Vegetation Succession Dynamics and Drivers in Accretional Salt Marshes: A 34-Year Case Study in Hangzhou Bay
Highlights
- As a pioneer species, Scirpus mariqueter expanded seaward at a rate of 0.26 km2 yr−1 and was gradually replaced by Spartina alterniflora, which expanded at a rate of 0.52 km2 yr−1.
- S. mariqueter was consistently driven primarily by environmental factors, whereas S. alterniflora was driven primarily by environmental factors during relatively stable periods and by human activities during the disturbance period.
- Identifying nonlinear, staged, and species-specific succession patterns contributes to understanding long-term vegetation succession in accretional salt marshes in Hangzhou Bay.
- Quantifying stage-specific drivers provides new perspectives for conserving S. mariqueter and managing invasive S. alterniflora in Hangzhou Bay.
Abstract
1. Introduction
2. Materials
2.1. Study Area
2.2. Data Sources and Parameters
2.2.1. Remote Sensing Data
2.2.2. Driving Factors Dataset
3. Methods
3.1. Overall Framework
3.2. Spectral and Seasonal Characteristics
3.3. Structural Equation Modeling
3.4. Construction of Classification Model
3.4.1. Remote Sensing Data Preprocessing
3.4.2. Construction of the Model Training Dataset
3.4.3. Feature Construction for Classification
3.4.4. Classification Model Construction
3.4.5. Classification Accuracy Assessment
3.5. Vegetation Proportions and Boundary Dynamics
4. Results
4.1. Spatiotemporal Dynamics of Salt Marshes
4.2. Seaward Expansion and Successional Dynamics of Salt Marsh Vegetation
4.3. Analysis of Drivers of Vegetation Succession Based on PLS–SEM
5. Discussion
5.1. Competition Between S. mariqueter and S. alterniflora
5.2. Dynamics of Vegetation Boundaries
5.3. Drivers of Vegetation Succession and Wetland Conservation and Restoration
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef]
- Kirby, R. Practical implications of tidal flat shape. Cont. Shelf Res. 2000, 20, 1061–1077. [Google Scholar] [CrossRef]
- Morris, J.T.; Sundareshwar, P.V.; Nietch, C.T.; Kjerfve, B.; Cahoon, D.R. Responses of Coastal Wetlands to Rising Sea Level. Ecology 2002, 83, 2869–2877. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Mariotti, G.; Leonardi, N.; Canestrelli, A.; Nardin, W.; Kearney, W.S. Salt Marsh Dynamics in a Period of Accelerated Sea Level Rise. J. Geophys. Res. Earth Surf. 2020, 125, e2019JF005200. [Google Scholar] [CrossRef]
- Moomaw, W.R.; Chmura, G.L.; Davies, G.T.; Finlayson, C.M.; Middleton, B.A.; Natali, S.M.; Perry, J.E.; Roulet, N.; Sutton-Grier, A.E. Wetlands in a Changing Climate: Science, Policy and Management. Wetlands 2018, 38, 183–205. [Google Scholar] [CrossRef]
- Li, S.; Ge, Z.; Tan, L.; Xie, L.; Li, Y. Multiple competitive superiority made a great successful invasion of Spartina alterniflora in Eastern China: Hints for management. J. Environ. Manag. 2025, 389, 126287. [Google Scholar] [CrossRef]
- Meng, W.; Feagin, R.A.; Innocenti, R.A.; Hu, B.; He, M.; Li, H. Invasion and ecological effects of exotic smooth cordgrass Spartina alterniflora in China. Ecol. Eng. 2020, 143, 105670. [Google Scholar] [CrossRef]
- Wails, C.N.; Baker, K.; Blackburn, R.; Del Vallé, A.; Heise, J.; Herakovich, H.; Holthuijzen, W.A.; Nissenbaum, M.P.; Rankin, L.; Savage, K.; et al. Assessing changes to ecosystem structure and function following invasion by Spartina alterniflora and Phragmites australis: A meta-analysis. Biol. Invasions 2021, 23, 2695–2709. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Yan, B.; Gao, Y.; Su, S.; Zhou, H.; Kang, L.; Liu, H.; Li, Y. Oilseed Flax Yield Prediction in Arid Gansu, China Using a CNN–Informer Model and Multi-Source Spatio-Temporal Data. Remote Sens. 2026, 18, 181. [Google Scholar] [CrossRef]
