Applying Multifractal Analysis to Remotely Sensed Data for Assessing PYVV Infection in Potato (Solanum tuberosum L.) Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Treatments
2.2. Data Collection
2.2.1. Spectroradiometric Data
2.2.2. Multispectral Imagery
2.2.3. Spectroradiometric Data Pre-Processing
- Sj(λi) and Gj(λi) are the corrected and raw signals for the jth plant at the ith wavelength, respectively
- Gmax j and Gmin j are the maximum and minimum raw measures of the jth plant, and
- GTotal max and GTotal min are the maximum and minimum raw measures of all the plants within a treatment, measured in a sampling date.
- Aj is the ratio: response range of the jth plant to total population.
- Bj is the regression intercept.
2.3. Wavelet and Multifractal Data Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Reflectance Measurements
3.2. Visible and Near-Infrared Reflectance
3.3. Recovery Period
3.4. Spectral Vegetation Indices
4. Conclusions
Acknowledgments
References and Notes
- Gilabert, M.A.; García-Haro, F.J.; González Piqueras, J. Acerca de los índices de vegetación. Revista de Teledetección 1997, 8, 1–10. [Google Scholar]
- Ritchie, G.L. Use of Ground-Based Canopy Reflectance to Determine Radiation Capture, Nitrogen and Water Status, and Final Yield in Wheat. M.Sc. Thesis, Utah State University, Logan, UT, USA, 2003. [Google Scholar]
- Brown, R.B.; Steckler, J.P.G.A.; Anderson, G.W. Remote sensing for identification of weeds in no-till corn. Trans. ASAE 1994, 37, 297–302. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Maas, S.J.; DeTar, W.R. Detecting spider mite damage in cotton through spectral mixture analysis of aviris imagery. 2002. Available online: http://www.ars.usda.gov/research/publications/publications.htm?seq_no_115=132435 (accessed on 17 January 2005). [Google Scholar]
- Peñuelas, J.; Filella, I.; Lloret, P.; Muñoz, F.; Vilajeliu, M. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 1995, 16, 2727–2733. [Google Scholar] [CrossRef]
- Summy, K.R.; Everitt, J.H.; Escobar, D.E.; Alaniz, A.; Davis, M.R. Use of airborne digital video imagery to monitor damage caused by two honeydew-excreting insects on cotton. In Proceedings of the 16th Biennial Workshop in Videography and Color Photography in Resource Management, American Society of Photogrammetry and Remote Sensing, Bethesda, MD, USA, 29 April–1 May 1997; pp. 238–244.
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Chávez, P.; Zorogastúa, P.; Chuquillanqui, C.; Salazar, L.F.; Mares, V.; Quiroz, R. Assessing Potato Yellow Vein Virus (PYVV) infection using remotely sensed data. Int. J. Pest Manag. 2009, 55, 251–256. [Google Scholar] [CrossRef]
- Schertzer, D.; Lovejoy, S. Uncertainty and predictability in geophysics: chaos and multifractal insights. In State of the Planet, Frontiers and Challenges in Geophysics; Sparks, R.S.J., Hawkesworth, C.J., Eds.; AGU: Washington, DC, USA, 2004; pp. 317–334. [Google Scholar]
- Vicsek, T. Fractal Growth Phenomena, 2nd ed.; Word Scientific Publishing Co.: Singapore, 1992; p. 380. [Google Scholar]
- Schertzer, D.; Lovejoy, S. Nonlinear variability in geophysics: multifractal analysis and simulation. In Fractals: Physical Origin and Consequences; Pietronero, L., Ed.; Plenum: New York, NY, USA, 1989; pp. 49–79. [Google Scholar]
- McAteer, R.T.J.; Young, C.A.; Ireland, J.; Gallagher, P.T. The bursty nature of solar flare x-ray emission. The Astrophysical Journal 2007, 662, 691–700. [Google Scholar] [CrossRef]
- Montero Pascual, M.A. Aplicación de técnicas de análisis multifractal a distribuciones de tamaño-volumen de partículas de suelo obtenidas mediante análisis por difracción de láser. PhD Tesis, Universidad Politécnica de Madrid, Madrid, Spain, 2003. [Google Scholar]
- Posadas, A.N.D.; Giménez, D.; Quiroz, R.A.; Protz, R. Multifractal characterization of soil pore systems. Soil Sci. Soc. Am. J. 2003, 67, 1361–1369. [Google Scholar] [CrossRef]
- Posadas, A.N.D.; Quiroz, R.; Zorogastúa, P.; León-Velarde, C. Multifractal Characterization of the Spatial Distribution of Ulexite in a Bolivian Salt Flat. Int. J. Remote Sens. 2005, 26, 615–627. [Google Scholar] [CrossRef]
- Latka, M.; Glaubic-Latka, M.; Latka, D.; West, B. The loss of multifractality in migraines. 2002. Available online: http://arxiv.org/PS_cache/physics/pdf/0204/0204010v1.pdf (accessed on 7 March 2006).
