Improving Species Diversity and Biomass Estimates of Tropical Dry Forests Using Airborne LiDAR
Abstract
:1. Introduction
2. Data and Methods
2.1. Site Descriptions
2.2. Species Richness and Biomass Data
2.3. LiDAR Data Processing
2.4. Data Analysis
3. Results
3.1. Patterns of Species Richness and Biomass
3.2. Effects of Plot Size and Plot Design on Species Richness and Biomass
3.3. Regional Model to Predict Species Richness and Biomass from LiDAR
3.4. Variation Partitioning of Species Richness and Biomass
4. Discussion
4.1. Effects of Plot Size and Plot Design on Species Richness and Biomass Estimations
4.2. Regional Model to Predict Species Richness and Biomass
4.3. Factors Related to Species Richness and Biomass Estimations
5. Conclusions
Acknowledgments
Appendix
Category | Metric |
---|---|
Height statistics | Minimum |
Maximum | |
Mean | |
Median (output as 50th percentile) | |
Mode | |
Standard deviation | |
Variance | |
Coefficient of variation | |
Interquartile distance | |
Above mean | |
Above mode | |
Skewness | |
Kurtosis | |
AAD (average absolute deviation) | |
L-moments (L1, L2, L3, L4) | |
L-moment skewness | |
L-moment kurtosis | |
(1st, 5th, 10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 95th, 99th percentiles) | |
Canopy density | Total number of returns |
Count of returns by return number (1, 2, 3, 4, 5, 6, 7, 8, 9, other) | |
Percentage of first returns above a specified height (canopy cover estimate) | |
Percentage of first returns above the mean height/elevation | |
Percentage of first returns above the mode height/elevation | |
Percentage of all returns above a specified height | |
Percentage of all returns above the mean height/elevation | |
Percentage of all returns above the mode height/elevation | |
Number of returns above a specified height/total first returns × 100 | |
Number of returns above the mean height/total first returns × 100 | |
Number of returns above the mode height/total first returns × 100 | |
Number of first returns above mean | |
Number of first returns above mode | |
Number of returns above mean | |
Number of returns above MODE | |
Total number of 1st returns | |
Total number of returns |
Conflicts of Interest
- Author ContributionsJosé Luis Hernández-Stefanoni conceived of the research and designed the experiments. José Luis Hernández-Stefanoni, Juan Manuel Dupuy and Fernando Tun-Dzul analyzed the data. José Luis Hernández-Stefanoni, Juan Manuel Dupuy, Kristofer D. Johnson, Richard Birdsey and Alicia Peduzzi wrote the paper. Juan Pablo Caamal-Sosa, Gonzalo Sánchez-Santos and David López-Merlín processed the field data samples. All authors shared equally in the editing of the manuscript.
References
- Thomson, A.; Calvin, K.; Chini, L.; Hurtt, G.; Edmonds, J.; Ben Bond-Lamberty, B.; Frolking, S.; Wise, M.A.; Janetos, A.C. Climate mitigation and the future of tropical landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 19633–19638. [Google Scholar]
- Fearnside, P.M.; Laurance, W.F. Tropical deforestation and greenhouse gas emissions. Ecol. Appl 2004, 14, 982–986. [Google Scholar]
- Le Quéré, C.; Peters, G.P.; Andres, R.J.; Andrew, R.M.; Boden, T.; Ciais, P.; Friedlingstein, P.; Houghton, R.A.; Marland, G.; Moriarty, R.; et al. Global carbon budget 2013. Earth Syst. Sci. Data Discuss 2013, 6, 689–760. [Google Scholar]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst 2003, 34, 487–515. [Google Scholar]
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett 2007, 2. [Google Scholar] [CrossRef]
