A Space View of Radar Archaeological Marks: First Applications of COSMO-SkyMed X-Band Data
Abstract
:1. Introduction
2. Problem Statement
2.1. Rational Basis for Archaeological Marks
2.1.1. Shadow Marks
2.1.2. Crop Marks
2.1.3. Soil and Damp Marks
3. Archaeological Feature Extraction from SAR: Methodological Approaches
3.1. Multi-Temporal Analysis
No. | Acquisition (Day Month Year) | No. | Acquisition (Day Month Year) | No. | Acquisition (Day Month Year) | No. | Acquisition (Day Month Year) |
---|---|---|---|---|---|---|---|
1 | 27 February 2013 | 11 | 20 April 2013 | 21 | 23 June 2013 | 31 | 26 August 2013 |
2 | 3 March 2013 | 12 | 24 April 2013 | 22 | 27 June 2013 | 32 | 30 August 2013 |
3 | 7 March 2013 | 13 | 2 May 2013 | 23 | 5 July 2013 | 33 | 7 September 2013 |
4 | 15 March 2013 | 14 | 6 May 2013 | 24 | 9 July 2013 | 34 | 11 September 2013 |
5 | 19 March 2013 | 15 | 10 May 2013 | 25 | 21 July 2013 | 35 | 15 September 2013 |
6 | 23 March 2013 | 16 | 26 May 2013 | 26 | 25 July 2013 | 36 | 23 September 2013 |
7 | 31 March 2013 | 17 | 3 June 2013 | 27 | 29 July 2013 | 37 | 27 September 2013 |
8 | 4 April 2013 | 18 | 7 June 2013 | 28 | 6 August 2013 | 38 | 9 October 2013 |
9 | 8 April 2013 | 19 | 11 June 2013 | 29 | 10 August 2013 | 39 | 13 October 2013 |
10 | 16 April 2013 | 20 | 19 June 2013 | 30 | 14 August 2013 | 40 | 17 October 2013 |
3.2. Single-Date Analysis
4. Results
4.1. Luoyang Site Case Study
4.1.1. SAR Dataset
4.1.2. Description of Study Site
4.1.3. Reconnaissance of Archaeological Marks in Luoyang
4.2. Sabratha and Metaponto Case Studies
4.2.1. Description of Study Areas
4.2.2. Results
5. Conclusions
- The use of multi-temporal COSMO-SkyMed Stripmap, by stacking-averaging has been beneficial for shadow mark enhancement. On the other hand, visual inspection enabled us to identify the best scenes for the reconnaissance of the “seasonal” archaeological feature (crop, soil, and damp marks). This was probably due to a good match between soil properties and the acquisition parameters of the image itself.
- Single-date analysis was a feasible way to provide an effective and cost-sustainable use of satellite SAR X-band data to detect archaeological features, from the shadow marks (Sabratha) to marks sensitive to vegetation (Luoyang and Metaponto) and moisture variations (Metaponto).
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Parcak, S. Satellite Remote Sensing for Archaeology; Routledge Press: New York, NY, USA, 2009. [Google Scholar]
- Lasaponara, R.; Masini, N. Satellite Remote Sensing: A New Tool for Archaeology; Springer: Berlin, Germany, 2012. [Google Scholar]
- Comer, D.; Harrower, M. Mapping Archaeological Landscapes from Space; Springer: New York, NY, USA, 2013; p. 276. [Google Scholar]
- Wilson, D.R. Air Photo Interpretation for Archaeologists; St. Martin’s Press: London, UK, 1982. [Google Scholar]
- Beck, A.R. Archaeological site detection: The importance of contrast. In Proceedings of the 2007 Annual Conference of the Remote Sensing and Photogrammetry Society, Newcastle, UK, 11–14 September 2007.
