Deriving and Evaluating City-Wide Vegetation Heights from a TanDEM-X DEM
Abstract
:1. Introduction
- (1)
- How are vegetation heights and vegetation height classes distributed across the city of Berlin and across the 12 different biotope classes?
- (2)
- What level of accuracy can be achieved for the vegetation height and biotope classes with the proposed approach?
2. Materials and Methods
2.1. Study Area and Data
2.2. Pre-Processing
2.3. Identifying Vegetation Area
2.4. Vegetation Heights and Vegetation Height Classes
2.5. Vegetation Heights for Biotope Classes
2.6. Accuracy Assessment
3. Results
3.1. Vegetation Heights
3.2. Accuracy Assessment of Vegetation Heights
3.3. Vegetation Heights and Areas across Biotope Classes
3.4. Accuracy Assessment of Biotope Classes
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- Sandstrom, U.G.; Angelstam, P.; Mikusinski, G. Ecological diversity of birds in relation to the structure of urban green space. Landsc. Urban Plan. 2006, 77, 39–53. [Google Scholar] [CrossRef]
- Croci, S.; Butet, A.; Georges, A.; Aguejdad, R.; Clergeau, P. Small urban woodlands as biodiversity conservation hot-spot: A multi-taxon approach. Landsc. Ecol. 2008, 23, 1171–1186. [Google Scholar] [CrossRef]
- Tigges, J.; Lakes, T.; Hostert, P. Urban vegetation classification: Benefits of multitemporal RapidEye satellite data. Remote Sens. Environ. 2013, 136, 66–75. [Google Scholar] [CrossRef]
- Bergen, K.M.; Goetz, S.J.; Dubayah, R.O.; Henebry, G.M.; Hunsaker, C.T.; Imhoff, M.L.; Nelson, R.F.; Parker, G.G.; Radeloff, V.C. Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for LiDAR and Radar spaceborne missions. J. Geophys. Res. Biogeosci. 2009, 114, G00E06. [Google Scholar] [CrossRef]
- Lehmann, I.; Mathey, J.; Rößler, S.; Bräuer, A.; Goldberg, V. Urban vegetation structure types as a methodological approach for identifying ecosystem services—Application to the analysis of micro-climatic effects. Ecol. Indic. 2014, 42, 58–72. [Google Scholar] [CrossRef]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef]
- Schreyer, J.; Tigges, J.; Lakes, T.; Churkina, G. Using Airborne LiDAR and QuickBird Data for Modelling Urban Tree Carbon Storage and Its Distribution—A Case Study of Berlin. Remote Sens. 2014, 6, 10636–10655. [Google Scholar] [CrossRef]
- Johnson, A.D.; Gerhold, H.D. Carbon storage by urban tree cultivars, in roots and above-ground. Urban For. Urban Green. 2003, 2, 65–72. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C.S.B. The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: Model development and evaluation. Theor. Appl. Climatol. 2011, 105, 311–323. [Google Scholar] [CrossRef]
- Ko, Y.K.; Lee, J.H.; McPherson, E.G.; Roman, L.A. Long-term monitoring of Sacramento Shade program trees: Tree survival, growth and energy-saving performance. Landsc. Urban Plan. 2015, 143, 183–191. [Google Scholar] [CrossRef]
- Jang, H.S.; Lee, S.C.; Jeon, J.Y.; Kang, J. Evaluation of road traffic noise abatement by vegetation treatment in a 1:10 urban scale model. J. Acoust. Soc. Am. 2015, 138, 3884–3895. [Google Scholar] [CrossRef] [PubMed]
- Pellissier, V.; Cohen, M.; Boulay, A.; Clergeau, P. Birds are also sensitive to landscape composition and configuration within the city centre. Landsc. Urban Plan. 2012, 104, 181–188. [Google Scholar] [CrossRef]
- Kang, W.; Minor, E.S.; Park, C.R.; Lee, D. Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities. Urban Ecosyst. 2015, 18, 857–870. [Google Scholar] [CrossRef]