- Yu, Z.G.; Anh, V.; Lau, K.-S. Multifractal characterisation of length sequences of coding and noncoding segments in a complete genome. Physica A 2001, 301, 351–361. [Google Scholar] [CrossRef]
- Byalovskii, Y.Y.; Bulatetskii, S.V.; Suchkova, Z.V. Heart rate variability and fractal neurodynamics during local magnetic vibroacoustic treatment. Hum Physiol 2005, 31, 413–420, Translated from Fiziologiya Cheloveka, 431(414), pp. 450–460. [Google Scholar] [CrossRef]
- Ivanov, P.C.; Nunes Amaral, L.A.; Goldberger, A.L.; Havlin, S.; Rosenblum, M.G.; Struzik, Z. R.; Stanley, H.E. Multifractality in human heartbeat dynamics. Nature 1999, 399, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, G.A.; Ferwerda, J.G. Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis. Remote Sens. Environ. 2008, 112, 1614–1632. [Google Scholar] [CrossRef]
- Jaffard, S. Wavelet techniques in multifractal analysis, fractal geometry and applications. In Proceedings of Symposia in Pure Mathematics, Providence, RI, USA, 2004.
- Dobrowski, S.Z.; Pushnik, J.C.; Zarco-Tejada, P.J.; Ustin, S.L. Simple reflectance indices track heat steady-state chlorophyll fluorescence at the canopy scale. Remote Sens. Environ. 2005, 97, 403–414. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Crippen, R.E. Calculating the vegetation index faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Yarlequé, C. Análisis de campos de biomasa del altiplano usando wavelet y parámetros universales multifractales. Tesis de Licenciatura en Física, Universidad Nacional del Callao, Perú, 2009; p. 202. [Google Scholar]
- Filella, I.; Penuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Han, L.; Rundquist, D.C. Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir. Remote Sens. Environ. 1997, 62, 253–261. [Google Scholar] [CrossRef]
- Mallat, S. A Wavelet Tour of Signal Processing, 2nd ed.; Academic Press: San Diego, CA, USA, 1999; p. 637. [Google Scholar]
- Muzy, J.F.; Bacry, E.; Arneodo, A. Wavelets and multifractal formalism for singular signals: Application to turbulence data. Phys. Rev. Lett. 1991, 67, 3515–3518. [Google Scholar] [CrossRef] [PubMed]
- Lavallée, D. Multifractal analysis and simulation techniques and turbulent fields. Ph.D. Thesis, McGill University, Quebec, Canada, 1991; p. 132. [Google Scholar]
- Arneodo, A.; Bacry, E.; Graves, P.V.; Muzzy, J.F. Characterizing long-range correlations in DNA sequences from wavelet analysis. Phys. Rev. Lett. 1995, 74, 3293–3296. [Google Scholar] [CrossRef] [PubMed]
- Wolfinger, R.D.; Chang, M. Comparing the SAS GLM and MIXED procedures for repeated measures. In SUGI Proceedings; Cary, NC, USA, 1998. [Google Scholar]
- Campbell, J.B. Introduction to Remote Sensing, 2nd ed.; The Guilford Press: New York, NY, USA, 1996; p. 622. [Google Scholar]
- Schowengerdt, R.A. Remote Sensing, Models and Methods for Image Processing; Academic Press: San Diego, CA, USA, 1997; p. 522. [Google Scholar]
- Ding, S.W. RNA silencing. Curr. Opin. Biotechnol. 2000, 11, 152–156. [Google Scholar] [CrossRef]
- Argerter, M. Plant viruses discover how to overcome gene silencing. Washington State University: Pullman, WA, USA, 1999. Available online: http://www.wsu.edu/NIS/Universe/virus.htm (accessed on 9 April 2007).