- Gillespie, T.W.; Foody, G.M.; Rocchini, D.; Giorgi, A.P.; Saatchi, S. Measuring and modelling biodiversity from space. Prog. Phys. Geogr 2008, 32, 203–221. [Google Scholar]
- St-Louis, V.; Pidgeon, A.M.; Clayton, M.K.; Locke, B.A.; Bash, D.; Radeloff, V.C. Satellite image texture and a vegetation index predict avian biodiversity in the Chihuahuan Desert of New Mexico. Ecography 2009, 32, 468–480. [Google Scholar]
- Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steiniger, M. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol 2003, 18, 306–314. [Google Scholar]
- Hernández-Stefanoni, J.L.; Gallardo-Cruz, J.A.; Meave, J.A.; Dupuy, J.M. Combining geostatistical models and remotely sensed data to improve tropical plant richness mapping. Ecol. Indic 2011, 11, 1046–1056. [Google Scholar]
- Sanchez-Azofeifa, G.A.; Castro-Esau, K.L.; Kurz, W.A.; Joyce, A. Monitoring carbon stocks in the tropics and the remote sensing operational limitations: From local to regional projects. Ecol. Appl 2009, 19, 480–494. [Google Scholar]
- Nagendra, H.; Rocchini, D.; Ghate, R.; Sharma, B.; Pareeth, S. Assessing plant diversity in a dry tropical forest: Comparing the utility of Landsat and IKONOS satellite images. Remote Sens 2010, 2, 478–496. [Google Scholar]
- Helmer, E.; Brandeis, T.; Lugo, A.; Kennaway, T. Factors influencing spatial pattern in tropical forest clearance and stand age: Implications for carbon storage and species diversity. J. Geophys. Res 2008, 113. [Google Scholar] [CrossRef]
- Næsset, E.; Okland, T. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sens. Environ 2002, 79, 105–115. [Google Scholar]
- Drake, J.B.; Knox, R.G.; Dubayah, R.O.; Clark, D.B.; Condit, R.; Blair, J.B.; Hofton, M. Above-ground biomass estimation in closed canopy Neotropical forests using LiDAR remote sensing: Factors affecting the generality of relationships. Glob. Ecol. Biogeogr 2003, 12, 147–159. [Google Scholar]
- Nelson, R.; Ranson, K.J.; Sun, G.; Kimes, D.S.; Kharuk, V.; Montesano, P. Estimating Siberian timber volume using MODIS and ICEsat/GLAS. Remote Sens. Environ 2009, 113, 691–701. [Google Scholar]
- Simonson, W.D.; Allen, H.D.; Coomes, D.A. Use of an airborne lidar system to model plant species composition and diversity of mediterranean oak forests. Conserv. Biol 2012, 26, 840–850. [Google Scholar]
- Leutner, B.F.; Reineking, B.; Müller, J.; Bachmann, M.; Beierkuhnlein, C.; Dech, S.; Wegmann, M. Modelling forest α-diversity and floristic composition—On the added value of LiDAR plus hyperspectral remote sensing. Remote Sens 2012, 4, 2818–2845. [Google Scholar]
- Lefsky, M.A.; Harding, D.J.; Keller, M.; Cohen, W.B.; Caraba-jal, C.C.; Espirito-Santo, F.D.; Hunter, M.O.; de Oliveira, R. Estimates of forest canopy height and above-ground biomass using ICESat. Geophys. Res. Lett 2005, 32. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Cohen, W.B.; Spies, R.A. An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon. Can. J. For. Res 2001, 31, 78–87. [Google Scholar]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Folster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbonstocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar]
- Asner, G.P.; Hughes, R.F.; Varga, T.A.; Knapp, D.E.; Kennedy-Bowdoin, T. Environmental and biotic controls over aboveground biomass throughout a tropical rain forest. Ecosystems 2009, 12, 261–278. [Google Scholar]
- Goetz, S.; Steinberg, D.; Dubayah, R.; Blair, B. Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sens. Environ 2007, 108, 254–263. [Google Scholar]