- Bertram, C.; Rehdanz, K. The Role of Urban Green Space for Human Well-Being; Kiel Institute for the World Economy: Kiel, Germany, 2014. [Google Scholar]
- Stagoll, K.; Lindenmayer, D.B.; Knight, E.; Fischer, J.; Manning, A.D. Large trees are keystone structures in urban parks. Conserv. Lett. 2012, 5, 115–122. [Google Scholar] [CrossRef]
- Donovan, G.H.; Prestemon, J.P. The Effect of Trees on Crime in Portland, Oregon. Environ. Behav. 2012, 44, 3–30. [Google Scholar] [CrossRef]
- Heisler, G.M. Effects of individual trees on the solar radiation climate of small buildings. Urban Ecol. 1986, 9, 337–359. [Google Scholar] [CrossRef]
- Cariñanos, P.; Casares-Porcel, M.; Quesada-Rubio, J.-M. Estimating the allergenic potential of urban green spaces: A case-study in Granada, Spain. Landsc. Urban Plan. 2014, 123, 134–144. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Haase, D. Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landsc. Urban Plan. 2012, 104, 95–104. [Google Scholar] [CrossRef]
- Weber, N.; Haase, D.; Franck, U. Zooming into temperature conditions in the city of Leipzig: How do urban built and green structures influence earth surface temperatures in the city? Sci. Total Environ. 2014, 496, 289–298. [Google Scholar] [CrossRef] [PubMed]
- SenStadt. Environmental Atlas of Berlin—05, Biotope; Senate Administration of Berlin: Berlin, Germany, 2012.
- Büttner, G.; Kosztra, B.; Maucha, G.; Pataki, R. Implementation and Achievements of CLC2006; Institute of Geodesy, Cartography and Remote Sensing, Universitat Autònoma de Barcelona: Barcelona, Spain, 2012; pp. 1–65. [Google Scholar]
- Stewart, G.H.; Meurk, C.D.; Ignatieva, M.E.; Buckley, H.L.; Magueur, A.; Case, B.S.; Hudson, M.; Parker, M. Urban Biotopes of Aotearoa New Zealand (URBANZ) II: Floristics, biodiversity and conservation values of urban residential and public woodlands, Christchurch. Urban For. Urban Green. 2009, 8, 149–162. [Google Scholar] [CrossRef]
- Löfvenhaft, K.; Runborg, S.; Sjögren-Gulve, P. Biotope patterns and amphibian distribution as assessment tools in urban landscape planning. Landsc. Urban Plan. 2004, 68, 403–427. [Google Scholar] [CrossRef]
- Chisholm, R.A.; Cui, J.; Lum, S.K.Y.; Chen, C. UAV LiDAR for below-canopy forest surveys. J. Unmanned Veh. Syst. 2014, 1, 61–68. [Google Scholar] [CrossRef]
- Hecht, R. Development of a Method for Estimation of Urban Green Volume Based on Laserscanning Data in Leafy State [Entwicklung Einer Methode zur Erfassung des Städtischen Grünvolumens auf Basis von Laserscannerdaten Laubfreier Befliegungszeitpunkte]. Diploma Thesis, Technical University of Dresden, Dresden, Germany, 2006. [Google Scholar]
- Imai, Y.; Setojima, M.; Yamagishi, M. Tree-height measuring characteristics of urban forests by LiDAR data different in resolution. In Proceedings of the XXth ISPRS Congress, Istanbul, Turkey, 12–23 July 2004; pp. 513–516.
- Luederitz, C.; Brink, E.; Gralla, F.; Hermelingmeier, V.; Meyer, M.; Niven, L.; Panzer, L.; Partelow, S.; Rau, A.-L.; Sasaki, R.; et al. A review of urban ecosystem services: Six key challenges for future research. Ecosyst. Serv. 2015, 14, 98–112. [Google Scholar] [CrossRef]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef]
- Huber, M.; Gruber, A.; Wendleder, A.; Wessel, B.; Roth, A.; Schmitt, A. The global TanDEM-X DEM: Production status and first validation results. In Proceedings of the XXII Isprs Congress, Technical Commission VII, Melbourne, Australia, 25 August–1 September 2012; pp. 45–50.
