Temporal Variability of Uncertainty in Pixel-Wise Soil Moisture: Implications for Satellite Validation
Abstract
:1. Introduction
2. Methods
2.1. Data Sampling and Spatial Representativeness of in-Situ Soil Moisture
2.2. Uncertainty of in-Situ Soil Moisture
3. Materials and Data Processing


4. Results
4.1. Overall Condition of Soil Moisture

4.2. Spatial and Temporal Characteristics of Uncertainty





4.3. Correlations between Uncertainty and Soil Moisture
| WaterNET | |||||
|---|---|---|---|---|---|
| phase | index | Uabs | Urel | ||
| R | p | R | p | ||
| I | mean | 0.59 | 0.091 | −0.10 | 0.839 |
| skewness | −0.28 | 0.45 | 0.40 | 0.288 | |
| kurtosis | −0.57 | 0.112 | 0.17 | 0.659 | |
| II | mean | −0.08 | 0.688 | −0.74 | <0.001 |
| skewness | 0.37 | 0.001 | 0.85 | <0.001 | |
| kurtosis | 0.69 | <0.001 | 0.93 | <0.001 | |
| SoilNET | |||||
| phase | index | Uabs | Urel | ||
| R | p | R | p | ||
| I | mean | 0.95 | <0.001 | 0.82 | 0.007 |
| skewness | 0.66 | 0.051 | 0.80 | 0.01 | |
| kurtosis | −0.14 | 0.689 | −0.07 | 0.945 | |
| II | mean | 0.96 | <0.001 | 0.89 | <0.001 |
| skewness | 0.57 | <0.001 | 0.55 | <0.001 | |
| kurtosis | 0.65 | <0.001 | 0.62 | <0.001 | |
5. Discussion
6. Conclusions
| Network | Time | Sampling Error (%) | SD (%) | CV | Uabs (%) | Urel |
|---|---|---|---|---|---|---|
| WaterNET | study period | 2.9 | 5.9 | 0.19 | 8.8 | 0.26 |
| phase I | 3.3 | 8.3 | 0.26 | 11.7 | 0.34 | |
| phase II | 2.8 | 5.6 | 0.18 | 8.5 | 0.25 | |
| SoilNET | study period | -- | 5.6 | 0.17 | 5.6 | 0.17 |
| phase I | -- | 6.9 | 0.21 | 6.9 | 0.21 | |
| phase II | -- | 5.5 | 0.16 | 5.5 | 0.16 |
Acknowledgments
Author Contributions
Conflicts of Interest
References
- James, A.L.; Roulet, N.T. Antecedent moisture conditions and catchment morphology as controls on spatial patterns of runoff generation in small forest catchments. J. Hydrol. 2009, 377, 351–366. [Google Scholar] [CrossRef]
- Champagne, C.; Berg, A.A.; McNairn, H.; Drewitt, G.; Huffman, T. Evaluation of soil moisture extremes for agricultural productivity in the canadian prairies. Agric. For. Meteorol. 2012, 165, 1–11. [Google Scholar] [CrossRef]
- Savva, Y.; Szlavecz, K.; Carlson, D.; Gupchup, J.; Szalay, A.; Terzis, A. Spatial patterns of soil moisture under forest and grass land cover in a suburban area, in maryland, USA. Geoderma 2013, 192, 202–210. [Google Scholar] [CrossRef]
- Venkatesh, B.; Lakshman, N.; Purandara, B.K.; Reddy, V.B. Analysis of observed soil moisture patterns under different land covers in western ghats, India. J. Hydrol. 2011, 397, 281–294. [Google Scholar] [CrossRef]
- Walker, J.P.; Willgoose, G.R.; Kalma, J.D. In situ measurement of soil moisture: A comparison of techniques. J. Hydrol. 2004, 293, 85–99. [Google Scholar] [CrossRef]
- Brocca, L.; Tullo, T.; Melone, F.; Moramarco, T.; Morbidelli, R. Catchment scale soil moisture spatial-temporal variability. J. Hydrol. 2012, 422–423, 63–75. [Google Scholar] [CrossRef]
- Qin, J.; Yang, K.; Lu, N.; Chen, Y.; Zhao, L.; Han, M. Spatial upscaling of in-situ soil moisture measurements based on modis-derived apparent thermal inertia. Remote. Sens. Environ. 2013, 138, 1–9. [Google Scholar] [CrossRef]
- Brocca, L.; Zucco, G.; Moramarco, T.; Morbidelli, R. Developing and testing a long-term soil moisture dataset at the catchment scale. J. Hydrol. 2013, 490, 144–151. [Google Scholar] [CrossRef]
- Cheema, M.J.M.; Bastiaanssen, W.G.M.; Rutten, M.M. Validation of surface soil moisture from AMSR-E using auxiliary spatial data in the transboundary Indus basin. J. Hydrol. 2011, 405, 137–149. [Google Scholar] [CrossRef]