- Muller, J.; Brandl, R. Assessing biodiversity by remote sensing in mountainous terrain: The potential of LiDAR to predict forest beetle assemblages. J. Appl. Ecol 2009, 46, 897–905. [Google Scholar]
- Vierling, K.T.; Bassler, C.; Brandl, R.; Vierling, L.A.; Weib, I.; Muller, J. Spinning a laser web: Predicting spider distributions using LiDAR. Ecol. Appl 2011, 21, 577–588. [Google Scholar]
- Whitmore, T.C. Canopy gaps and the mayor groups of forest trees. Ecology 1989, 70, 536–538. [Google Scholar]
- Lebrija-Trejos, E.; Pérez-García, E.A.; Meave, J.A.; Bongers, F.; Poorter, L. Functional traits and environmental filtering drive community assembly in a species-rich tropical landscape. Ecology 2010, 91, 386–398. [Google Scholar]
- Dupuy, J.M.; Hernández-Stefanoni, J.L.; Hernández-Juárez, R.A.; Tetetla-Rangel, E.; López-Martínez, J.O.; Leyequién-Abarca, E.; Tun-Dzul, F.J.; May-Pat, F. Patterns and correlates of tropical dry forest structure and composition in a highly replicated chronosequence in Yucatan, Mexico. Biotropica 2012, 44, 151–162. [Google Scholar]
- Gillespie, T.W. Predicting woody-plant species richness in tropical dry forests: A case study from South Florida, USA. Ecol. Appl 2005, 15, 27–37. [Google Scholar]
- Rocchini, D. Effects of spatial and spectral resolution in estimating ecosystem α-diversity by satellite imagery. Remote Sens. Environ 2007, 111, 423–34. [Google Scholar]
- Hernández-Stefanoni, J.L.; Gallardo-Cruz, J.A.; Meave, J.A.; Rocchini, D.; Bello-Pineda, J.; López-Martínez, J.O. Modelling α and β-diversity in a tropical forest from remotely sensed and spatial data. Int. J. Appl. Earth Obs. Geoinf 2012, 19, 359–368. [Google Scholar]
- Palmer, M.W.; Earls, P.G.; Hoagland, B.W.; White, P.S.; Wohlgemuth, T. Quantitative tools for perfecting species lists. Environmetrics 2002, 13, 121–137. [Google Scholar]
- Chave, J.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S.; Perez, R. Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. Lond. B 2004, 359, 409–420. [Google Scholar]
- Mascaro, J.; Detteo, M.; Asner, G.P.; Muller-Landau, H.C. Evaluating uncertainty in mapping forest carbon with airborne LiDAR. Remote Sens. Environ 2011, 115, 3770–3774. [Google Scholar]
- Vincent, G.; Sabatier, D.; Blanc, L.; Chave, J.; Weissenbacher, E.; Pelissier, R.; Fonty, E.; Molino, J.-F.; Couteron, P. Accuracy of small footprint airborne LiDAR in its predictions of tropical moist forest stand structure. Remote Sens. Environ 2012, 125, 23–33. [Google Scholar]
- Read, L.; Lawrence, D. Recovery of biomass following shifting cultivation in dry tropical forests of the Yucatán. Ecol. Appl 2003, 13, 85–97. [Google Scholar]
- Eaton, J.M.; Lawrence, D. Loss of carbon sequestration potential after decades of shifting cultivation in the Southern Yucatán. For. Ecol. Manag 2009, 258, 949–958. [Google Scholar]
- Chazdon, R.L.; Letcher, S.G.; Breugel, M.V.; Martínez-Ramos, M.; Bongers, F.; Finegan, B. Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philos. Trans. R. Soc. B 2007, 362, 273–289. [Google Scholar]
- Flores, J.; Espejel, I. Tipos de Vegetación de la Península de Yucatán; Universidad Autónoma de Yucatán, Dirección General de Extensión: Yucatán, México, 1994. [Google Scholar]
- Cabrera-Cano, E.; Sousa-Sánchez, M.; Téllez-Valdés, O. Imágenes de la Flora Quintanarroense; Centro de Investigaciones de Quintana Roo: Mexico City, Mexico, 1982. [Google Scholar]
- Manuales Para el Levantamiento de Datos en Campo del Inventario Nacional Forestal y de Suelos. Available online: http://www.cnf.gob.mx:8080/snif/portal/infys/temas/documentos-metodologicos (accessed on 13 May 2014).