- Mäkelä, H.; Pekkarinen, A. Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data. For. Ecol. Manag. 2004, 196, 245–255. [Google Scholar] [CrossRef]
- Geiß, C.; Wurm, M.; Breunig, M.; Felbier, A.; Taubenböck, H. Normalization of TanDEM-X DSM Data in Urban Environments with Morphological Filters. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4348–4362. [Google Scholar] [CrossRef]
- Marconcini, M.; Marmanis, D.; Esch, T.; Felbier, A. A novel method for building height estimation using TanDEM-X data. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium (Igarss), Quebec City, QC, Canada, 13–18 July 2014; pp. 4804–4807.
- Schreyer, J.; Geiß, C.; Lakes, T. TanDEM-X for Large-Area Modeling of Urban Vegetation Height: Evidence from Berlin, Germany. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 1–12. [Google Scholar] [CrossRef]
- Izzawati; Wallington, E.D.; Woodhouse, I.H. Forest height retrieval from commercial X-band SAR products. IEEE Trans. Geosci. Remote Sens. 2006, 44, 863–870. [Google Scholar] [CrossRef]
- Perko, R.; Raggam, H.; Deutscher, J.; Gutjahr, K.; Schardt, M. Forest Assessment Using High Resolution SAR Data in X-Band. Remote Sens. 2011, 3, 792–815. [Google Scholar] [CrossRef]
- Solberg, S.; Astrup, R.; Bollandsas, O.M.; Næsset, E.; Weydahl, D.J. Deriving forest monitoring variables from X-band InSAR SRTM height. Can. J. Remote Sens. 2010, 36, 68–79. [Google Scholar] [CrossRef]
- Martone, M.; Rizzoli, P.; Bräutigam, B.; Krieger, G. Forest Classification from TanDEM-X Interferometric Data by means of Multiple Fuzzy Clustering. In Proceedings of the 11th European Conference on Synthetic Aperture Radar (EUSAR), Hamburg, Germany, 6–9 June 2016; p. 6.
- RCoreTeam. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- QGIS DevelopmentTeam. Quantum GIS Geographic Information System—Open Source Geospatial Foundation Project. 2015. Available online: http://planet.qgis.org/planet/tag/opensource/ (accessed on 10 November 2016).
- Optech. Gemini ALTM production sheet. Optech: Vaughan, Canada. 2008. Available online: http://airsensing.com/wp-content/uploads/2014/11/Airborne_Gemini.pdf (accessed on 10 November 2016).
- Vexcel. UltraCamX—Technical Specifications; Vexcel Imaging GmbH: Graz, Austria, 2009; p. 2. Available online: https://www.kasurveys.com/documents/ULTRACAM-Specs-UCX.pdf (accessed on 10 November 2016).
- Fietz, M.; Burger, H. Street Trees Status Report Berlin [Strassenbaum-Zustandsbericht Berliner Innenstadt 2010]; Senate Department for Urban Development of Berlin: Berlin, Germany, 2011.
- SenStadt. Forest Conditions Report of Berlin [Waldzustandsbericht Berlin]; Senate administration of Berlin, Senate Department for Urban Development and the Environment: Berlin, Germany, 2014.
- German Aerospace Center. TanDEM-X Ground Segment—DEM Products Specification Document; German Aerospace Center: Oberpfaffenhofen, Germany, 2013. [Google Scholar]
- Rizzoli, P.; Bräutigam, B.; Kraus, T.; Martone, M.; Krieger, G. Relative height error analysis of TanDEM-X elevation data. ISPRS J. Photogram. Remote Sens. 2012, 73, 30–38. [Google Scholar] [CrossRef]
- Breunig, M.M.; Kriegel, H.-P. LOF: Identifying density-based local outliers. SIGMOD Rec. 2000, 29, 93–104. [Google Scholar] [CrossRef]
- OpenStreetMap. Available online: www.openstreetmap.de (accessed on 1 February 2016).
- Lillesand, T.M.; Kiefer, R.W. Remote Sensing and Image Interpretation, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Serra, J. Image Analysis and Mathematical Morphology; Academic Press: Orlando, FL, USA, 1984; p. 610. [Google Scholar]
- Huang, Y.; Yu, B.L.; Zhou, J.H.; Hu, C.L.; Tan, W.Q.; Hu, Z.M.; Wu, J.P. Toward automatic estimation of urban green volume using airborne LiDAR data and high resolution Remote Sensing images. Front. Earth Sci. 2013, 7, 43–54. [Google Scholar] [CrossRef]
- Hecht, R.; Meinel, G.; Buchroither, M. Estimation of urban green volume based on last pulse LiDAR data at leaf-off aerial flight times. In Proceedings of the 1st EARSeL Workshop of the SIG Urban Remote Sensing, Berlin, Germany, 2–3 March 2006; pp. 1–8.