- Loew, A.; Schlenz, F. A dynamic approach for evaluating coarse scale satellite soil moisture products. Hydrol. Earth. Syst. Sci. 2011, 15, 75–90. [Google Scholar] [CrossRef]
- Mahmood, R.; Hubbard, K.G. Simulating sensitivity of soil moisture and evapotranspiration under heterogeneous soils and land uses. J. Hydrol. 2003, 280, 72–90. [Google Scholar] [CrossRef]
- Cho, E.; Choi, M.; Wagner, W. An assessment of remotely sensed surface and root zone soil moisture through active and passive sensors in northeast Asia. Remote. Sens. Environ. 2015, 160, 166–179. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Gruber, A.; de Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote. Sens. Environ. 2014. [Google Scholar] [CrossRef]
- English, N.B.; Weltzin, J.F.; Fravolini, A.; Thomas, L.; Williams, D.G. The influence of soil texture and vegetation on soil moisture under rainout shelters in a semi-desert grassland. J. Arid. Environ. 2005, 63, 324–343. [Google Scholar] [CrossRef]
- Neris, J.; Jiménez, C.; Fuentes, J.; Morillas, G.; Tejedor, M. Vegetation and land-use effects on soil properties and water infiltration of andisols in tenerife (canary islands, spain). CATENA 2012, 98, 55–62. [Google Scholar] [CrossRef]
- Gómez-Plaza, A.; Martı́nez-Mena, M.; Albaladejo, J.; Castillo, V.M. Factors regulating spatial distribution of soil water content in small semiarid catchments. J. Hydrol. 2001, 253, 211–226. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Z.; Gong, J.; Fu, B.; Huang, Y. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China. CATENA 2007, 70, 200–208. [Google Scholar] [CrossRef]
- Qiu, Y.; Fu, B.; Wang, J.; Chen, L. Soil moisture variation in relation to topography and land use in a hillslope catchment of the loess plateau, China. J. Hydrol. 2001, 240, 243–263. [Google Scholar] [CrossRef]
- Olchev, A.; Ibrom, A.; Priess, J.; Erasmi, S.; Leemhuis, C.; Twele, A.; Radler, K.; Kreilein, H.; Panferov, O.; Gravenhorst, G. Effects of land-use changes on evapotranspiration of tropical rain forest margin area in central sulawesi (Indonesia): Modelling study with a regional svat model. Ecol. Model. 2008, 212, 131–137. [Google Scholar] [CrossRef]
- Mapa, R.B. Effect of reforestation using tectona grandis on infiltration and soil water retention. Forest. Ecol. Manag. 1995, 77, 119–125. [Google Scholar] [CrossRef]
- Thierfelder, C.; Wall, P.C. Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil. Till. Res. 2009, 105, 217–227. [Google Scholar] [CrossRef]
- Li, B.; Rodell, M. Spatial variability and its scale dependency of observed and modeled soil moisture over different climate regions. Hydrol. Earth Syst. Sci. 2013, 17, 1177–1188. [Google Scholar] [CrossRef]
- Western, A.W.; Grayson, R.B.; Blöschl, G. Scaling of soil moisture: A hydrologic perspective. Annu. Rev. Earth Planet. Sci. 2002, 30, 149–180. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Ryu, D.; Berg, A.A.; Rodell, M.; Jackson, T.J. Field observations of soil moisture variability across scales. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Entekhabi, D.; Rodriguez-Iturbe, I. Analytical framework for the characterization of the space-time variability of soil moisture. Adv. Water Resour. 1994, 17, 35–45. [Google Scholar] [CrossRef]
- Peters-Lidard, C.D.; Pan, F. Re-thinking the contradictions of soil moisture spatial variability. In Proceedings of AGU 2002 Fall Meeting, San Francisco, CA, USA, 6–10 December 2002. abstract #NG12C-1042.