- Luo, K.; Samat, A.; Van de voorde, T.; Jiang, W.; Li, W.; Abuduwaili, J. An automatic classification method with weak supervision for large-scale wetland mapping in transboundary (Irtysh River) basin using Sentinel 1/2 imageries. J. Environ. Manag. 2025, 380, 124969. [Google Scholar] [CrossRef] [PubMed]
- Pouliot, D.; Latifovic, R.; Pasher, J.; Duffe, J. Assessment of Convolution Neural Networks for Wetland Mapping with Landsat in the Central Canadian Boreal Forest Region. Remote Sens. 2019, 11, 772. [Google Scholar] [CrossRef]
- You, N.; Dong, J.; Huang, J.; Du, G.; Zhang, G.; He, Y.; Yang, T.; Di, Y.; Xiao, X. The 10-m crop type maps in Northeast China during 2017–2019. Sci. Data 2021, 8, 41. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Wang, C.; Wang, Y. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2021, 255, 112285. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, X.; Wang, X.; Xu, X.; Chen, B.; Wang, J.; Ma, J.; Zhao, B.; Li, B. Quantifying expansion and removal of Spartina alterniflora on Chongming island, China, using time series Landsat images during 1995–2018. Remote Sens. Environ. 2020, 247, 111916. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Li, J.; Cao, L.; Liu, Y.; Jin, S.; Zhao, B. Evaluation of Vegetation Index-Based Curve Fitting Models for Accurate Classification of Salt Marsh Vegetation Using Sentinel-2 Time-Series. Sensors 2020, 20, 5551. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Huo, X.; Niu, Z.; Liu, L.; Jing, Y. Integration of ecological knowledge with Google Earth Engine for diverse wetland sampling in global mapping. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104249. [Google Scholar] [CrossRef]
- Amani, M.; Kakooei, M.; Warren, R.; Mahdavi, S.; Murnaghan, K.; Ghorbanian, A.; Naboureh, A. The present situation and shifts observed in wetlands within the St. Lawrence Seaway region of Canada, utilizing imagery from the Landsat archive and the cloud-based platform Google Earth Engine. Big Earth Data 2025, 9, 47–71. [Google Scholar] [CrossRef]
- van Asselen, S.; Verburg, P.H.; Vermaat, J.E.; Janse, J.H. Drivers of wetland conversion: A global meta-analysis. PLoS ONE 2013, 8, e81292. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Z.; Zhao, B.; Luo, W.; Yu, Z.; Yuan, L. Multiple Sources Forcing Driving Changes in Spatial Patterns of Coastal Wetland Vegetation. Ocean-Land-Atmos. Res. 2024, 3, 0048. [Google Scholar] [CrossRef]
- Wang, C.; Ma, L.; Zhang, Y.; Chen, N.; Wang, W. Spatiotemporal dynamics of wetlands and their driving factors based on PLS-SEM: A case study in Wuhan. Sci. Total Environ. 2022, 806, 151310. [Google Scholar] [CrossRef]
- Moore, C.E.; Meacham-Hensold, K.; Lemonnier, P.; Slattery, R.A.; Benjamin, C.; Bernacchi, C.J.; Lawson, T.; Cavanagh, A.P. The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. J. Exp. Bot. 2021, 72, 2822–2844. [Google Scholar] [CrossRef] [PubMed]
- Love, N.L.R.; Mazer, S.J. Region-specific phenological sensitivities and rates of climate warming generate divergent temporal shifts in flowering date across a species’ range. Am. J. Bot. 2021, 108, 1873–1888. [Google Scholar] [CrossRef]
- Fang, J.; Piao, S.; Zhou, L.; He, J.; Wei, F.; Myneni, R.B.; Tucker, C.J.; Tan, K. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 2005, 32, L21411. [Google Scholar] [CrossRef]
- Kim, D.; Bartholdy, J.; Jung, S.; Cairns, D.M. Salt Marshes as Potential Indicators of Global Climate Change. Geogr. Compass 2011, 5, 219–236. [Google Scholar] [CrossRef]
