Next Article in Journal
Evapotranspiration Variability and Its Association with Vegetation Dynamics in the Nile Basin, 2002–2011
Next Article in Special Issue
How Reliable is the MODIS Land Cover Product for Crop Mapping Sub-Saharan Agricultural Landscapes?
Previous Article in Journal
Assessment of Surface Urban Heat Islands over Three Megacities in East Asia Using Land Surface Temperature Data Retrieved from COMS
Previous Article in Special Issue
Crop Condition Assessment with Adjusted NDVI Using the Uncropped Arable Land Ratio
Open AccessArticle

Investigating the Relationship between the Inter-Annual Variability of Satellite-Derived Vegetation Phenology and a Proxy of Biomass Production in the Sahel

European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via E. Fermi 2749, I-21027 Ispra (VA), Italy
South African National Space Agency, Pretoria 0087, South Africa
Institute of Remote Sensing and Digital Earth, Chinese Academy Of Science, Dengzhuang South Road 9, Haidian District, Beijing 100094, China
Ecological Monitoring Centre, Rue Léon Gontran Damas, BP 15 532 Dakar, Senegal
Author to whom correspondence should be addressed.
Remote Sens. 2014, 6(6), 5868-5884;
Received: 9 April 2014 / Revised: 5 June 2014 / Accepted: 6 June 2014 / Published: 20 June 2014
(This article belongs to the Special Issue Remote Sensing in Food Production and Food Security)
In the Sahel region, moderate to coarse spatial resolution remote sensing time series are used in early warning monitoring systems with the aim of detecting unfavorable crop and pasture conditions and informing stakeholders about impending food security risks. Despite growing evidence that vegetation productivity is directly related to phenology, most approaches to estimate such risks do not explicitly take into account the actual timing of vegetation growth and development. The date of the start of the season (SOS) or of the peak canopy density can be assessed by remote sensing techniques in a timely manner during the growing season. However, there is limited knowledge about the relationship between vegetation biomass production and these variables at the regional scale. This study describes the first attempt to increase our understanding of such a relationship through the analysis of phenological variables retrieved from SPOT-VEGETATION time series of the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR). Two key phenological variables (growing season length (GSL); timing of SOS) and the maximum value of FAPAR attained during the growing season (Peak) are analyzed as potentially related to a proxy of biomass production (CFAPAR, the cumulative value of FAPAR during the growing season). GSL, SOS and Peak all show different spatial patterns of correlation with CFAPAR. In particular, GSL shows a high and positive correlation with CFAPAR over the whole Sahel (mean r = 0.78). The negative correlation between delays in SOS and CFAPAR is stronger (mean r = −0.71) in the southern agricultural band of the Sahel, while the positive correlation between Peak FAPAR and CFAPAR is higher in the northern and more arid grassland region (mean r = 0.75). The consistency of the results and the actual link between remote sensing-derived phenological parameters and biomass production were evaluated using field measurements of aboveground herbaceous biomass of rangelands in Senegal. This study demonstrates the potential of phenological variables as indicators of biomass production. Nevertheless, the strength of the relation between phenological variables and biomass production is not universal and indeed quite variable geographically, with large scattered areas not showing a statistically significant relationship. View Full-Text
Keywords: phenology; SPOT-VEGETATION; FAPAR; time series; biomass production; Sahel phenology; SPOT-VEGETATION; FAPAR; time series; biomass production; Sahel
Show Figures

Graphical abstract

MDPI and ACS Style

Meroni, M.; Rembold, F.; Verstraete, M.M.; Gommes, R.; Schucknecht, A.; Beye, G. Investigating the Relationship between the Inter-Annual Variability of Satellite-Derived Vegetation Phenology and a Proxy of Biomass Production in the Sahel. Remote Sens. 2014, 6, 5868-5884.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

Only visits after 24 November 2015 are recorded.
Search more from Scilit
Back to TopTop