- Hyyppä, J.; Hyyppä, H.; Litkey, P.; Yu, X.; Haggren, H.; Rönnholm, P.; Pyysalo, U.; Pitkänen, J.; Maltamo, M. Algorithms and methods of airborne laserscanning for forset measurements. Int. Arch. Photgramm. Remote Sens. Spat. Inf. Sci. 2004, 36, 82–89. [Google Scholar]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Eake, J.R.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef]
- Baghdadi, N.; Holah, N.; Dubois, F.P.; Prévot, L.; Hosford, S.; Chanzy, A.; Dupuis, X.; Zribi, M. Analysis of X-Band Polarimetric Sar Data for The Derivation of The Surface Roughness Over Bare Agricultural Fields. In Proceedings of XXth ISPRS Congress—Technical Commission I, Stanbul, Turkey, 12–23 July 2004.
- Nowak, D.J.; Escobedo, F.J. Spatial heterogeneity and air pollution removal by an urban forest. Landsc. Urban Plan. 2009, 90, 102–110. [Google Scholar]
- Liu, X.Y. Airborne LiDAR for DEM generation: Some critical issues. Prog. Phys. Geogr. 2008, 32, 31–49. [Google Scholar]
- Wasklewicz, T.; Staley, D.M.; Reavis, K.; Oguchi, T. Digital Terrain Modeling. In Treatise on Geomorphology; Elsevier Inc.: Cambridge, MA, USA, 2013; pp. 130–161. [Google Scholar]
- Poznanska, A.M. Determination of Building and Vegetation Heights in the City of Berlin [Bestimmung von Gebäude- und Vegetationshöhen im Berliner Stadtgebiet]; Deutsches Zentrum für Luft- und Raumfahrt (DLR e. V.) Abteilung Sensorkonzepte und Anwendungen am Institut für Optische Sensorsysteme: Berlin, Germany, 2013; p. 79. [Google Scholar]
- Poznanska, A.M. Data Base: Urban and Environmental Information System (UEIS)-06.10 Building and Vegetation Heights (Edition 2014); Senate Department for Urban Development and the Environment: Berlin, Germany, 2014.
- Shreshta, R.; Wynne, R.H. Estimating Biophysical Parameters of Individual Trees in an Urban Environment Using Small Footprint Discrete-Return Imaging LiDAR. Remote Sens. 2012, 4, 484–508. [Google Scholar] [CrossRef]
- Edson, C.; Wing, M.G. Airborne Light Detection and Ranging (LiDAR) for Individual Tree Stem Location, Height, and Biomass Measurements. Remote Sens. 2011, 3, 2494–2528. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Yu, B.L.; Yue, W.H.; Shu, S.; Tan, W.Q.; Hu, C.L.; Huang, Y.; Wu, J.P.; Liu, H.X. A Voxel-Based Method for Automated Identification and Morphological Parameters Estimation of Individual Street Trees from Mobile Laser Scanning Data. Remote Sens. 2013, 5, 584–611. [Google Scholar] [CrossRef]
- Hajnsek, I.; Kugler, F.; Lee, S.K.; Papathanassiou, K.P. Tropical-Forest-Parameter Estimation by Means of Pol-InSAR: The INDREX-II Campaign. IEEE Trans. Geosci. Remote Sens. 2009, 47, 481–493. [Google Scholar] [CrossRef]
- Liu, J.K.; Liu, D.S.; Alsdorf, D. Extracting Ground-Level DEM From SRTM DEM in Forest Environments Based on Mathematical Morphology. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6333–6340. [Google Scholar]