- Lasaponara, R.; Masini, N. Detection of archaeological crop marks by using satellite QuickBird. J. Archaeol. Sci. 2007, 34, 214–221. [Google Scholar] [CrossRef]
- Cavalli, R.M.; Pascucci, S.; Pignatti, S. Optimal spectral domain selection for maximizing archaeological signatures: Italy case studies. Sensors 2009, 9, 1754–1767. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.D.; Garrod, S.M.; Parker Pearson, M. Landscape archaeology and remote sensing in southern Madagascar. Int. J. Remote Sens. 1998, 19, 1461–1477. [Google Scholar] [CrossRef]
- Agapiou, A.; Alexakis, D.D.; Hadjimitsis, D.G. Spectral sensitivity of ALOS, ASTER, IKONOS, LANDSAT and SPOT satellite imagery intended for the detection of archaeological crop marks. Int. J. Digit. Earth 2012. [Google Scholar] [CrossRef]
- Altaweel, M. The use of ASTER satellite imagery in archaeological contexts. Archaeol. Prospect. 2005, 12, 151–166. [Google Scholar] [CrossRef]
- McCauley, J.F.; Schaber, G.G.; Breed, C.S.; Grolier, M.J.; Haynes, C.V.; Issawi, B.; Elachi, C.; Blom, R. Subsurface valleys and geoarchaeology of the eastern Sahara revealed by shuttle radar. Science 1982, 218, 1004–1020. [Google Scholar] [CrossRef] [PubMed]
- El-Baz, F. Prehistoric artifacts near paleo-channels revealed by radar images in the western desert of Egyp. In Remote Sensing in Archaeology from Spacecraft, Aircraft, on Land, and in the Deep Sea; Boston University: Boston, MA, USA, 1998. [Google Scholar]
- Evans, D.; Pottier, C.; Fletcher, R.; Hensley, S.; Tapley, I.; Milne, A.; Barbetti, M. A comprehensive archaeological map of the world’s largest preindustrial settlement complex at Angkor, Cambodia. Proc. Natl. Acad. Sci. USA 2007, 104, 14277–14282. [Google Scholar] [CrossRef] [PubMed]
- Garrison, T.G.; Chapman, B.; Houston, S.; Roman, E.G.; Lopez, J.L. Discovering ancient Maya settlements using airborne radar elevation data. J. Archaeol. Sci. 2011, 38, 1655–1662. [Google Scholar] [CrossRef]
- Linck, R.; Busche, T.; Buckreuss, S.; Fassbinder, J.W.E.; Seren, S. Possibilities of archaeological prospection by high-resolution X-band satellite radar-a case study from Syria. Archaeol. Prospect. 2013, 20, 97–108. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D.; Lasaponara, R.; Masini, N. Amplitude change detection with Envisat ASAR to image the cultural landscape of the Nasca region, Peru. Archaeol. Prospect. 2013, 20, 117–131. [Google Scholar] [CrossRef]
- Patruno, J.; Dore, R.; Crespi, M.; Pottier, E. Polarimetric multifrequency and multi-incidence SAR sensors analysis for archaeological purposes. Archaeol. Prospect. 2013, 20, 89–96. [Google Scholar] [CrossRef]
- Dore, N.; Patruno, J.; Pottier, E.; Crespi, M. New research in polarimetric SAR technique for archaeological purposes using ALOS PALSAR data. Archaeol. Prospect. 2013, 20, 79–87. [Google Scholar] [CrossRef]
- Morrison, K. Mapping subsurface archaeology with SAR. Archaeol. Prospect. 2013, 20, 149–160. [Google Scholar] [CrossRef]
- Tapete, D.; Casagli, N.; Luzi, G.; Fanti, R.; Gigli, G.; Leva, D. Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments. J. Archaeol. Sci. 2013, 40, 176–189. [Google Scholar] [CrossRef] [Green Version]
- Tapete, D.; Cigna, F. Rapid mapping and deformation analysis over cultural heritage and rural sites based on persistent scatterer interferometry. Int. J. Geophys. 2012. [Google Scholar] [CrossRef]
- Tapete, D.; Fanti, R.; Cecchi, R.; Petrangeli, P.; Casagli, N. Satellite radar interferometry for monitoring and early-stage warning of structural instability in archaeological sites. J. Geophys. Eng. 2012, 9, S10–S25. [Google Scholar] [CrossRef]
- Di Iorio, A.; Straccia, N.; Carlucci, R. Advancement in automatic monitoring and detection of archaeological sites using a hybrid process of remote sensing, GIS techniques and a shape detection algorithm. In Proceedings of the 30th EARSeL Symposium, Paris, France, 31 May–3 June 2010; pp. 53–63.
- Collins, A. Radar satellite image reveals the full geological extent of Giza’s cave underworld. In Beneath the Pyramids: Egypt’s Greatest Secret Uncovered; Collins, A., Ed.; A.R.E. Press: London, UK, 2009. [Google Scholar]
- Blom, R.G.; Comer, D.C. Detection and Identification of Archaeological Sites Using Radar Data; Final Report: SERDP SI-1260; Strategic Environmental Research and Development Program (SERDP), Environmental Security Technology Certification Program (ESTCP): Alexandria, VA, USA, 2006. [Google Scholar]
- Stewart, C.; di Iorio, A.; Schiavon, G. Analysis of the utility of Cosmo Skymed stripmap to detect buried archaeological features in the region of Rome. Experimental component of WHERE project. In Towards Horizon 2020: Earth Observation and Social Perspectives, Proceedings of the 33rd EARSeL Symposium, Matera, Italy, 3–6 June 2013; Lasaponara, R., Masini, N., Biscione, M., Eds.; European Association of Remote Sensing Laboratories (EARSeL): Münster German; National Research Council (CNR): Roma, Italy, 2013; pp. 203–212. [Google Scholar]
- COSMO-SkyMed System Description & User Guide. COSMO-SkyMed SAR Products Handbook. Available online: http://www.e-geos.it/products/pdf/csk-user_guide.pdf (accessed on 20 December 2014).