- Pickering, M.D.; Wells, N.C.; Horsburgh, K.J.; Green, J.A.M. The impact of future sea-level rise on the European Shelf tides. Cont. Shelf Res. 2012, 35, 1–15. [Google Scholar] [CrossRef]
- Callaghan, D.P.; Bouma, T.J.; Klaassen, P.; van der Wal, D.; Stive, M.J.F.; Herman, P.M.J. Hydrodynamic forcing on salt-marsh development: Distinguishing the relative importance of waves and tidal flows. Estuar. Coast. Shelf Sci. 2010, 89, 73–88. [Google Scholar] [CrossRef]
- Bertness, M.D.; Coverdale, T.C. An invasive species facilitates the recovery of salt marsh ecosystems on Cape Cod. Ecology 2013, 94, 1937–1943. [Google Scholar] [CrossRef]
- Zheng, X.; Javed, Z.; Liu, B.; Zhong, S.; Cheng, Z.; Rehman, A.; Du, D.; Li, J. Impact of Spartina alterniflora Invasion in Coastal Wetlands of China: Boon or Bane? Biology 2023, 12, 1057. [Google Scholar] [CrossRef]
- Yang, G.; Shao, C.; Zuo, Y.; Sun, W.; Huang, K.; Wang, L.; Chen, B.; Meng, X.; Ge, Y. MFI: A mudflat index based on hyperspectral satellite images for mapping coastal mudflats. Int. J. Appl. Earth Obs. Geoinf. 2024, 133, 104140. [Google Scholar] [CrossRef]
- Xie, D.; Wang, Z.; Gao, S.; De Vriend, H.J. Modeling the tidal channel morphodynamics in a macro-tidal embayment, Hangzhou Bay, China. Cont. Shelf Res. 2009, 29, 1757–1767. [Google Scholar] [CrossRef]
- Liang, J.; Chen, C.; Song, Y.; Sun, W.; Yang, G. Long-term mapping of land use and cover changes using Landsat images on the Google Earth Engine Cloud Platform in bay area—A case study of Hangzhou Bay, China. Sustain. Horiz. 2023, 7, 100061. [Google Scholar] [CrossRef]
- Li, N.; Li, L.; Lu, D.; Zhang, Y.; Wu, M. Detection of coastal wetland change in China: A case study in Hangzhou Bay. Wetl. Ecol. Manag. 2019, 27, 103–124. [Google Scholar] [CrossRef]
- Li, N.; Li, L.; Zhang, Y.; Lu, D.; Wu, M. Changes of ecosystem services value of Hangzhou Bay Coastal Wetland. J. Zhejiang A&F Univ. 2019, 36, 118–129. (In Chinese) [Google Scholar] [CrossRef]
- Huang, S.; Chen, Y.; Li, Y. Spatial dynamic patterns of saltmarsh vegetation in southern Hangzhou Bay: Exotic and native species. Water Sci. Eng. 2020, 13, 34–44. [Google Scholar] [CrossRef]
- Cai, T.; Huang, S.; Wu, J.; Zhang, Z.; Xue, C.; Chen, Y. Saltmarsh Carbon Stock Changes under Combined Effects of Vegetation Succession and Reclamation. Ecosyst. Health Sustain. 2023, 9, 0114. [Google Scholar] [CrossRef]
- Liang, H.; Chen, C.; Wang, K.; Ye, G. Long-Term Spatiotemporal Changes in Ecosystem Services Caused by Coastal Wetland Type Transformation in China’s Hangzhou Bay. J. Mar. Sci. Eng. 2022, 10, 1781. [Google Scholar] [CrossRef]
- Liang, W.; Chen, X.; Chen, Z.; Zhu, P.; Huang, Z.; Li, J.; Wang, Y.; Li, L.; He, D. Unraveling the impact of Spartina alterniflora invasion on greenhouse gas production and emissions in coastal saltmarshes: New insights from dissolved organic matter characteristics and surface-porewater interactions. Water Res. 2024, 262, 122120. [Google Scholar] [CrossRef] [PubMed]
- Stokstad, E. China battles alien weed at unprecedented scale. Science 2023, 379, 972. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Peng, S. 1-km Monthly Mean Temperature Dataset for China (1901–2024). National Tibetan Plateau/Third Pole Environment Data Center, 2019. Available online: https://data.tpdc.ac.cn/en/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf (accessed on 20 January 2026).
- Peng, S. 1-km Monthly Minimum Temperature Dataset for China (1901–2024). National Tibetan Plateau/Third Pole Environment Data Center, 2020. Available online: https://data.tpdc.ac.cn/en/data/5b644091-5fbf-4cd8-9324-6a543c9c369f (accessed on 20 January 2026).
