Simulating Land Cover Changes and Their Impacts on Land Surface Temperature in Dhaka, Bangladesh
Abstract
:1. Introduction
2. Literature Review
2.1. UHI and Its Key Characteristics
2.2. Causes and Consequences of UHI
2.3. Measurement of LST
2.4. Simulation Studies on Land Cover Changes
3. Materials
3.1. Case Study Area
3.2. Data Collection
4. Methods
4.1. Derivation of Land Cover Maps
4.2. Retrieval of Land Surface Temperature
4.2.1. Retrieval of LST from the Landsat 5 TM Images
4.2.2. Retrieval of LST from the Landsat 7 ETM+ Images
4.3. Classification of the Heat Zones
4.4. Derivation of NDVI, NDWI, NDBI, and NDBaI from the Landsat Imagery
4.5. Simulating Land Cover Maps for 2019 and 2029
4.6. Simulating LST for 2019 and 2029
5. Results
5.1. Patterns of Land Cover Changes
5.2. Change in Land Surface Temperature
5.3. Temperature Variations for Different Land Cover Types
5.4. Relationship between Temperature and Land Cover Indices
5.5. Simulating the Future Land Cover Dynamics
5.6. Simulating the Future LST Maps
6. Discussion
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- He, F.; Liu, J.Y.; Zhuang, D.F.; Zhang, W.; Liu, M.L. Assessing the effect of land use-land cover change on the change of urban heat island intensity. J. Theor. Appl. Climatol 2007, 90, 217–226. [Google Scholar]
- Trenberth, K.E. Climatology (communication arising): Rural land-use change and climate. Nature 2004, 427, 213. [Google Scholar]
- Patz, J.A.; Lendrum, D.C.; Holloway, T; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar]
- Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ 2006, 104, 133–146. [Google Scholar]
- Lo, C.P.; Quattrochi, D.A. Land-use and land-cover change, urban heat island phenomenon, and health implications: A remote sensing approach. Photogramm. Eng. Remote Sens 2003, 69, 1053–1063. [Google Scholar]
- Deosthali, V. Impact of rapid urban growth on heat and moisture islands in Pune City, India. Atmos. Environ 2000, 34, 2745–2754. [Google Scholar]
- Mutizwa-Mangiza, N.D.; Arimah, B.C.; Jensen, I.; Yemeru, E.A.; Kinyanjui, M.K. Cities and Climate Change: Global Report on Human Settlements 2011, 1st ed; Earthscan Ltd: London, UK, 2011; pp. 1–12. [Google Scholar]
- Ye, H.; Wang, K.; Huang, S.; Chen, F.; Xiong, Y.; Zhao, X. Urbanisation effects on summer habitat comfort: A case study of three coastal cities in southeast China. Int. J. Sust. Dev. World 2010, 17, 317–323. [Google Scholar]
- Howard, L. The climate of London. London Harvey Dorton 1833, 2, 1818–1820. [Google Scholar]
- Liu, L.; Zhang, Y. Urban heat island analysis using the Landsat TM data and ASTER data: A Case study in Hong Kong. Remote Sens 2011, 3, 1535–1552. [Google Scholar]
- Streutker, D.R. A remote sensing study of the urban heat island of Houston, Texas. Int. J. Remote Sens 2002, 23, 2595–2608. [Google Scholar]
- Ohashi, Y.; Kida, H. Local circulations developed in the vicinity of both coastal and inland urban areas: A numerical study with a mesoscale atmospheric model. J. Appl. Meteor 2002, 41, 30–45. [Google Scholar]
- Souch, C.; Grimmond, S. Applied climatology: Urban climate. Prog. Phys. Geogr 2006, 30, 270–279. [Google Scholar]
- Jones, P.D.; Groisman, P.Y.; Coughlan, M.; Plummer, N.; Wang, W.; Karl, T.R. Assessment of urbanization effects in time series of surface air temperature over land. Nature 1990, 347, 169–172. [Google Scholar]