- Balzter, H.; Baade, J.; Rogers, K. Validation of the TanDEM-X Intermediate Digital Elevation Model With Airborne LiDAR and Differential GNSS in Kruger National Park. IEEE Geosci. Remote Sens. Lett. 2016, 13, 277–281. [Google Scholar] [CrossRef]
- GermanAerospaceCenter. TanDEM-X—Application and Use [Tandem-X—Anwendung und Nutzung]; German Aerospace Center: Munich, Germany, 2014. [Google Scholar]
- Martone, M.; Bräutigam, B.; Rizzoli, P.; Gonzalez, C.; Bachmann, M.; Krieger, G. Coherence evaluation of TanDEM-X interferometric data. ISPRS J. Photogram. Remote Sens. 2012, 73, 21–29. [Google Scholar] [CrossRef]
- Lundgren, J.; Juni, O. Accuracy Control of Laser Data for the new National Elevation Model [Noggrannhetskontroll av Laserdata för ny Nationell Höjdmodell]. Master’s Thesis, University of Gävle, Department for Technology and Environment, Gävle, Sweden, 2010. [Google Scholar]
- BlackBridgeAG. RapidEye—Satellite Imagery Product Specifications; BlackBridge AG: Berlin, Germany, 2015; pp. 1–48. [Google Scholar]
- DigitalGlobe. Quickbird Data Sheet; DigitalGlobe: Westminster, CO, USA, 2014. [Google Scholar]
- Gatti, A.; Bertolini, A. Sentinel-2 Products Specification Document (PSD); Thales Alenia Space: Cannes, France, 2015; p. 496. [Google Scholar]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Rötzer, T.; Caldentey, J.; Koike, T.; van Con, T.; Chavanne, A.; Seifert, T.; et al. Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban For. Urban Green. 2015, 14, 466–479. [Google Scholar] [CrossRef]
- Churkina, G. Modeling the carbon cycle of urban systems. Ecol. Model. 2008, 216, 107–113. [Google Scholar] [CrossRef]
- Alavipanah, S.; Wegmann, M.; Qureshi, S.; Weng, Q.; Koellner, T. The Role of Vegetation in Mitigating Urban Land Surface Temperatures: A Case Study of Munich, Germany during the Warm Season. Sustainability 2015, 7, 4689–4706. [Google Scholar] [CrossRef]
Imagery/Vector Data | Specifications | |
---|---|---|
TanDEM-X products Intermediate Digital Elevation Model (IDEM) Height Error Mask | Sensor | single-pass SAR interferometer |
Acquired | June 2012 (leaf-on) | |
Spatial resolution | 12 × 12 m (0.4 arcsec at equator) | |
Absolute horizontal accuracy (CE90) & vertical accuracy (LE90) | <10.00 m | |
Relative vertical accuracy (90% linear point-to-point error) | Not specified | |
Incidence angle | Not specified for study region, typically an angle of 39° | |
Height of ambiguity | Not specified | |
Height reference | WGS84-G1150 ellipsoid | |
Airborne LiDAR product [42] | Sensor | ALTM Gemini |
Acquired | 2007/08 (updated June 2014) | |
Point density | 1 point/m2 | |
Spatial resolution | 5 × 5 m | |
Absolute horizontal & vertical accuracy | 0.05–0.10 m | |
Wavelength | 1064 mm | |
Height reference | German Leveling Network 1992 (DHHN92) | |
