Deep Learning-Based 3D Ocean Current Reconstruction Improved by Vertical Temperature and Salinity
Highlights
- We propose SpadeUp, a new subsurface current reconstruction model that jointly assimilates surface observations and subsurface thermohaline fields, and achieves substantially higher skill than surface-only AI models.
- A perturbation-based sensitivity analysis reveals a robust hierarchy of input importance: among surface inputs, surface currents and sea surface height) dominate the reconstruction, while subsurface temperature provides a major additional accuracy gain across all depths.
- The AI-based 3D current reconstructions obtained with SpadeUp offer a physically consistent tool for generating datasets that can underpin studies of subsurface circulation, mesoscale eddies and other key dynamical processes.
- The identified ranking of variable importance can inform operational ocean forecasting and observing system design, which holds significant implications for the development of ocean observing and forecasting systems.
Abstract
1. Introduction
2. Data & Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. SpadeUp
2.2.2. DiSpade
2.2.3. U-Net
2.2.4. Experiment Design
3. Results
3.1. Comparison of Three Models
3.1.1. General Performance
3.1.2. South China Sea Subsurface Eddy Snapshots
3.1.3. Kuroshio Cross Sections
3.2. Contributions of Input Parameters for Each Model and the Key Role of Subsurface Temperature
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SSH | Sea Surface Height |
| SST | Sea Surface Temperature |
| SSS | Sea Surface Salinity |
| SW | Surface Winds |
| T/S | Temperature and Salinity |
| SCS | South China Sea |
| GLORYS | Global Ocean Physics Reanalysis |
| ERA5 | ECMWF Reanalysis v5 |
| SPADE | SPatially Adaptive (DE)normalization |
| GAN | Generative Adversarial Network |
| WGAN-GP | Wasserstein GAN with Gradient Penalty |
| RMSE | Root Mean Square Error |
References
- Grist, J.P.; Josey, S.A.; Marsh, R.; Good, S.A.; Coward, A.C.; De Cuevas, B.A.; Alderson, S.G.; New, A.L.; Madec, G. The Roles of Surface Heat Flux and Ocean Heat Transport Convergence in Determining Atlantic Ocean Temperature Variability. Ocean Dyn. 2010, 60, 771–790. [Google Scholar] [CrossRef]
- Stammer, D.; Wunsch, C.; Giering, R.; Eckert, C.; Heimbach, P.; Marotzke, J.; Adcroft, A.; Hill, C.N.; Marshall, J. Volume, Heat, and Freshwater Transports of the Global Ocean Circulation 1993–2000, Estimated from a General Circulation Model Constrained by World Ocean Circulation Experiment (WOCE) Data. J. Geophys. Res. Ocean. 2003, 108, 7-1–7-23. [Google Scholar] [CrossRef]
- Bronselaer, B.; Zanna, L. Heat and Carbon Coupling Reveals Ocean Warming Due to Circulation Changes. Nature 2020, 584, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, M.; Du, Y.; Phillips, H.E.; Bindoff, N.L.; McPhaden, M.J. Strengthened Indonesian Throughflow Drives Decadal Warming in the Southern Indian Ocean. Geophys. Res. Lett. 2018, 45, 6167–6175. [Google Scholar] [CrossRef]
- Rasmusson, E.M. El Niño and Variations in Climate: Large-Scale Interactions between the Ocean and the Atmosphere over the Tropical Pacific Can Dramatically Affect Weather Patterns around the World. Am. Sci. 1985, 73, 168–177. [Google Scholar]