- Sheng, J.; Wilson, J.P.; Lee, S. Comparison of land surface temperature (LST) modeled with a spatially-distributed solar radiation model (SRAD) and remote sensing data. Environ. Model. Softw 2009, 24, 436–443. [Google Scholar]
- Weng, Q.; Lu, D. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States. Int. J. Appl. Earth Obs. Geoinf 2008, 10, 68–83. [Google Scholar]
- Rosenzweig, C.; Karoly, D.; Vicarelli, M.; Neofotis, P.; Wu, Q.; Casassa, G.; Menzel, A.; Root, T.L.; Estrella, N.; Seguin, B.; et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 2008, 453, 353–357. [Google Scholar]
- Oke, T.A. The Energetic Basis of the Urban Heat Island. Quart. J. Royal Meteor. Soc 1982, 108, 1–24. [Google Scholar]
- Ahmed, B. Urban land cover change detection analysis and modeling spatio-temporal Growth dynamics using Remote Sensing and GIS Techniques: A case study of Dhaka, Bangladesh. Erasmus Mundus Program, Universidade Nova de Lisboa (UNL), Instituto Superior de Estatística e Gestão de Informação (ISEGI), Lisbon, Portugal, 2011. [Google Scholar]
- Lowry, W.P. Empirical estimation of urban effects on climate: A problem analysis. J. Appl. Meteor 1977, 16, 129–135. [Google Scholar]
- Karl, T.R.; Diaz, H.F.; Kukla, G. Urbanization: Its detection and effect in the United States climate record. J. clim 1988, 1, 1099–1123. [Google Scholar]
- Gallo, K.P.; Tarpley, J.D. The comparison of vegetation index and surface temperature composites for urban heat-island analysis. Int. J. Remote Sens 1996, 17, 3071–3076. [Google Scholar]
- Streutker, D.R. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens. Environ 2003, 85, 282–289. [Google Scholar]
- Fabrizi, R.; Bonafoni, S.; Biondi, R. Satellite and ground-based sensors for the urban heat island analysis in the City of Rome. Remote Sens 2010, 2, 1400–1415. [Google Scholar]
- Gallo, K.P.; Owen, T.W. Assessment of urban heat island: A multi-sensor perspective for the Dallas-Ft. Worth, USA region. Geocarto. Int 1998, 13, 35–41. [Google Scholar]
- Rinner, C.; Hussain, M. Toronto’s urban heat island- Exploring the relationship between land use and surface temperature. Remote Sens 2011, 3, 1251–1265. [Google Scholar]
- Xiong, Y.; Huang, S.; Chen, F.; Ye, H.; Wang, C.; Zhu, C. The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote Sens 2012, 4, 2033–2056. [Google Scholar]
- Essa, W.; Verbeiren, B.; van der Kwast, J.; van de Voorde, T.; Batelaan, O. Evaluation of the DisTrad thermal sharpening methodology for urban areas. Int. J. Appl. Earth Obs. Geoinf 2012, 19, 163–172. [Google Scholar]
- ArcGIS® 10 Help; Environmental Systems Research Institute: Redlands, CA, USA, 2012. Available online: http://help.arcgis.com/en/arcgisdesktop/10.0/help/ (accessed on 15 December 2012).
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ 1996, 58, 257–266. [Google Scholar]
- Maki, M.; Ishiahra, M.; Tamura, M. Estimation of leaf water status to monitor the risk of forest fires by using remotely sensed data. Remote Sens. Environ 2004, 90, 441–450. [Google Scholar]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens 2003, 24, 583–594. [Google Scholar]
- Zhao, H.M.; Chen, X.L. Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. proceedings of 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS’05, Seoul, Korea, 25–29 July 2005; pp. 1666–1668.