- Teuling, A.J.; Troch, P.A. Improved understanding of soil moisture variability dynamics. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; Rosnay, P.D.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012. [Google Scholar] [CrossRef]
- Western, A.W.; Blöschl, G. On the spatial scaling of soil moisture. J. Hydrol. 1999, 217, 203–224. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Devereaux, J.A.; Laymon, C.; Tsegaye, T.; Houser, P.; Jackson, T.J.; Graham, S.T.; Rodell, M.; Oevelen, P.J.V. Ground-based investigation of soil moisture variability within remote sensing footprints during the southern great plains 1997 (sgp97) hydrology experiment. Water Resour. Res. 1999, 35, 1839–1851. [Google Scholar] [CrossRef]
- Brocca, L.; Morbidelli, R.; Melone, F.; Moramarco, T. Soil moisture spatial variability in experimental areas of central Italy. J. Hydrol. 2007, 333, 356–373. [Google Scholar] [CrossRef]
- Blöschl, G.; Sivapalan, M. Scale issues in hydrological modelling: A review. Hydrol. Process 1995, 9, 251–290. [Google Scholar] [CrossRef]
- Crow, W.T.; Wood, E.F. Multi-scale dynamics of soil moisture variability observed during sgp’97. Geophys. Res. Lett. 1999, 26, 3485–3488. [Google Scholar] [CrossRef]
- Crow, W.T.; Wood, E.F. The value of coarse-scale soil moisture observations for regional surface energy balance modeling. J. Hydrometeorol. 2002, 3, 467–482. [Google Scholar] [CrossRef]
- Bell, K.R.; Blanchard, B.J.; Schmugge, T.J.; Witczak, M.W. Analysis of surface moisture variations within large-field sites. Water. Resour. Res. 1980, 16, 796–810. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Rudnicki, J.W.; Rodell, M. Variability in surface moisture content along a hillslope transect: Rattlesnake hill, Texas. J. Hydrol. 1998, 210, 259–281. [Google Scholar] [CrossRef]
- Cho, E.; Choi, M. Regional scale spatio-temporal variability of soil moisture and its relationship with meteorological factors over the korean peninsula. J. Hydrol. 2014. [Google Scholar] [CrossRef]
- Beven, K. Linking parameters across scales: Subgrid parameterizations and scale dependent hydrological models. Hydrol. Process. 1995, 9, 507–522. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Pastuszka, T.; Krzyszczak, J.; Sławiński, C.; Lamorski, K. Effect of time-domain reflectometry probe location on soil moisture measurement during wetting and drying processes. Measurement 2014, 49, 182–186. [Google Scholar] [CrossRef]
- Kang, J.; Li, X.; Jin, R.; Ge, Y.; Wang, J.; Wang, J. Hybrid optimal design of the eco-hydrological wireless sensor network in the middle reach of the Heihe River Basin, China. Sensors 2014, 14, 19095–19114. [Google Scholar] [CrossRef] [PubMed]
- Carsel, R.F.; Parrish, R.S. Developing joint probability distributions of soil water retention characteristics. Water. Resour. Res. 1988, 24, 755–769. [Google Scholar] [CrossRef]
- Charpentier, M.A.; Groffman, P.M. Soil moisture variability within remote sensing pixels. J. Geophys. Res.: Atmos. 1992, 97, 18987–18995. [Google Scholar] [CrossRef]
- Cheng, G.; Li, X.; Zhao, W.; Xu, Z.; Feng, Q.; Xiao, S.; Xiao, H. Integrated study of the water-ecosystem-economy in the heihe river basin. Natl. Sci. Rev. 2014, 1, 413–428. [Google Scholar] [CrossRef]
- Ge, Y.; Liang, Y.; Wang, J.; Zhao, Qi.; Liu, S. Upscaling Sensible Heat Fluxes With Area-to-Area Regression Kriging. IEEE. Geosci. Remote. Sens. 2015, 12, 656–660. [Google Scholar] [CrossRef]
- Jin, R.; Li, X.; Yan, B.; Li, X.; Luo, W.; Ma, M.; Guo, J.; Kang, J.; Zhu, Z.; Zhao, S. A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River Basin, China. IEEE. Geosci. Remote. Sens. Lett. 2014, 11, 2015–2019. [Google Scholar] [CrossRef]
- Cold and Arid Regions Sciences Data Center. Available online: http://westdc.westgis.ac.cn/ (accessed on 18 August 2013).