- Gotelli, N.J.; Colwell, R.K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett 2001, 4, 379–391. [Google Scholar]
- Cairns, M.A.; Olmsted, I.; Granados, J.; Argaez, J. Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. For. Ecol. Manag 2003, 186, 125–132. [Google Scholar]
- Urquiza-Haas, T.; Dolman, P.M.; Peres, C.A. Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico: Effects of forest disturbance. For. Ecol. Manag 2007, 247, 80–90. [Google Scholar]
- Hughes, R.F.; Kauffman, J.B.; Jaramillo-Luque, V.J. Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of México. Ecology 1999, 80, 1892–1907. [Google Scholar]
- Chave, J.; Condit, R.S.; Lao, S.; Caspersen, J.; Foster, R.B.; Hubbell, S.P. Spatial and temporal variation of biomass in a tropical forest: Results from a large census plot in Panama. J. Ecol 2003, 91, 240–252. [Google Scholar]
- Frangi, J.L.; Lugo, A.E. Ecosystem dynamics of a sub-tropical floodplain forest. Ecol. Monogr 1985, 55, 351–369. [Google Scholar]
- CartoData. Available online: http://www.cartodata.com (accessed on 13 May 2014).
- Software for LIDAR Data Analysis and Visualization. Available online: http://www.fs.fed.us/eng/rsac/fusion (accessed on 13 May 2014).
- Zar, J.H. Biostatistical Analysis; Prenctice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Miller, D.M. Reducing transformation bias in curve fitting. Am. Stat 1984, 38, 124–126. [Google Scholar]
- Ji, L.; Gallo, K. An agreement coefficient for image comparison. Photogramm. Eng. Remote Sens 2006, 72, 823–833. [Google Scholar]
- Borcard, D.; Legendre, P.; Avois-Jacquet, C.; Tuomisto, H. Dissecting the spatial structure of ecological data at multiple scales. Ecology 2004, 85, 1826–1832. [Google Scholar]
- Hernández-Stefanoni, J.L.; Ponce-Hernández, R. Mapping the spatial distribution of plant diversity indices using multi-spectral satellite image classification and field measurements. Biodivers. Conserv 2004, 13, 2599–2621. [Google Scholar]
- Frazer, G.W.; Magnussen, S.; Wulder, M.A.; Niemann, K.O. Simulated impact of sample plot size and co-resgistration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass. Remote Sens. Environ 2001, 111, 636–649. [Google Scholar]
- Levin, N.; Shmida, A.; Levanoni, O.; Tamari, H.; Kark, S. Predicting mountain plant richness and rarity from space using satellite-derived vegetation indices. Divers. Distrib 2007, 13, 1–12. [Google Scholar]
- Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens 2001, 22, 2377–2400. [Google Scholar]
- López-Martínez, J.O.; Hernández-Stefanoni, J.L.; Dupuy, J.M.; Meave, J.A. Partitioning the variation of woody plant β-diversity in a landscape of secondary tropical dry forests across spatial scales. J. Veg. Sci 2013, 24, 33–45. [Google Scholar]
- Oldeland, J.; Wesuls, D.; Rocchini, D.; Schmidt, M.; Jrgens, N. Does using species abundance data improve estimates of species diversity from remotely sensed spectral heterogeneity? Ecol. Indic 2010, 10, 390–396. [Google Scholar]