- Winton, M. On the Climatic Impact of Ocean Circulation. J. Clim. 2003, 16, 2875–2889. [Google Scholar] [CrossRef]
- Abraham, J.P.; Baringer, M.; Bindoff, N.L.; Boyer, T.; Cheng, L.J.; Church, J.A.; Conroy, J.L.; Domingues, C.M.; Fasullo, J.T.; Gilson, J. A Review of Global Ocean Temperature Observations: Implications for Ocean Heat Content Estimates and Climate Change. Rev. Geophys. 2013, 51, 450–483. [Google Scholar] [CrossRef]
- Levitus, S.; Antonov, J.I.; Boyer, T.P.; Baranova, O.K.; Garcia, H.E.; Locarnini, R.A.; Mishonov, A.V.; Reagan, J.R.; Seidov, D.; Yarosh, E.S. World Ocean Heat Content and Thermosteric Sea Level Change (0–2000 m), 1955–2010. Geophys. Res. Lett. 2012, 39, L10603. [Google Scholar] [CrossRef]
- Van Gennip, S.J.; Popova, E.E.; Yool, A.; Pecl, G.T.; Hobday, A.J.; Sorte, C.J. Going with the Flow: The Role of Ocean Circulation in Global Marine Ecosystems under a Changing Climate. Glob. Change Biol. 2017, 23, 2602–2617. [Google Scholar] [CrossRef] [PubMed]
- Nicol, S.; Pauly, T.; Bindoff, N.L.; Wright, S.; Thiele, D.; Hosie, G.W.; Strutton, P.G.; Woehler, E. Ocean Circulation off East Antarctica Affects Ecosystem Structure and Sea-Ice Extent. Nature 2000, 406, 504–507. [Google Scholar] [CrossRef]
- Dunstone, N.J.; Smith, D.M. Impact of Atmosphere and Sub-surface Ocean Data on Decadal Climate Prediction. Geophys. Res. Lett. 2010, 37, 2009GL041609. [Google Scholar] [CrossRef]
- Murphy, L.N.; Klavans, J.M.; Clement, A.C.; Cane, M.A. Investigating the Roles of External Forcing and Ocean Circulation on the Atlantic Multidecadal SST Variability in a Large Ensemble Climate Model Hierarchy. J. Clim. 2021, 34, 4835–4849. [Google Scholar] [CrossRef]
- Kamykowski, D. Twentieth Century Atlantic Meridional Overturning Circulation as an Indicator of Global Ocean Multidecadal Variability: Influences on Sea Level Anomalies and Small Pelagic Fishery Synchronies. ICES J. Mar. Sci. 2014, 71, 455–468. [Google Scholar] [CrossRef]
- Benavides, I.F.; Garcés-Vargas, J.; Selvaraj, J.J. Potential Negative Impacts of Climate Change Outweigh Opportunities for the Colombian Pacific Ocean Shrimp Fishery. Sci. Rep. 2024, 14, 21903. [Google Scholar] [CrossRef]
- Liu, J.; Wang, K.; Chang, S.; Pan, L. Mid-Water Ocean Current Field Estimation Using Radial Basis Functions Based on Multibeam Bathymetric Survey Data for AUV Navigation. J. Mar. Sci. Eng. 2025, 13, 841. [Google Scholar] [CrossRef]
- Zhang, R.; Gao, W.; Yang, S.; Wang, Y.; Lan, S.; Yang, X. Ocean Current-Aided Localization and Navigation for Underwater Gliders with Information Matching Algorithm. IEEE Sens. J. 2021, 21, 26104–26114. [Google Scholar] [CrossRef]
- Pianezze, J.; Beuvier, J.; Lebeaupin Brossier, C.; Samson, G.; Faure, G.; Garric, G. Development of a Forecast-Oriented Kilometre-Resolution Ocean–Atmosphere Coupled System for Western Europe and Sensitivity Study for a Severe Weather Situation. Nat. Hazards Earth Syst. Sci. 2022, 22, 1301–1324. [Google Scholar] [CrossRef]
- Yang, P.; Jing, Z.; Sun, B.; Wu, L.; Qiu, B.; Chang, P.; Ramachandran, S. On the Upper-Ocean Vertical Eddy Heat Transport in the Kuroshio Extension. Part I: Variability and Dynamics. J. Phys. Oceanogr. 2021, 51, 229–246. [Google Scholar] [CrossRef]