- Baulcombe, D. RNA Silencing in plants. Nature 2004, 431, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.A. RNA silencing and its inhibition in transgenic tobacco plants. Ph.D. Thesis, University of Turku, Turku, Finland, 2007. [Google Scholar]
- Falconer, K. Techniques in Fractal Geometry; John Wiley and Sons Ltd.: New York, NY, USA, 1997. [Google Scholar]
- Chhabra, A.B.; Meneveu, C.; Jensen, R.V.; Sreenivasan, K.R. Direct determination of the f(a) singularity spectrum and its application to fully developed turbulence. Physical Review A 1989, 40, 5284–5294. [Google Scholar] [CrossRef] [PubMed]
- Bacry, E.; Muzy, J.F.; Arnéodo, A. Singularity spectrum of fractal signals from wavelet analysis: exact results. J. Stat. Phys. 2003, 70, 635–674. [Google Scholar] [CrossRef]
- Addison, P.S. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance; Institute of Physics Publishing: Bristol, UK, 2002; p. 368. [Google Scholar]
- Arneodo, A.; Grasseau, G.; Holschneider, M. Wavelet transform of multifractals. Phys. Rev. Lett. 1988, 61, 2281–2284. [Google Scholar] [CrossRef] [PubMed]
- Daves, A.M.C. Back to basics: spectral pre-treatments—Derivatives. Tony Davies Column 2007, 19, 32–33. [Google Scholar] [CrossRef]
Appendix
The Continuous Wavelet Transform and the Wavelet Transform Modulus Maxima Multifractal
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chávez, P.; Yarlequé, C.; Piro, O.; Posadas, A.; Mares, V.; Loayza, H.; Chuquillanqui, C.; Zorogastúa, P.; Flexas, J.; Quiroz, R. Applying Multifractal Analysis to Remotely Sensed Data for Assessing PYVV Infection in Potato (Solanum tuberosum L.) Crops. Remote Sens. 2010, 2, 1197-1216. https://doi.org/10.3390/rs2051197
Chávez P, Yarlequé C, Piro O, Posadas A, Mares V, Loayza H, Chuquillanqui C, Zorogastúa P, Flexas J, Quiroz R. Applying Multifractal Analysis to Remotely Sensed Data for Assessing PYVV Infection in Potato (Solanum tuberosum L.) Crops. Remote Sensing. 2010; 2(5):1197-1216. https://doi.org/10.3390/rs2051197
Chicago/Turabian StyleChávez, Perla, Christian Yarlequé, Oreste Piro, Adolfo Posadas, Víctor Mares, Hildo Loayza, Carlos Chuquillanqui, Percy Zorogastúa, Jaume Flexas, and Roberto Quiroz. 2010. "Applying Multifractal Analysis to Remotely Sensed Data for Assessing PYVV Infection in Potato (Solanum tuberosum L.) Crops" Remote Sensing 2, no. 5: 1197-1216. https://doi.org/10.3390/rs2051197