- Prendergast, J.R.; Quinn, R.M.; Lawton, J.H.; Eversham, B.C.; Gibbons, D.W. Rare species, the coincidennce of diversity hotspots and conservation strategies. Nature 1993, 365, 335–337. [Google Scholar]
- Rossi, E.; Kuitunen, M. Ranking of habitats for the assessment of ecological impact in land use planning. Biol. Conserv 1996, 77, 227–234. [Google Scholar]
- D’Oliveira, M.V.N.; Reutebuch, S.E.; McGaughey, R.J.; Andersen, H.E. Estimating forest biomass and identifying logging areas using airborne scanning LiDAR in Antimary State Forest, Acre State, Western Brazilian Amazon. Remote Sens. Environ 2012, 124, 479–491. [Google Scholar]
- Asner, G.P.; Mascaro, J.; Muller-Landau, H.C.; Vieilledent, G.; Vaudry, R.; Rasamoelina, M.; Hall, J.S.; van Breugel, M. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 2012, 168, 1147–1160. [Google Scholar]
- McElhinny, C.; Gibbons, P.; Bracks, C.; Bauhus, J. Forest and wood stand structural complexity: Its definition and measurement. For. Ecol. Manag 2005, 218, 1–24. [Google Scholar]
- Nascimento, H.E.M.; Laurence, W.F. Biomass dynamics in Amazonian forest fragments. Ecol. Appl 2004, 14, 127–138. [Google Scholar]
- D’Angelo, S.A.; Andrade, A.C.S.; Laurance, S.G.; Laurance, W.F.; Mesquita, R.C.G. Inferred causes of tree mortality in fragmented and intact Amazonian forest. J. Trop. Ecol 2004, 20, 243–246. [Google Scholar]
- Jones, M.M.; Tuomisto, H.; Borcard, D.; Legendre, P.; Clark, D.B.; Olivas, P.C. Explaining variation in tropical plant community composition: Influence of environmental and spatial data quality. Oecologia 2008, 155, 593–604. [Google Scholar]
- Araújo, M.B.; Guisán, A. Five (or so) challenges for species distribution modelling. J. Biogeogr 2006, 33, 1677–1688. [Google Scholar]
Site and Number of Plots | Sampled Area (m2) | Mean (SE) | |
---|---|---|---|
Species Richness | Biomass (Ton/ha) | ||
Kiuic (20) | 400 | 22.75 (1.00) | 147.20 (14.99) |
1000 | 23.55 (1.06) | 109.71 (9.59) | |
2200 | 46.20 (1.71) | 179.16 (8.16) | |
FCP (28) | 400 | 26.93 (1.09) | 270.27 (16.12) |
1000 | 29.46 (1.22) | 376.77 (20.91) | |
2200 | 58.25 (1.35) | 351.81 (27.15) |
Dependent Variable | Sampled Area (m2) | Predictor Variables *** | Parameters Estimate (SE) | R2 MODEL |
---|---|---|---|---|
Species richness | 400 | Intercept | 12.72 (3.54) * | 0.32 |
Elev P10 | 1.98 (0.68) * | |||
1000 | Intercept | 3.30 (6.19) | 0.37 | |
Elev P90 | 1.55 (0.47) * | |||
2200 | Intercept | 31.81 (9.21) * | 0.67 | |
MEAN Elev Maximum | 1.11 (0.65) ** | |||
STD Elev L4 | 137.97 (60.92) * | |||
STD canopy relief ratio | −216.50 (57.05) * | |||
Sqrt Biomass | 400 | Intercept | 10.38 (0.51) * | 0.59 |
Elev L3 | −14.33 (2.79) * | |||
1000 | Intercept | 52.52 (7.33) * | 0.89 | |
Percentage of first returns above 4.0 | −0.65 (0.09) * | |||
(All returns above mean)/(Total firs returns) × 100 | 0.12 (0.03) * | |||
Elev P50 | 1.64 (0.15) * | |||
2200 | Intercept | 7.20 (2.15) * | 0.78 | |
MEAN Elev P80 | 0.63 (0.19) * | |||
MEAN Elev kurtosis | −19.55 (8.87) * | |||
STD Elev P10 | 1.09 (0.55) ** |