- Peng, S. 1-km Monthly Maximum Temperature Dataset for China (1901–2024). National Tibetan Plateau/Third Pole Environment Data Center, 2020. Available online: https://data.tpdc.ac.cn/en/data/35ffff9f-8e1b-4296-801f-d8231e4f8dc3 (accessed on 20 January 2026).
- Peng, S. 1-km Monthly Precipitation Dataset for China (1901–2024). National Tibetan Plateau/Third Pole Environment Data Center, 2020. Available online: https://data.tpdc.ac.cn/en/data/faae7605-a0f2-4d18-b28f-5cee413766a2 (accessed on 20 January 2026).
- Ding, Y.; Peng, S. Spatiotemporal Trends and Attribution of Drought across China from 1901–2100. Sustainability 2020, 12, 477. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Peng, S.; Gang, C.; Cao, Y.; Chen, Y. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 2018, 38, 2250–2264. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Smith, K.E.L.; Terrano, J.F.; Jenkins, R.L.; Pitchford, J.L.; Passeri, D.L.; Smith, C.G. Shifts in marsh erosion, migration, and wave exposure over nearly two centuries of sea-level rise in the Gulf of Mexico. Estuar. Coast. Shelf Sci. 2025, 313, 109106. [Google Scholar] [CrossRef]
- Potgieter, A.B.; Lawson, K.; Huete, A.R. Determining crop acreage estimates for specific winter crops using shape attributes from sequential MODIS imagery. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 254–263. [Google Scholar] [CrossRef]
- Ma, K.Q.; Zhang, W. Assessing univariate and multivariate normality in PLS-SEM. Data Anal. Perspect. J. 2023, 4, 1–7. [Google Scholar]
- Hair, J.; Alamer, A. Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Res. Methods Appl. Linguist. 2022, 1, 100027. [Google Scholar] [CrossRef]
- Xiao, J.; Song, F.; Su, F.; Song, S.; Wei, C. Exploring the interaction mechanism of natural conditions and human activities on wetland ecosystem services value. J. Clean. Prod. 2023, 426, 139161. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, P.; Liu, Y.; Tian, L.; Cao, Y.; Guo, Y.; Li, J.; Wang, Y.; Huang, J.; Jin, R.; et al. Study on spatiotemporal changes of wetlands based on PLS-SEM and PLUS model: The case of the Sanjiang Plain. Ecol. Indic. 2024, 169, 112812. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; SAGE Publications: Los Angeles, CA, USA, 2017. [Google Scholar]
- Epiphanio, J.N.; Huete, A.R. Dependence of NDVI and SAVI on sun/sensor geometry and its effect on fAPAR relationships in Alfalfa. Remote Sens. Environ. 1995, 51, 351–360. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Van Deventer, A.P.; Ward, A.D.; Gowda, P.H.; Lyon, J.G. Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Zhong, L.; Gong, P.; Biging, G.S. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sens. Environ. 2014, 140, 1–13. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Shwartz-Ziv, R.; Armon, A. Tabular data: Deep learning is not all you need. Inf. Fusion 2022, 81, 84–90. [Google Scholar] [CrossRef]
- Liu, H.; Lin, N.; Zhang, H.; Liu, Y.; Bai, C.; Sun, D.; Feng, J. Driving Force Analysis of Natural Wetland in Northeast Plain Based on SSA-XGBoost Model. Sensors 2023, 23, 7513. [Google Scholar] [CrossRef]
- Wu, N.; Shi, R.; Zhuo, W.; Zhang, C.; Zhou, B.; Xia, Z.; Tao, Z.; Gao, W.; Tian, B. A Classification of Tidal Flat Wetland Vegetation Combining Phenological Features with Google Earth Engine. Remote Sens. 2021, 13, 443. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Yu, H.; Li, F. Mapping Spartina alterniflora Biomass Using LiDAR and Hyperspectral Data. Remote Sens. 2017, 9, 589. [Google Scholar] [CrossRef]