- Hu, D.; Wu, L.; Cai, W.; Gupta, A.S.; Ganachaud, A.; Qiu, B.; Gordon, A.L.; Lin, X.; Chen, Z.; Hu, S. Pacific Western Boundary Currents and Their Roles in Climate. Nature 2015, 522, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Du, Y.; Zhang, Y.; Wang, T.; Wang, M.; Jing, Z. Subsurface Anticyclonic Eddy Transited from Kuroshio Shedding Eddy in the Northern South China Sea. J. Phys. Oceanogr. 2023, 53, 841–861. [Google Scholar] [CrossRef]
- Johnson, G.C.; Sloyan, B.M.; Kessler, W.S.; McTaggart, K.E. Direct Measurements of Upper Ocean Currents and Water Properties across the Tropical Pacific during the 1990s. Prog. Oceanogr. 2002, 52, 31–61. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, H. Seasonal Variations of the North Equatorial Current Across the Pacific Ocean. J. Geophys. Res. Ocean. 2020, 125, e2019JC015895. [Google Scholar] [CrossRef]
- Qu, T.; Lukas, R. The Bifurcation of the North Equatorial Current in the Pacific. J. Phys. Oceanogr. 2003, 33, 5–18. [Google Scholar] [CrossRef]
- Qiu, B.; Rudnick, D.L.; Cerovecki, I.; Cornuelle, B.D.; Chen, S.; Schönau, M.C.; McClean, J.L.; Gopalakrishnan, G. The Pacific North Equatorial Current: New Insights from the Origins of the Kuroshio and Mindanao Currents (OKMC) Project. Oceanography 2015, 28, 24–33. [Google Scholar] [CrossRef]
- Xu, D.; Malanotte-Rizzoli, P. The Seasonal Variation of the Upper Layers of the South China Sea (SCS) Circulation and the Indonesian through Flow (ITF): An Ocean Model Study. Dyn. Atmos. Ocean. 2013, 63, 103–130. [Google Scholar] [CrossRef]
- Du, Y.; Qu, T. Three Inflow Pathways of the Indonesian Throughflow as Seen from the Simple Ocean Data Assimilation. Dyn. Atmos. Ocean. 2010, 50, 233–256. [Google Scholar] [CrossRef]
- Du, Y.; Wang, F.; Wang, T.; Liu, W.; Liang, L.; Zhang, Y.; Chen, Y.; Liu, J.; Wu, W.; Yu, K. Multi-Scale Ocean Dynamical Processes in the Indo-Pacific Convergence Zone and Their Climatic and Ecological Effects. Earth-Sci. Rev. 2023, 237, 104313. [Google Scholar] [CrossRef]
- Qu, T. Upper-Layer Circulation in the South China Sea. J. Phys. Oceanogr. 2000, 30, 1450–1460. [Google Scholar] [CrossRef]
- Lin, J.; Wang, M.; Wu, W.; Wang, X.; Du, Y. Stagnation of Eddy Kinetic Energy After Summer Monsoon Onset in the South China Sea. J. Geophys. Res. Ocean. 2024, 129, e2023JC020836. [Google Scholar] [CrossRef]
- Yang, Q.; Nikurashin, M.; Sasaki, H.; Sun, H.; Tian, J. Dissipation of Mesoscale Eddies and Its Contribution to Mixing in the Northern South China Sea. Sci. Rep. 2019, 9, 556. [Google Scholar] [CrossRef]
- Qu, T.; Du, Y.; Sasaki, H. South China Sea Throughflow: A Heat and Freshwater Conveyor. Geophys. Res. Lett. 2006, 33, L23617. [Google Scholar] [CrossRef]
- Yu, Z.; Shen, S.; McCreary, J.P.; Yaremchuk, M.; Furue, R. South China Sea Throughflow as Evidenced by Satellite Images and Numerical Experiments. Geophys. Res. Lett. 2007, 34, 2006GL028103. [Google Scholar] [CrossRef]
- Wu, Y.; Hong, C.; Chen, C. Distinct Effects of the Two Strong El Niño Events in 2015–2016 and 1997–1998 on the Western North Pacific Monsoon and Tropical Cyclone Activity: Role of Subtropical Eastern North Pacific Warm SSTA. J. Geophys. Res. Ocean. 2018, 123, 3603–3618. [Google Scholar] [CrossRef]
- Goswami, B.B.; An, S.-I. An Assessment of the ENSO-Monsoon Teleconnection in a Warming Climate. Npj Clim. Atmos. Sci. 2023, 6, 82. [Google Scholar] [CrossRef]
