An Endmember Extraction Method Based on Artificial Bee Colony Algorithms for Hyperspectral Remote Sensing Images
Abstract
:1. Introduction
- Endmember extraction problems involve searching for an optimal solution in a continuous domain. The ABC approach possesses several advantages over other swarm intelligence algorithms in the context of continuous-domain optimization [25]. It treats the continuous domain of interest as the feasible solution space in which to search for endmembers; thus, it avoids the pure pixel assumption. By contrast, ACO and DPSO are stochastic optimization algorithms that operate in a discrete domain, and they rely on the pure pixel assumption for endmember extraction [17,18].
- The design requirements for the objective function are flexible. No swarm intelligence algorithm, including ABC, has any special requirements regarding whether the feasible solution space of the original problem is a convex set or whether the objective function is a convex function. Therefore, the approach proposed in this article improves upon the models used in geometric methods to achieve greater robustness.
2. Artificial Bee Colony Endmember Extraction
2.1. Linear Spectral Mixture Model
2.2. Dimensional Reduction
2.3. Optimization Problem
- random errors and noise may be present, and
- may not a subset of , meaning that some (or even all) endmembers may have no corresponding pure pixel in the image.
2.4. Artificial Bee Colony
3. Experiments with Synthetic Data
3.1. Synthetic Dataset 1
M | Index | AVMAX | MVCNMF | MVSA * | RMVES | VCA | ABCEE-R | ABCEE-V |
---|---|---|---|---|---|---|---|---|
4 | RMSE | 0.18621 | 0.084863 | 0.012774 | 0.087644 | 0.283535 | 0.011625 | 0.082551 |
Volume | 501.1301 | 359.0325 | 1799.304 | 710.6319 | 440.9159 | 777.213 | 320.0297 | |
5 | RMSE | 0.004896 | 0.195454 | 0.009964 | 0.001838 | 0.007107 | 0.000681 | 0.003071 |
Volume | 1001.615 | 1055841 | 1253.954 | 1053.175 | 1001.296 | 2048.226 | 1537.273 | |
SAD (rad) | 0.002236 | 0.081847 | 0.016715 | 0.004058 | 0.002254 | 0.051416 | 0.0868 | |
6 | RMSE | 0.019094 | 0.472892 | 0.009954 | 0.221258 | 0.008665 | 0.004744 | 0.150269 |
Volume | 80.83104 | 60541510 | 827.5818 | 19.67032 | 61.82337 | 58.11748 | 21.25579 |
Algorithm | Population | 20 | 50 | 80 | 100 | |
---|---|---|---|---|---|---|
Number of Endmembers | ||||||
ABCEE-R | 4 | 630.94 | 1540.09 | 2475.27 | 3070.64 | |
5 | 680.75 | 1718.50 | 4117.73 | 3433.15 | ||
6 | 733.81 | 1728.14 | 2751.05 | 3424.61 | ||
ABCEE-V | 4 | 24.84 | 62.73 | 98.05 | 125.10 | |
5 | 32.78 | 80.20 | 144.30 | 189.03 | ||
6 | 33.51 | 83.11 | 132.93 | 169.73 |
3.2. Synthetic Dataset 2
3.3. Synthetic Dataset 3
SNR | Metric | AVMAX | MVC-NMF | MVSA | RMVES | VCA | ABCEE-R | ABCEE-V |
---|---|---|---|---|---|---|---|---|
100:1 | SAD | 0.12444 | 0.174573 | 0.057896 | 0.208851 | 0.124838 | 0.149328 | 0.040319 |
RMSE | 0.028656 | 0.076074 | 1.18 × 10−16 | 0.261966 | 0.034615 | 1.02 × 10−16 | 0.003675 | |
50:1 | SAD | 0.120362 | 0.177811 | 0.08611 | 0.153927 | 0.118427 | 0.145519 | 0.049782 |
RMSE | 0.023661 | 0.078122 | 1.35 × 10−16 | 0.006434 | 0.0319 | 1.02 × 10−16 | 0.006023 |
ABCEE-R | ABCEE-V | ||||
---|---|---|---|---|---|
RMSE | SAD | RMSE | SAD | ||
SNR = 100:1 | Mean | 1.02 × 10−16 | 0.143641 | 0.004334 | 0.064347 |
Stdev | 5.79 × 10−18 | 0.040741 | 0.003203 | 0.026924 | |