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar]
- Weng, Q. A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. Int. J. Remote Sens 2001, 22, 1999–2014. [Google Scholar]
- Weng, Q.; Lu, D.; Liang, B. Urban surface biophysical descriptors and land surface temperature variations. Photogram. Eng. Remote Sens 2006, 72, 1275–1286. [Google Scholar]
- Xiao, R.-B.; Ouyang, Z.-Y.; Zheng, H.; Li, W.-F.; Schienke, E.W.; Wang, X.-K. Spatial patterns of impervious surfaces and their impact on land surface temperature in Beijing, China. J. Environ. Sci 2007, 19, 250–256. [Google Scholar]
- Weng, Q.; Yang, S. Managing the adverse thermal effects of urban development in a densely populated Chinese city. J. Environ. Manag 2004, 70, 145–156. [Google Scholar]
- Pontius, R.G., Jr.; Spencer, J. Uncertainty in extrapolations of predictive land change models. Environ. Plan. B 2005, 32, 211–230. [Google Scholar]
- Silva, E.A.; Clarke, K.C. Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Comput. Environ. Urban Syst 2002, 26, 525–552. [Google Scholar]
- Hilferink, M.; Rietveld, P. Land Use Scanner: An integrated GIS based model for long term projections of land use in urban and rural areas. J. Geogr. Syst 1999, 1, 155–177. [Google Scholar]
- Verburg, P.H.; de Nijs, T.C.M.; van Eck, J.R.; Visser, H.; de Jong, K. A method to analyse neighbourhood characteristics of land use patterns. Comput. Environ. Urban Syst 2004, 28, 667–690. [Google Scholar]
- Castella, J.C.; Boissau, S.; Trung, T.N.; Quang, D.D. Agrarian transition and lowland-upland interactions in mountain areas in northern Vietnam: Application of a multi-agent simulation model. Agric. Syst 2005, 86, 312–332. [Google Scholar]
- Pijanowski, B.C.; Gage, S.H.; Long, D.T. A Land Transformation Model: Integrating Policy, Socioeconomics and Environmental Drivers using a Geographic Information System. In Landscape Ecology: A Top down Approach; Harris, L., Sanderson, J., Eds.; CRC Press: Boca Raton, FL, USA, 2000; pp. 183–198. [Google Scholar]
- Kok, K.; Veldkamp, T.A. Evaluating impact of spatial scales on land use pattern analysis in Central America. Agric. Ecosyst. Environ 2001, 85, 205–221. [Google Scholar]
- Balzter, H. Markov chain models for vegetation dynamics. Ecolog. Model 2000, 126, 139–154. [Google Scholar]
- Santé, I.; García, A.M.; Miranda, D.; Crecente, R. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landsc. Urban Plan 2010, 96, 108–122. [Google Scholar]
- McConnell, W.; Sweeney, S.P.; Mulley, B. Physical and social access to land: Spatio-temporal patterns of agricultural expansion in Madagascar. Agric. Ecosyst. Environ 2004, 101, 171–184. [Google Scholar]
- Civco, D.L. Artificial neural networks for land-cover classification and mapping. Int. J. Geogr. Inf. Sci 1993, 7, 173–186. [Google Scholar]
- Pontius, R.G., Jr.; Boersma, W.; Castella, J.-C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci 2008, 42, 11–47. [Google Scholar]
- Ahmed, B.; Ahmed, R. Modeling urban land cover growth dynamics using multi-temporal satellite images: A case study of Dhaka, Bangladesh. ISPRS Int. J. Geo-Inf 2012, 1, 3–31. [Google Scholar]
- Atkinson, P.M.; Tatnall, A.R.L. Introduction Neural networks in remote sensing. Int. J. Remote Sens 1997, 18, 699–709. [Google Scholar]
- Eastman, J.R. IDRISI Selva Tutorial; Clark University; Worcester, MA, USA, 2012; pp. 267–275. [Google Scholar]
- Landsat 7 Science Data Users Handbook, 2010; National Aeronautics and Space Administration,; pp. 117–120. Landsat Project Science Office at NASA’s Goddard Space Flight Center: Greenbelt, MD, USA, 2010.
- Ahmed, B.; Ahmed, R.; Zhu, X. Evaluation of model validation techniques in land cover dynamics. ISPRS Int. J. Geo-Inf 2013, 2, 577–597. [Google Scholar]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas 1960, 20, 37–46. [Google Scholar]
- Chen, Y; Wang, J.; Li, X. A study on urban thermal field in summer based on satellite remote sensing. Remote Sens. Land Resour 2002, 4, 55–59. [Google Scholar]
- Basharin, G.P.; Langville, A.N.; Naumov, V.A. The life and work of A.A. Markov. Linear Algebra Appl 2004, 386, 3–26. [Google Scholar]