UltraCamX product [43] vegetation height layer building height layer | Sensor | Matrix camera for panchromatic RGB, IR (9420 × 14430 pixel) |
Acquired | August 2010 (leaf-on) | |
Absolute horizontal & vertical accuracy Height reference | 0.10 m European Terrestrial Reference System (ETRS89) | |
Biotope map | Sensor/data basis | Various RS data (e.g., digital Orthophotos, analogue CIR aerial image slides) & existing vector data |
Acquired | 2001–2012 |
Height Model | Mean Height | Quantiles | σ | RMSE | ME | MAE | ||||
---|---|---|---|---|---|---|---|---|---|---|
0% | 25% | 50% | 75% | 100% | ||||||
Total Vegetation | ||||||||||
CHM | 10.46 | 0.00 | 4.78 | 9.67 | 15.86 | 63.00 * | 6.44 | 5.02 | −1.58 | 3.75 |
Val CHM | 12.02 | 0.00 | 4.89 | 12.30 | 18.60 | 54.69 * | 7.72 | |||
Bushes/Shrubs | ||||||||||
CHM | 2.89 | 0.21 | 1.90 | 2.96 | 3.96 | 4.98 | 1.26 | 1.73 | 0.54 | 1.38 |
Val CHM | 2.29 | 0.21 | 1.11 | 2.05 | 3.45 | 4.98 | 1.37 | |||
Trees | ||||||||||
CHM | 13.17 | 5.01 | 8.46 | 13.05 | 17.28 | 49.94 * | 5.27 | 4.62 | −2.47 | 3.53 |
Val CHM | 15.40 | 5.01 | 10.55 | 15.83 | 19.93 | 49.90 * | 5.83 |
Biotope Class | Vegetated Area | Mean Heights * | Height Deviations | ||||||
---|---|---|---|---|---|---|---|---|---|
km2 | km2 | % | μ | μVal | μ-μVal | RMSE | MAE | ME | |
Forests | 168.44 | 162.59 | 96.53 | 15.78 | 17.56 | −1.78 | 6.09 | 4.69 | −1.62 |
Bushes, tree rows, & groves | 18.88 | 17.01 | 90.12 | 9.02 | 10.38 | −1.37 | 6.10 | 4.69 | −1.19 |
Bogs & marshes | 1.37 | 1.05 | 76.53 | 5.57 | 4.58 | 0.99 | 5.73 | 4.08 | 0.24 |
Green & open spaces | 87.41 | 45.90 | 52.51 | 6.92 | 4.72 | 2.20 | 5.71 | 4.34 | 0.30 |
Built-up areas, traffic, & special areas | 473.59 | 197.26 | 41.65 | 6.07 | 4.14 | 1.92 | 5.64 | 4.41 | 1.34 |
Special biotopes | 3.66 | 1.46 | 39.91 | 3.97 | 2.34 | 1.63 | 4.43 | 3.29 | 0.63 |
Anthropogenic regosol sites & ruderal fields | 21.47 | 7.34 | 34.19 | 4.83 | 2.30 | 2.53 | 4.83 | 3.68 | 1.34 |
Green spaces, herb fridge fields, & grassland | 41.24 | 10.48 | 25.41 | 6.54 | 2.20 | 4.34 | 6.54 | 5.09 | 2.09 |
Dwarf shrub heaths | 0.18 | 0.04 | 22.73 | 7.94 | 3.60 | 4.33 | 4.82 | 3.63 | 1.93 |
Flowing waters | 9.53 | 1.35 | 14.16 | 8.03 | 5.30 | 2.74 | 6.20 | 4.84 | 0.46 |
Standing waters | 45.38 | 2.05 | 4.52 | 8.29 | 4.13 | 4.16 | 6.80 | 5.25 | 1.81 |
Fields | 20.72 | 0.92 | 4.44 | 4.57 | 0.35 | 4.23 | 5.11 | 3.88 | 2.74 |
μ | 41.89 | 2.16 |
Biotope Class | Area with Trees | Mean Heights * | Height Deviations | |||||||
---|---|---|---|---|---|---|---|---|---|---|
km2 | km2 | % | μ | μVal | μ-μVal | RMSE | MAE | ME | ||
Forests | 168.44 | 159.48 | 94.68 | 16.06 | 18.33 | −2.27 | 3.82 | 2.92 | −2.23 | |
Bushes, tree rows, & groves | 18.88 | 13.29 | 70.39 | 11.01 | 13.59 | −2.58 | 4.74 | 3.65 | −3.01 | |
Bogs & marshes | 1.37 | 0.51 | 37.23 | 8.98 | 10.09 | −1.11 | 4.22 | 3.07 | −2.10 | |
Green & open spaces | 87.41 | 28.00 | 32.03 | 9.95 | 12.72 | −2.77 | 5.07 | 3.99 | −3.22 | |
