. Res. Atmos. 2015, 120. [Google Scholar] [CrossRef]
- Wu, X.P.; Yang, J.; Che, H.Z.; Li, X.J.; Xia, X.A. Verification for the satellite remote sensing products of aerosol optical depth in Talklimakan desert area. Clim. Environ. Res. 2012, 17, 149–159. [Google Scholar]
- Mi, W.; Li, Z.; Xia, X.; Holben, B.; Levy, R.; Zhao, F.; Chen, H.; Cribb, M. Evaluation of the moderate resolution imaging spectroradiometer aerosol products at two aerosol robotic network stations in China. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Wang, L.; Xin, J.; Wang, Y.; Li, Z.; Wang, P.; Liu, G.; Wen, T. Validation of MODIS aerosol products by CSHNET over China. Chin. Sci. Bull. 2007, 52, 1708–1718. [Google Scholar] [CrossRef]
- Wang, L.; Xin, J.; Wang, Y.; Li, Z.; Liu, G.; Li, J. Evaluation of the MODIS aerosol optical depth retrieval over different ecosystems in China during EAST-AIRE. Atmos. Environ. 2007, 41, 7138–7149. [Google Scholar] [CrossRef]
- He, Q.S.; Li, C.C.; Tang, X.; Li, H.L.; Geng, F.H.; Wu, Y.L. Validation of MODIS derived aerosol optical depth over the Yangtze River Delta in China. Remote Sens. Environ. 2010, 114, 1649–1661. [Google Scholar] [CrossRef]
- Li, C.C.; Mao, J.T.; Lau, K.H.A.; Chen, J.C.; Yuan, Z.B.; Liu, X.Y.; Zhu, A.H.; Liu, G.Q. Characteristics of distribution and seasonal variation of aerosol optical depth in Eastern China with MODIS products. Chin. Sci. Bull. 2003, 48, 2488–2495. [Google Scholar]
- Li, Z.; Niu, F.; Lee, K.H.; Xin, J.; Hao, W.M.; Nordgren, B.; Wang, Y.; Wang, P. Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, T.; Gu, X.; Li, Z.; Wu, Y. Evaluation of polarized remote sensing of aerosol optical thickness retrieval over China. Remote Sens. 2015, 7, 13711–13728. [Google Scholar] [CrossRef]
- Feng, Z.M.; Tang, Y.; Yang, Y.Z.; Zhang, D. Relief degree of land surface and its influence on population distribution in China. J. Geogr. Sci. 2008, 18, 237–246. [Google Scholar] [CrossRef]
- Zhong, Z.Z.; Li, K.H. The transition zone between Mountain and Plain and regional sustainable development. Prog. Geogr. 1998, 17, 23–31. [Google Scholar]
- Dong, D.P.; Zheng, J.G.; Ye, Y.Z. Flora of the woody plants in Song Mountain National Forest Park of Henan province. Sci. Silv. Sin. 2009, 45, 160–166. [Google Scholar]
- Li, Z.Z.; Xu, W.; Fu, Q.Y.; Min, X.J.; Zhang, L.M.; Pan, Z.Q.; Qiao, Y.L.; Zheng, X.B.; Fan, Y.T.; Su, B.J.; et al. Building and application for China Songshan artificial target site. J. Atmos. Environ. Opt. 2014, 9, 81–89. [Google Scholar]
- Ichoku, C.; Chu, D.A.; Mattoo, S.; Kaufman, Y.J.; Remer, L.A.; Tanré, D.; Slutsker, I.; Holben, B.N. A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Petrenko, M.; Ichoku, C.; Leptoukh, G. Multi-sensor aerosol products sampling system (MAPSS). Atmos. Meas. Tech. 2012, 5, 913–926. [Google Scholar] [CrossRef]
- Li, Z.Q.; Li, D.H.; Li, K.T.; Xu, H.; Chen, X.F.; Chen, C.; Xie, Y.S.; Li, L.; Li, L.; Li, W.; et al. Sun-sky radiometer Observation Network with the extension of multi-wavelength polarization measurements. J. Remote Sens. 2015, 19, 496–520. [Google Scholar]
- Li, Z.; Goloub, P.; Dubovik, O.; Blarel, L.; Zhang, W.; Podvin, T.; Sinyuk, A.; Sorokin, M.; Chen, H.; Holen, B.; et al. Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements. J. Quant. Spectrosc. Radiat. Transfer. 2009, 110, 1954–1961. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Muñoz, O.; Veihelmann, B.; et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network(AERONET) Sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 9791–9806. [Google Scholar] [CrossRef]
- O’Neill, N.T.; Eck, T.F.; Holben, B.N.; Smirnov, A.; Dubovik, O.; Royer, A. Bimodal size distribution influences on the variation of Ångström derivatives in spectral and optical depth space. J. Geophys. Res. 2001, 106, 9787–9806. [Google Scholar] [CrossRef]
- O’Neill, N.T.; Dubovik, O.; Eck, T.F. Modified Ångström exponent for the characterization of submicrometer aerosols. Appl. Opt. 2001, 40, 2368–2375. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, N.T.; Eck, T.F.; Smirnov, A.; Holben, B.N.; Thulasiraman, S. Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Wang, Y.; Li, K.; Li, D.; Zhang, Y.; Wei, P.; Wang, L.; Lv, Y. Improving accumulation-mode fraction based on spectral aerosol optical depth in Beijing. Spectrosc. Spect. Anal. 2013, 33, 2795–2802. [Google Scholar]
- Wang, L.; Li, Z.; Li, D.; Li, K.; Tian, Q.; Li, L.; Zhang, Y.; Lv, Y.; Gu, X. Retrieval of dust fraction of atmospheric aerosols based on spectra characteristics of refractive indices obtained from remote sensing measurements. Spectrosc. Spect. Anal. 2012, 32, 1644–1649. [Google Scholar]