- Atkinson, P.M.; Tatnall, A.R.L. Introduction Neural networks in remote sensing. Int. J. Remote Sens 1997, 18, 699–709. [Google Scholar]
- Pijanowski, B.C.; Brown, D.G.; Manik, G.; Shellito, B. Using neural nets and GIS to forecast land use changes: A land transformation model. Comput. Environ. Urban Syst 2002, 26, 553–575. [Google Scholar]
- Pijanowski, B.C.; Pithadia, S.; Shellito, B.A.; Alexandridis, K. Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States. Int. J. Geogr. Inf. Sci 2005, 19, 197–215. [Google Scholar]
- Khoi, D.D.; Murayama, Y. Forecasting areas vulnerable to forest conversion in the Tam Dao National Park Region, Vietnam. Remote Sens 2010, 2, 1249–1272. [Google Scholar]
- Eastman, J.R. IDRISI Selva Manual; Clark University: Worcester, MA, USA, 2012. [Google Scholar]
- Eastman, J.R.; Jin, W.; Kyem, P.A.K.; Toledano, R. Raster procedures for multi-criteria/multi-objective decisions. Photogramm. Eng. Remote Sens 1995, 61, 539–547. [Google Scholar]
- Tewolde, M.G.; Cabral, P. Urban sprawl analysis and modeling in Asmara, Eritrea. Remote Sens 2011, 3, 2148–2165. [Google Scholar]
- Zeug, G.; Eckert, S. Population growth and its expression in spatial built-up patterns: The Sana’a, Yemen case study. Remote Sens 2010, 2, 1014–1034. [Google Scholar]
- Ren, G.Y.; Chu, Z.Y.; Chen, Z.H.; Ren, Y.Y. Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations. Geophys. Res. Lett 2007, 34, L05711. [Google Scholar]
- Park, H.-S. Features of the heat island in Seoul and its surrounding cities. Atmos. Environ 1986, 20, 1859–1866. [Google Scholar]
- Kibert, C.J. Sustainable Construction: Green Building Design and Delivery, 3rd ed; John Wiley and Sons, Inc: Hoboken, NJ, USA, 2012; p. 236. [Google Scholar]
Respective Year | Date Acquired (Day/Month/Year) | Sensor |
---|---|---|
1989 | 13/02/1989 | Landsat 4–5 Thematic Mapper (TM) |
1999 | 24/11/1999 | Landsat 7 Enhanced Thematic Mapper Plus (ETM+) |
2009 | 26/10/2009 | Landsat 4–5 Thematic Mapper (TM) |
Land Cover Type | Description |
---|---|
Built-up Area | All infrastructure—residential, commercial, mixed use and industrial areas, villages, settlements, road network, pavements, and man-made structures. |
Water Body | River, permanent open water, lakes, ponds, canals, permanent/seasonal wetlands, low-lying areas, marshy land, and swamps. |
Vegetation | Trees, natural vegetation, mixed forest, gardens, parks and playgrounds, grassland, vegetated lands, agricultural lands, and crop fields. |
Bare Soil | Fallow land, earth and sand land in-fillings, construction sites, developed land, excavation sites, open space, bare soils, and the remaining land cover types. |
Year | User’s Accuracy (%) | Producer’s Accuracy (%) | Overall Accuracy (%) | Kappa Coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Built-up Area | Water Body | Vegetation | Bare Soil | Built-up Area | Water Body | Vegetation | Bare Soil | |||
1989 | 87.24 | 86.71 | 85.64 | 86.22 | 85.67 | 86.39 | 86.05 | 85.88 | 86.48 | 0.86 |
1999 | 91.42 | 88.55 | 89.78 | 90.43 | 89.13 | 90.68 | 88.72 | 90.39 | 90.69 | 0.91 |
2009 | 93.51 | 94.77 | 93.61 | 94.83 | 94.75 | 95.44 | 93.58 | 92.86 | 94.13 | 0.95 |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ahmed, B.; Kamruzzaman, M.; Zhu, X.; Rahman, M.S.; Choi, K. Simulating Land Cover Changes and Their Impacts on Land Surface Temperature in Dhaka, Bangladesh. Remote Sens. 2013, 5, 5969-5998. https://doi.org/10.3390/rs5115969
Ahmed B, Kamruzzaman M, Zhu X, Rahman MS, Choi K. Simulating Land Cover Changes and Their Impacts on Land Surface Temperature in Dhaka, Bangladesh. Remote Sensing. 2013; 5(11):5969-5998. https://doi.org/10.3390/rs5115969
Chicago/Turabian StyleAhmed, Bayes, Md. Kamruzzaman, Xuan Zhu, Md. Shahinoor Rahman, and Keechoo Choi. 2013. "Simulating Land Cover Changes and Their Impacts on Land Surface Temperature in Dhaka, Bangladesh" Remote Sensing 5, no. 11: 5969-5998. https://doi.org/10.3390/rs5115969
APA StyleAhmed, B., Kamruzzaman, M., Zhu, X., Rahman, M. S., & Choi, K. (2013). Simulating Land Cover Changes and Their Impacts on Land Surface Temperature in Dhaka, Bangladesh. Remote Sensing, 5(11), 5969-5998. https://doi.org/10.3390/rs5115969