- Shao, X.; Wu, M.; Gu, B.; Chen, Y.; Liang, X. Nutrient retention in plant biomass and sediments from the salt marsh in Hangzhou Bay estuary, China. Environ. Sci. Pollut. Res. Int. 2013, 20, 6382–6391. [Google Scholar] [CrossRef]
- Li, H.; Yang, S. Trapping Effect of Tidal Marsh Vegetation on Suspended Sediment, Yangtze Delta. J. Coast. Res. 2009, 254, 915–924. [Google Scholar] [CrossRef]
- Li, L.; Ren, Y.; Wang, X.; Xia, Y. Sediment dynamics on a tidal flat in macro-tidal Hangzhou Bay during Typhoon Mitag. Cont. Shelf Res. 2022, 237, 104684. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, Y.; Tian, B.; Ding, X. The spatial relationship between salt marsh vegetation patterns, soil elevation and tidal channels using remote sensing at Chongming Dongtan Nature Reserve, China. Acta Oceanol. Sin. 2016, 35, 26–34. [Google Scholar] [CrossRef]
- Wang, W.; Liu, H.; Li, Y.; Su, J. Development and management of land reclamation in China. Ocean Coast. Manag. 2014, 102, 415–425. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, C.; Chen, X.; Zhang, M.; Xu, P. Control of Spartina alterniflora in High Tidal Zones of Coastal Wetlands—A Case Study of the Northern Tidal Flat of Hangzhou Bay. Wetl. Sci. Manag. 2025, 21, 74–79. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, C.; Li, X.; Xue, L.; Yan, Z.; Liang, X.; Chen, X. Pioneer salt marsh species Scirpus mariqueter disperses quicker in summer with seed contribution from current and last year. Estuar. Coast. Shelf Sci. 2022, 264, 107682. [Google Scholar] [CrossRef]
- Tian, F.; Yuan, L.; Zhang, L.; Li, Y.; Ban, L.; Chen, P. Study on seed production, characteristics of dormancy, and germination of Scirpus mariqueter in the Yangtze River Estuary. J. East China Norm. Univ. (Nat. Sci.) 2025, 2025, 68–76. (In Chinese) [Google Scholar] [CrossRef]
- van Regteren, M.; Meesters, E.H.; Baptist, M.J.; de Groot, A.V.; Bouma, T.J.; Elschot, K. Multiple Environmental Variables Affect Germination and Mortality of an Annual Salt Marsh Pioneer: Salicornia procumbens. Estuaries Coasts 2020, 43, 1489–1501. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef]
- Krask, J.L.; Buck, T.L.; Dunn, R.P.; Smith, E.M. Increasing tidal inundation corresponds to rising porewater nutrient concentrations in a southeastern U.S. salt marsh. PLoS ONE 2022, 17, e0278215. [Google Scholar] [CrossRef]
- Zhu, X.; Meng, L.; Zhang, Y.; Weng, Q.; Morris, J. Tidal and Meteorological Influences on the Growth of Invasive Spartina alterniflora: Evidence from UAV Remote Sensing. Remote Sens. 2019, 11, 1208. [Google Scholar] [CrossRef]
- Georgiou, I.Y.; FitzGerald, D.M.; Hanegan, K.C. Storm and tidal interactions control sediment exchange in mixed-energy coastal systems. PNAS Nexus 2024, 3, pgae042. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.; Kaiser, E. Photosynthetic Acclimation to Fluctuating Irradiance in Plants. Front Plant Sci 2020, 11, 268. [Google Scholar] [CrossRef] [PubMed]
- Kathilankal, J.C.; Mozdzer, T.J.; Fuentes, J.D.; McGlathery, K.J.; D’Odorico, P.; Zieman, J.C. Physiological responses of Spartina alterniflora to varying environmental conditions in Virginia marshes. Hydrobiologia 2011, 669, 167–181. [Google Scholar] [CrossRef]
- Wu, T.; Yu, M.; Wu, M.; Xiao, J. Seasonal variation in photosynthesis in relation to differing environmental factors of dominant plant species in three successional communities in Hangzhou Bay Wetlands, East China. Russ. J. Ecol. 2011, 42, 471–479. [Google Scholar] [CrossRef]
- Feng, L.; Chen, X. Coastal processes and tidal flat reclamation in Cixi City, China. Géomorphologie Relief Process. Environ. 2013, 19, 181–190. [Google Scholar] [CrossRef]