Built-up areas, traffic, & special areas | 473.59 | 108.80 | 22.97 | 8.78 | 11.17 | −2.39 | 4.77 | 3.79 | −2.87 | |
Dwarf shrub heaths | 0.18 | 0.03 | 16.67 | 9.56 | 10.64 | −1.08 | 3.32 | 2.43 | −1.15 | |
Anthropogenic regosol sites & ruderal fields | 21.47 | 3.06 | 14.25 | 8.40 | 9.86 | −1.46 | 3.95 | 2.96 | −2.06 | |
Green spaces, herb fridge fields, & grassland | 41.24 | 5.85 | 14.19 | 9.92 | 12.03 | −2.11 | 4.58 | 3.56 | −2.62 | |
Special biotopes | 3.66 | 0.46 | 12.57 | 7.99 | 10.07 | −2.09 | 4.39 | 3.44 | −3.06 | |
Flowing waters | 9.53 | 0.90 | 9.44 | 10.56 | 12.58 | −2.01 | 4.97 | 3.92 | −2.76 | |
Standing waters | 45.38 | 1.34 | 2.95 | 11.27 | 12.99 | −1.73 | 5.17 | 4.05 | −2.47 | |
Fields | 20.72 | 0.31 | 1.50 | 9.10 | 11.59 | −2.49 | 4.96 | 3.91 | −3.29 | |
μ | 27.40 | −2.01 |
Biotope Class | Area with Bushes/Shrubs | Mean Heights * | Height Deviations | |||||||
---|---|---|---|---|---|---|---|---|---|---|
km2 | km2 | % | μ | μVal | μ-μVal | RMSE | MAE | ME | ||
Bogs & marshes | 1.37 | 0.54 | 39.42 | 2.95 | 2.69 | 0.26 | 1.22 | 0.96 | 0.26 | |
Special biotopes | 3.66 | 1.00 | 27.32 | 2.45 | 2.02 | 0.43 | 1.32 | 1.03 | 0.26 | |
Green & open spaces | 87.41 | 17.9 | 20.48 | 2.61 | 2.14 | 0.47 | 1.46 | 1.14 | 0.39 | |
Anthropogenic regosol sites & ruderal fields | 21.47 | 4.28 | 19.93 | 2.65 | 2.15 | 0.50 | 1.53 | 1.21 | 0.45 | |
Bushes, tree rows, & groves | 18.88 | 3.72 | 19.70 | 3.03 | 2.63 | 0.40 | 1.54 | 1.23 | 0.39 | |
Built-up areas, traffic, & special areas | 473.59 | 88.46 | 18.68 | 2.97 | 2.29 | 0.68 | 1.61 | 1.30 | 0.64 | |
Green spaces, herb fridge fields, & grassland | 41.24 | 4.63 | 11.23 | 2.67 | 2.16 | 0.51 | 1.50 | 1.19 | 0.42 | |
Dwarf shrub heaths | 0.18 | 0.01 | 5.56 | 3.24 | 2.41 | 0.83 | 2.02 | 1.75 | 1.22 | |
Flowing waters | 9.53 | 0.45 | 4.72 | 2.88 | 2.41 | 0.47 | 1.66 | 1.34 | 0.54 | |
Fields | 20.72 | 0.61 | 2.94 | 2.35 | 2.06 | 0.29 | 1.36 | 1.07 | 0.11 | |
Forests | 168.44 | 3.11 | 1.85 | 3.33 | 2.57 | 0.76 | 1.69 | 1.37 | 0.79 | |
Standing waters | 45.38 | 0.71 | 1.56 | 2.78 | 2.25 | 0.53 | 1.55 | 1.24 | 0.41 | |
μ | 14.45 | 0.51 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schreyer, J.; Lakes, T. Deriving and Evaluating City-Wide Vegetation Heights from a TanDEM-X DEM. Remote Sens. 2016, 8, 940. https://doi.org/10.3390/rs8110940
Schreyer J, Lakes T. Deriving and Evaluating City-Wide Vegetation Heights from a TanDEM-X DEM. Remote Sensing. 2016; 8(11):940. https://doi.org/10.3390/rs8110940
Chicago/Turabian StyleSchreyer, Johannes, and Tobia Lakes. 2016. "Deriving and Evaluating City-Wide Vegetation Heights from a TanDEM-X DEM" Remote Sensing 8, no. 11: 940. https://doi.org/10.3390/rs8110940
APA StyleSchreyer, J., & Lakes, T. (2016). Deriving and Evaluating City-Wide Vegetation Heights from a TanDEM-X DEM. Remote Sensing, 8(11), 940. https://doi.org/10.3390/rs8110940