SNR = 50:1 | Mean | 1.04 × 10−16 | 0.1681471 | 0.007672 | 0.082615 |
Stdev | 4.57 × 10−18 | 0.0380169 | 0.004312 | 0.035142 |
4. Experiments with a Real Image
AVMAX | MVC-NMF | MVSA | RMVES | VCA | ABCEE-R | ABCEE-V | |
---|---|---|---|---|---|---|---|
RMSE (FCLS) | 5.968194 | 12.29701 | 2.585935 | 7.86 × 10−3 | 8.583891 | 2.3984 × 10−4 | 3.44976 |
VOLUME | 5.30 × 1016 | 37,133.88 | 4.59 × 1020 | 1.83 × 1019 | 2.78 × 1016 | 2.04 × 1012 | 1.30 × 1017 |
AVMAX | MVCNMF | MVSA | RMVES | VCA | ABCEE-R | ABCEE-V | |
---|---|---|---|---|---|---|---|
Alunite | 0.075778 | 0.162828 | 0.330214 | 0.077421 | 0.330027 | 0.07927 | |
Buddingtonite | 0.163507 | 0.52489 | 0.543818 | ||||
Buddingtonite | 0.799628 | 0.111666 | 0.10611 | ||||
Calcite | 0.107456 | ||||||
Chalcedony | 0.077258 | 0.077634 | 0.064867 | 0.096033 | 0.065664 | 0.115396 | 0.077258 |
Chalcedony | 0.074673 | 0.073837 | 0.077258 | 0.08569 | |||
Chlorite | 0.108636 | 0.195042 | |||||
Dickite | 0.637588 | 0.301254 | 0.427711 | ||||
Dickite | 2.814941 | ||||||
Jarosite | 0.136408 | ||||||
Kaolinite | 0.072725 | 0.150208 | 0.163789 | 0.063718 | 0.149905 | 0.073869 | |
Kaolinite | 0.110306 | ||||||
Montmorillonite | 0.090629 | 0.097323 | 0.288801 | 0.090655 | 0.053652 | 0.098983 | |
Montmorillonite | 0.090655 | 0.074053 | 0.0671 | ||||
Muscovite | 0.094221 | 0.105594 | |||||
Nontronite | 0.086577 | 0.165434 | 0.300711 | 0.121372 | 0.373013 | 0.092121 | |
Nontronite | 0.097562 | ||||||
Average | 0.084616 | 0.114853 | 0.6409 | 0.237799 | 0.082176 | 0.262454 | 0.088793 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Plaza, A.; Martin, G.; Plaza, J. Recent developments in endmember extraction and spectral unmixing. In Optical Remote Sensing; Springer: Berlin, Germany, 2010; pp. 235–267. [Google Scholar]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A.; Green, R.O. Mapping target signatures via partial unmixing of aviris data. In Proceedings of the Fifth Annual JPL Airborne Earth Science Workshop, Pasadena, California, 23–26 January 1995.
- Winter, M.E. N-Findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. SPIE Proc. 1999, 3753, 266–275. [Google Scholar]
- Nascimento, J.M.; Dias, J.M. Vertex Component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 898–910. [Google Scholar] [CrossRef]
- Chang, C.; Wu, C.; Liu, W. A new growing method for simplex-based endmember extraction algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2804–2819. [Google Scholar] [CrossRef]
- Gruninger, J.H.; Ratkowski, A.J.; Hoke, M.L. The sequential maximum angle convex cone (smacc) endmember model. Proc Spie 2004, 5425, 1–14. [Google Scholar]
- Chan, T.; Ma, W.; Ambikapathi, A. A simplex volume maximization framework for hyperspectral endmember extraction. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4177–4193. [Google Scholar] [CrossRef]
- Jun, L.; José, M.B. Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2008, 3, 250–253. [Google Scholar]
- Ambikapathi, A.; Chan, T.; Ma, W. Chance-constrained robust minimum-volume enclosing simplex algorithm for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4194–4209. [Google Scholar] [CrossRef]
- Miao, L.; Qi, H. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 2007, 45, 765–777. [Google Scholar] [CrossRef]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B Cybern. 1996, 26, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995.