- Wang, L.; Li, Z.; Tian, Q.; Ma, Y.; Zhang, F.; Zhang, Y.; Li, D.; Li, K.; Li, L. Estimate of aerosol absorbing components of black carbon, brown carbon, and dust from ground-based remote sensing data of sun-sky radiometers. J. Geophys. Res. 2013, 118, 6534–6543. [Google Scholar] [CrossRef]
- Li, Z.; Gu, X.; Wang, L.; Li, D.; Xie, Y.; Li, K.; Dubovik, O.; Schuster, G.; Goloub, P.; Zhang, Y.; et al. Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter. Atmos. Chem. Phys. 2013, 13, 10171–10183. [Google Scholar] [CrossRef] [Green Version]
- Ångström, A. On the atmospheric transmission of sun radiation and on dust in the air. Geogr. Ann. 1929, 12, 130–159. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.J. Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data. J. Geophys. Res. 2013, 118, 7864–7872. [Google Scholar] [CrossRef]
- Li, C.; Lau, A.K.H.; Mao, J.; Chu, D.A. Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2650–2658. [Google Scholar]
- Xu, H.; Li, Z.; Li, D.; Li, L.; Chen, X.; Xie, Y.; Li, K.T.; Chen, C.; Zhang, Y. Ground-based polarimetric remote sensing of dust aerosol properties in Chinese deserts near Hexi Corridor. Adv. Meteor. 2014, 2014, 240452. [Google Scholar] [CrossRef]
- Yu, X.N.; Cheng, T.T.; Chen, J.M. Optical properties of columnar aerosols: A global comparison from AERONET observations. In Proceedings of the 14th National Conference on Atmospheric Environment, Kunming, China, 22 October 2007; pp. 147–153.
- Clarke, A.D.; Shinozuka, Y.; Kapustin, V.N.; Howell, S.; Huebert, B.; Doherty, S.; Anderson, T.; Covert, D.; Anderson, J.; Hua, X.; et al. Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: Physiochemistry and optical properties. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z. Remote sensing of atmospheric fine particulate matter (PM 2.5) mass concentration near the ground from satellite observation. Remote Sens. Environ. 2015, 160, 252–262. [Google Scholar] [CrossRef]
- Ge, J.M.; Su, J.; Ackerman, T.P.; Fu, Q.; Huang, J.P.; Shi, J.S. Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China-US joint field experiment. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Xu, J.; Bergin, M.H.; Yu, X.; Liu, G.; Zhao, J.; Carrico, C.M.; Baumann, K. Measurement of aerosol chemical, physical and radiative properties in the Yangtze Delta region of China. Atmos. Environ. 2002, 36, 161–173. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.Q.; Ma, Y.; Li, L.; Wei, P. Retrieval of aerosol chemical composition from ground-based remote sensing data of sun-sky radiometers during haze days in Beijing winter. J. Remote Sens. 2013, 17, 944–958. [Google Scholar]
- Cao, J.J.; Lee, S.C.; Chow, J.C.; Watson, J.G.; Ho, K.F.; Zhang, R.J.; Jin, Z.D.; Shen, Z.X.; Chen, G.C.; Kang, Y.M.; et al. Spatial and seasonal distributions of carbonaceous aerosols over China. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanre, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Koven, C.D.; Fung, I. Inferring dust composition from wavelength-dependent absorption in Aerosol Robotic Network (AERONET) data. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Dubovik, O. Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Kleidman, R.G.; O’Neill, N.T.; Remer, L.A.; Kaufman, Y.J.; Eck, T.F.; Tanré, D.; Dubovik, O.; Holben, B.N. Comparison of Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) remote-sensing retrievals of aerosol fine mode fraction over ocean. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Giles, D.M.; Holben, B.N.; Eck, T.F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R.R.; Thompson, A.M.; Schafer, J.S. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Li, Z.; Li, Z.; Xie, Y.; Fu, Q.; Li, D.; Zhang, Y.; Xu, H.; Li, K. Validation of MODIS Aerosol Optical Depth Retrieval over Mountains in Central China Based on a Sun-Sky Radiometer Site of SONET. Remote Sens. 2016, 8, 111. https://doi.org/10.3390/rs8020111
Ma Y, Li Z, Li Z, Xie Y, Fu Q, Li D, Zhang Y, Xu H, Li K. Validation of MODIS Aerosol Optical Depth Retrieval over Mountains in Central China Based on a Sun-Sky Radiometer Site of SONET. Remote Sensing. 2016; 8(2):111. https://doi.org/10.3390/rs8020111
Chicago/Turabian StyleMa, Yan, Zhengqiang Li, Zhaozhou Li, Yisong Xie, Qiaoyan Fu, Donghui Li, Ying Zhang, Hua Xu, and Kaitao Li. 2016. "Validation of MODIS Aerosol Optical Depth Retrieval over Mountains in Central China Based on a Sun-Sky Radiometer Site of SONET" Remote Sensing 8, no. 2: 111. https://doi.org/10.3390/rs8020111
APA StyleMa, Y., Li, Z., Li, Z., Xie, Y., Fu, Q., Li, D., Zhang, Y., Xu, H., & Li, K. (2016). Validation of MODIS Aerosol Optical Depth Retrieval over Mountains in Central China Based on a Sun-Sky Radiometer Site of SONET. Remote Sensing, 8(2), 111. https://doi.org/10.3390/rs8020111