- Ojha, R.; Morbidelli, R.; Saltalippi, C.; Flammini, A.; Govindaraju, R.S. Scaling of surface soil moisture over heterogeneous fields subjected to a single rainfall event. J. Hydrol. 2014, 516, 21–36. [Google Scholar] [CrossRef]
- Ma, M.; Chen, Y.; Wang, X.; Han, H.; Yu, W.; H, W.; Shang, H. Hiwater: Dataset of soil parameters in the middle streams of heihe river basin. Cold Arid Reg. Environ. Eng. Res. Instit. Chin. Acad. Sci. 2012. [Google Scholar] [CrossRef]
- Yoo, C.; Valdés, J.B.; North, G.R. Evaluation of the impact of rainfall on soil moisture variability. Adv. Water. Resour. 1998, 21, 375–384. [Google Scholar] [CrossRef]
- Vachaud, G.; Passerat De Silans, A.; Balabanis, P. Temporal stability of spatially measured soil water probability density function. Soil Sci. Soc. Am. J. 1985, 49, 822–828. [Google Scholar]
- Jacobs, J.M.; Mohanty, B.P.; En-Ching, H.; Miller, D. SMEX02: Field scale variability, time stability and similarity of soil moisture. Remote Sens. Environ. 2004, 92, 436–446. [Google Scholar] [CrossRef]
- Cosh, M.H.; Jackson, T.J.; Moran, S.; Bindlish, R. Temporal persistence and stability of surface soil moisture in a semi-arid watershed. Remote Sens. Environ. 2008, 112, 304–313. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R. Soil moisture temporal stability over experimental areas in Central Italy. Geoderma 2009, 148, 364–374. [Google Scholar] [CrossRef]
- Chunovkina, A.G. Measurement error, measurement uncertainty, and measurand uncertainty. Meas. Tech. 2000, 43, 581–586. [Google Scholar] [CrossRef]
- Kuznetsov, V.P. Error of measurement and uncertainty: A comparison. Meas. Tech. 2003, 46, 751–760. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Skaggs, T.H. Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation. Adv. Water Resour. 2001, 24, 1051–1067. [Google Scholar] [CrossRef]
- Sur, C.; Jung, Y.; Choi, M. Temporal stability and variability of field scale soil moisture on mountainous hillslopes in Northeast Asia. Geoderma 2013, 207–208, 234–243. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, H.; Liu, Y.; Wu, G. Temporal Variability of Uncertainty in Pixel-Wise Soil Moisture: Implications for Satellite Validation. Remote Sens. 2015, 7, 5398-5415. https://doi.org/10.3390/rs70505398
Feng H, Liu Y, Wu G. Temporal Variability of Uncertainty in Pixel-Wise Soil Moisture: Implications for Satellite Validation. Remote Sensing. 2015; 7(5):5398-5415. https://doi.org/10.3390/rs70505398
Chicago/Turabian StyleFeng, Huihui, Yuanbo Liu, and Guiping Wu. 2015. "Temporal Variability of Uncertainty in Pixel-Wise Soil Moisture: Implications for Satellite Validation" Remote Sensing 7, no. 5: 5398-5415. https://doi.org/10.3390/rs70505398
APA StyleFeng, H., Liu, Y., & Wu, G. (2015). Temporal Variability of Uncertainty in Pixel-Wise Soil Moisture: Implications for Satellite Validation. Remote Sensing, 7(5), 5398-5415. https://doi.org/10.3390/rs70505398