- Yang, X. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Frome, UK, 2008. [Google Scholar]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, X.; Gao, L. Endmember extraction of hyperspectral remote sensing images based on the Ant Colony Optimization (ACO) algorithm. IEEE Trans Geosci. Remote Sens. 2011, 49, 2635–2646. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, X.; Gao, L. Endmember extraction of hyperspectral remote sensing images based on the discrete particle swarm optimization algorithm. IEEE Trans Geosci. Remote Sens. 2011, 49, 4173–4176. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems. In Foundations of Fuzzy Logic and Soft Computing; Springer: Berlin, Germany, 2007; pp. 789–798. [Google Scholar]
- Karaboga, D.; Akay, B.; Ozturk, C. Artificial Bee Colony (ABC) optimization algorithm for training feed-forward neural networks. In Modeling Decisions for Artificial Intelligence; Springer: Berlin, Germany, 2007; Volume 4617, pp. 318–329. [Google Scholar]
- Baykasoglu, A.; Ozbakir, L.; Tapkan, P.I.N. Artificial Bee Colony algorithm and its application to generalized assignment problem. In Swarm Intelligence: Focus on Ant and Particle Swarm Optimization; Itech Education and Publishing: Vienna, Austria, 2007; pp. 113–144. [Google Scholar]
- Wong, L.; Low, M.Y.H.; Chong, C.S. A Bee Colony Optimization algorithm for traveling salesman problem. In Proceedings of the Second Asia International Conference on Modelling & Simulation, Kuala Lumpur, Malaysia, 13–15 May 2008; pp. 818–823.
- Karaboga, D.; Ozturk, C. A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Appl. Soft Comput. 2011, 11, 652–657. [Google Scholar] [CrossRef]
- Xiao, Y. Research on Bee Colony Algorithm and Its Applications in Image Processing. Ph.D. Thesis, South China University of Technology, Guangzhou, China, 2011. [Google Scholar]
- Abu-Mouti, F.S.; El-Hawary, M.E. Overview of Artificial Bee Colony (ABC) algorithm and its applications. In Proceedings of the Systems Conference, Vancouver, BC, Canada, 19–22 March 2012; pp. 1–6.
- Chang, C. Hyperspectral Data Exploitation: Theory and Applications; Wiley-Interscience: Hoboken, NJ, USA, 2007. [Google Scholar]
- Heinz, D.C.; Chang, C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. On the Performance of Artificial Bee Colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Plaza, A.; Martinez, P.; Perez, R. A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 650–663. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Yang, L.; Zhang, B.; Gao, L.; Gao, J. An Endmember Extraction Method Based on Artificial Bee Colony Algorithms for Hyperspectral Remote Sensing Images. Remote Sens. 2015, 7, 16363-16383. https://doi.org/10.3390/rs71215834
Sun X, Yang L, Zhang B, Gao L, Gao J. An Endmember Extraction Method Based on Artificial Bee Colony Algorithms for Hyperspectral Remote Sensing Images. Remote Sensing. 2015; 7(12):16363-16383. https://doi.org/10.3390/rs71215834
Chicago/Turabian StyleSun, Xu, Lina Yang, Bing Zhang, Lianru Gao, and Jianwei Gao. 2015. "An Endmember Extraction Method Based on Artificial Bee Colony Algorithms for Hyperspectral Remote Sensing Images" Remote Sensing 7, no. 12: 16363-16383. https://doi.org/10.3390/rs71215834
APA StyleSun, X., Yang, L., Zhang, B., Gao, L., & Gao, J. (2015). An Endmember Extraction Method Based on Artificial Bee Colony Algorithms for Hyperspectral Remote Sensing Images. Remote Sensing, 7(12), 16363-16383. https://doi.org/10.3390/rs71215834