- Zhang, D.; Hu, Y.; Liu, M.; Chang, Y.; Yan, X.; Bu, R.; Zhao, D.; Li, Z. Introduction and Spread of an Exotic Plant, Spartina alterniflora, Along Coastal Marshes of China. Wetlands 2017, 37, 1181–1193. [Google Scholar] [CrossRef]
- Li, N.; Li, L.; Zhang, Y.; Wu, M. Monitoring of the invasion of Spartina alterniflora from 1985 to 2015 in Zhejiang Province, China. BMC Ecol. 2020, 20, 7. [Google Scholar] [CrossRef] [PubMed]











| Variable | Definition | Unit | Spatial Resolution | Source |
|---|---|---|---|---|
| Environment | ||||
| TEMP | Mean temperature | °C | 0.0083° | The National Tibetan Plateau Scientific Data Processing Center (https://www.tpdc.ac.cn/) |
| TMN | Minimum temperature | °C | ||
| TMX | Maximum temperature | °C | ||
| PREC | Mean precipitation | mm | ||
| CSSDI | Clear sky surface shortwave downward irradiance | kWh m−2 day−1 | 0.625° × 0.5° | NASA Prediction of Worldwide Energy Resources (POWER) (https://power.larc.nasa.gov/) |
| RH | Relative humidity at 2 m | % | ||
| SSS | Sea water salinity | psu | 0.08° | The Hybrid Coordinate Ocean Model (https://www.hycom.org) |
| SST | Sea water temperature | °C | ||
| VHM | Sea surface wave significant height | m | 0.2° | Copernicus Marine Service (https://marine.copernicus.eu/) |
| SLA | Sea level anomaly | m | 0.25° | Archiving, Validation and Interpretation of Satellite Oceanographic data (https://www.aviso.altimetry.fr/) |
| Human | ||||
| AQ | Area of aquaculture ponds | km2 | 30 m | This study |
| Competition | ||||
| INCOM | Interspecific competition | km2 | 30 m | This study |
| Index | Formula | Reference |
|---|---|---|
| NDVI | [58] | |
| EVI | [59] | |
| LSWI | [60] | |
| NDTI | [61] | |
| NDSVI | [62] | |
| MNDWI | [63] | |
| NDBI | [64] |
| Proxies | Metrics | Number of Features |
|---|---|---|
| B, G, R, NIR | median | 4 |
| SWIR1, SWIR2, NDVI, EVI, LSWI, NDTI, NDSVI, MNDWI, NDBI | median, minimum, maximum, mean, standard deviation | 45 |
| NDVI | GLCM-based texture statistics | 7 |
| Stage | Factor | Total Effect | Relative Contribution (%) | ||
|---|---|---|---|---|---|
| SM | SA | SM | SA | ||
| stable | Environment | 0.49 | 0.74 | 44.14 | 48.37 |
| Human | 0.21 | −0.34 | 18.92 | 22.22 | |
| Competition | −0.41 | −0.45 | 36.94 | 29.41 | |
| disturbance | Environment | 0.78 | 0.19 | 42.62 | 12.34 |
| Human | 0.35 | −0.71 | 19.13 | 46.10 | |
| Competition | −0.70 | −0.64 | 38.25 | 41.56 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, X.; Bai, Y.; He, X.; Zhu, B.; Ding, X.; Li, T.; Jin, X.; Gong, F. Vegetation Succession Dynamics and Drivers in Accretional Salt Marshes: A 34-Year Case Study in Hangzhou Bay. Remote Sens. 2026, 18, 461. https://doi.org/10.3390/rs18030461
Wang X, Bai Y, He X, Zhu B, Ding X, Li T, Jin X, Gong F. Vegetation Succession Dynamics and Drivers in Accretional Salt Marshes: A 34-Year Case Study in Hangzhou Bay. Remote Sensing. 2026; 18(3):461. https://doi.org/10.3390/rs18030461
Chicago/Turabian StyleWang, Xiao, Yan Bai, Xianqiang He, Bozhong Zhu, Xiaosong Ding, Teng Li, Xuchen Jin, and Fang Gong. 2026. "Vegetation Succession Dynamics and Drivers in Accretional Salt Marshes: A 34-Year Case Study in Hangzhou Bay" Remote Sensing 18, no. 3: 461. https://doi.org/10.3390/rs18030461
APA StyleWang, X., Bai, Y., He, X., Zhu, B., Ding, X., Li, T., Jin, X., & Gong, F. (2026). Vegetation Succession Dynamics and Drivers in Accretional Salt Marshes: A 34-Year Case Study in Hangzhou Bay. Remote Sensing, 18(3), 461. https://doi.org/10.3390/rs18030461