- Chen, F.; Gabellone, F.; Lasaponara, R.; Leucci, G.; Masini, N.; Yang, R. Remote Sensing and ICT for Cultural Heritage from European and Chinese Perspectives; Series “Along Silk Road” 1; Institute for Archaeological and Architectural Heritage and Architectural Heritage, National Research Council (CNR-IBAM): Roma, Italy; Institute of Methodologies for Environmental Analysis, National Research Council (CNR-IMAA): Roma, Italy; Chinese Academy of Sciences (CAS): Beijing, China, 2013. [Google Scholar]
- COSMO-SkyMed SAR Products Handbook. Available online: http://www.e-geos.it/products/pdf/csk-product%20handbook.pdf (accessed on 20 December 2014).
- Lee, J.-S. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, 2, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.; Touzi, R.; Nezry, E. Adaptive speckle filters and scene heterogeneity. IEEE Trans. Geosci. Remote Sens. 1990, 28, 992–1000. [Google Scholar] [CrossRef]
- Shi, Z.; Fung, K.B. A comparison of digital speckle filters. In Proceedings of the IGARSS 94, Pasadena, CA, USA, 8–12 August 1994; pp. 2129–2133.
- Ganugapati, S.S.; Moloney, C.R. A ratio edge detector for speckled images based on maximum strength edge pruning. In Proceedings of the 1995 International Conference on Image Processing, Washington, DC, USA, 23–26 October 1995; Volume 2.
- Fu, X.; You, H.; Fu, K. A statistical approach to detect edges in SAR images based on square successive difference of averages. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1094–1098. [Google Scholar] [CrossRef]
- Peters, R.A. A new algorithm for image noise reduction using mathematical morphology. IEEE Trans. Image Process. 1995, 4, 554–567. [Google Scholar] [CrossRef] [PubMed]
- Rama Bai, M. A new approach for border extraction using morphological methods. Int. J. Eng. Sci. Technol. 2010, 2, 3832–3837. [Google Scholar]
- Cotterell, A. The Imperial Capitals of China: An Inside View of the Celestial Empire; Pimlico: London, UK, 2008. [Google Scholar]
- Qian, G. On the layout of the Palace-city of the Han-Wei Luoyang city in the light of the Changhemen gate. Chin. Archaeol. 2003, 4, 165–169. [Google Scholar]
- Matthews, K.D., Jr.; Cook, A.W. Cities in the Sand: Leptis Magna and Sabratha in Roman Africa; University of Pennsylvania Press: Philadelphia, PA, USA, 1957. [Google Scholar]
- Adamesteanu, D. Le suddivisioni di terra nel Metapontino. In Problèmes de la Terre en Grèce Ancienne; Finley, M.I., Ed.; Mouton: Paris, France, 1973; pp. 49–61. [Google Scholar]
- Carter, J.C. Between the Bradano and Basento: Archaeology of an ancient landscape. In Earth Patterns: Essays in Landscape Archaeology; Kelso, W., Most, R., Eds.; University of Virginia Press: Charlottesville, VA, USA, 1990; pp. 227–243. [Google Scholar]
- Lasaponara, R.; Masini, N. Satellite synthetic aperture radar in archaeology and cultural landscape: An overview. Archaeol. Prospect. 2013, 20, 71–78. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Masini, N.; Yang, R.; Milillo, P.; Feng, D.; Lasaponara, R. A Space View of Radar Archaeological Marks: First Applications of COSMO-SkyMed X-Band Data. Remote Sens. 2015, 7, 24-50. https://doi.org/10.3390/rs70100024
Chen F, Masini N, Yang R, Milillo P, Feng D, Lasaponara R. A Space View of Radar Archaeological Marks: First Applications of COSMO-SkyMed X-Band Data. Remote Sensing. 2015; 7(1):24-50. https://doi.org/10.3390/rs70100024
Chicago/Turabian StyleChen, Fulong, Nicola Masini, Ruixia Yang, Pietro Milillo, Dexian Feng, and Rosa Lasaponara. 2015. "A Space View of Radar Archaeological Marks: First Applications of COSMO-SkyMed X-Band Data" Remote Sensing 7, no. 1: 24-50. https://doi.org/10.3390/rs70100024
APA StyleChen, F., Masini, N., Yang, R., Milillo, P., Feng, D., & Lasaponara, R. (2015). A Space View of Radar Archaeological Marks: First Applications of COSMO-SkyMed X-Band Data. Remote Sensing, 7(1), 24-50. https://doi.org/10.3390/rs70100024