Dependent Variable | Sampled Area (m2) | Predictor Variables *** | Parameters Estimate (SE) | R2 MODEL |
---|---|---|---|---|
Species richness | 400 | Intercept | 45.16 (8.92) * | 0.41 |
Elev P90 | −3.47 (0.87) * | |||
(All returns above mean)/(Total firs returns) × 100 | 0.44 (0.11) * | |||
1000 | Intercept | 69.79 (15.83) * | 0.38 | |
Elev P99 | −3.70 (1.01) * | |||
(All returns above mean)/(Total firs returns) × 100 | 0.18 (0.06) * | |||
2200 | Intercept | 75.91 (8.97) | 0.49 | |
MEAN Elev Kurtosis | −8.70 (3.17) * | |||
STD Return 4 count above 1.50 | 0.57 (0.24) * | |||
STD Elev MAD mode | 8.70 (3.25) * | |||
STD Elev P60 | −4.60 (2.36) ** | |||
Sqrt Biomass | 400 | Intercept | 5.52 (1.81)* | 0.58 |
Elev P60 | 0.98 (0.16) * | |||
1000 | Intercept | −937.56 (434.85) * | 0.73 | |
Percentage of all returns | 0.33 (0.05) * | |||
Elev minimum | 627.66 (290.50) * | |||
2200 | Intercept | −3.26 (6.58) | 0.63 | |
MEAN Elev P99 | 1.31 (0.38) * | |||
STD Return 3 count above 1.50 | 0.03 (0.01) * | |||
STD Return 1 count above 1.50 | −0.004 (0.002) * |
Dependent Variable | Sampled Area (m2) | Predictor Variables *** | Parameters Estimate (SE) | R2 MODEL |
---|---|---|---|---|
Species Richness | 2200 | Intercept | 48.07 (5.54) * | 0.59 |
MEAN Elev variance | 0.60 (0.36) ** | |||
STD return four count above 1.50 | 1.02 (0.26) * | |||
STD First returns above mean | −0.015 (0.005) * | |||
STD Elev variance | 1.32 (0.65) * | |||
STD First returns above mode | −0.006 (0.003) ** | |||
Sqrt Biomass | 1000 | Intercept | −1.00 (2.63) | 0.71 |
Elev P90 | 1.21 (0.18) * | |||
Return three count above 1.50 | 0.004 (0.001) * | |||
Percentage all returns above mean | −0.04 (0.23) ** |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hernández-Stefanoni, J.L.; Dupuy, J.M.; Johnson, K.D.; Birdsey, R.; Tun-Dzul, F.; Peduzzi, A.; Caamal-Sosa, J.P.; Sánchez-Santos, G.; López-Merlín, D. Improving Species Diversity and Biomass Estimates of Tropical Dry Forests Using Airborne LiDAR. Remote Sens. 2014, 6, 4741-4763. https://doi.org/10.3390/rs6064741
Hernández-Stefanoni JL, Dupuy JM, Johnson KD, Birdsey R, Tun-Dzul F, Peduzzi A, Caamal-Sosa JP, Sánchez-Santos G, López-Merlín D. Improving Species Diversity and Biomass Estimates of Tropical Dry Forests Using Airborne LiDAR. Remote Sensing. 2014; 6(6):4741-4763. https://doi.org/10.3390/rs6064741
Chicago/Turabian StyleHernández-Stefanoni, José Luis, Juan Manuel Dupuy, Kristofer D. Johnson, Richard Birdsey, Fernando Tun-Dzul, Alicia Peduzzi, Juan Pablo Caamal-Sosa, Gonzalo Sánchez-Santos, and David López-Merlín. 2014. "Improving Species Diversity and Biomass Estimates of Tropical Dry Forests Using Airborne LiDAR" Remote Sensing 6, no. 6: 4741-4763. https://doi.org/10.3390/rs6064741
APA StyleHernández-Stefanoni, J. L., Dupuy, J. M., Johnson, K. D., Birdsey, R., Tun-Dzul, F., Peduzzi, A., Caamal-Sosa, J. P., Sánchez-Santos, G., & López-Merlín, D. (2014). Improving Species Diversity and Biomass Estimates of Tropical Dry Forests Using Airborne LiDAR. Remote Sensing, 6(6), 4741-4763. https://doi.org/10.3390/rs6064741