- González-Haro, C.; Isern-Fontanet, J.; Tandeo, P.; Garello, R. Ocean Surface Currents Reconstruction: Spectral Characterization of the Transfer Function Between SST and SSH. J. Geophys. Res. Ocean. 2020, 125, e2019JC015958. [Google Scholar] [CrossRef]
- Wong, A.P.S.; Wijffels, S.E.; Riser, S.C.; Pouliquen, S.; Hosoda, S.; Roemmich, D.; Gilson, J.; Johnson, G.C.; Martini, K.; Murphy, D.J.; et al. Argo Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats. Front. Mar. Sci. 2020, 7, 700. [Google Scholar] [CrossRef]
- European Union-Copernicus Marine Service. Global Ocean Physics Reanalysis; European Union-Copernicus Marine Service: Reading, UK, 2018. [Google Scholar]
- Zhao, Q.; Peng, S.; Wang, J.; Li, S.; Hou, Z.; Zhong, G. Applications of Deep Learning in Physical Oceanography: A Comprehensive Review. Front. Mar. Sci. 2024, 11, 1396322. [Google Scholar] [CrossRef]
- Guo, M.; Xu, K.; Wang, W. Unveiling Summer Marine Heatwave Onset Mechanisms in the South China Sea Using an Explainable Deep Learning Method. Clim. Dyn. 2025, 63, 311. [Google Scholar] [CrossRef]
- Song, T.; Pang, C.; Hou, B.; Xu, G.; Xue, J.; Sun, H.; Meng, F. A Review of Artificial Intelligence in Marine Science. Front. Earth Sci. 2023, 11, 1090185. [Google Scholar] [CrossRef]
- Xie, H.; Xu, Q.; Cheng, Y.; Yin, X.; Jia, Y. Reconstruction of Subsurface Temperature Field in the South China Sea From Satellite Observations Based on an Attention U-Net Model. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4209319. [Google Scholar] [CrossRef]
- Zhao, M.; Zheng, Y.; Lin, Z. Sea Surface Reconstruction from Marine Radar Images Using Deep Convolutional Neural Networks. J. Ocean Eng. Sci. 2023, 8, 647–661. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, M.; Wang, Q.; Wang, X.; Chen, J.; Qin, Y. A Deep Learning Method for Inversing 3D Temperature Fields Using Sea Surface Data in Offshore China and the Northwest Pacific Ocean. J. Mar. Sci. Eng. 2024, 12, 2337. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Wu, X.; Zhang, D.; Qi, J.; Ning, P.; Qiao, X. Deep Learning–Based Eddy-Resolving Reconstruction of Subsurface Temperature and Salinity in the South China Sea. Adv. Atmos. Sci. 2025, 42, 1675–1692. [Google Scholar] [CrossRef]
- Xu, W.; Wang, G.; Cheng, X.; Xing, X.; Qin, J.; Zhou, G.; Jiang, L.; Chen, B. Mesoscale Eddy Modulation of Subsurface Chlorophyll Maximum Layers in the South China Sea. J. Geophys. Res. Biogeosci. 2023, 128, e2023JG007648. [Google Scholar] [CrossRef]
- C3S. ERA5 Hourly Data on Single Levels from 1940 to Present 2018; C3S: Bonn, Germany, 2018. [Google Scholar]
- Cui, Y.; Wu, R.; Zhang, X.; Zhu, Z.; Liu, B.; Shi, J.; Chen, J.; Liu, H.; Zhou, S.; Su, L. Forecasting the Eddying Ocean with a Deep Neural Network. Nat. Commun. 2025, 16, 2268. [Google Scholar] [CrossRef] [PubMed]
- Park, T.; Liu, M.-Y.; Wang, T.-C.; Zhu, J.-Y. Semantic Image Synthesis with Spatially-Adaptive Normalization. arXiv 2019. [Google Scholar] [CrossRef]
- Oza, M.; Vaghela, H.; Bagul, S. Semi-Supervised Image-to-Image Translation. In Proceedings of the 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), Yogyakarta, Indonesia, 13–15 March 2019; pp. 16–20. [Google Scholar]
- Targ, S.; Almeida, D.; Lyman, K. Resnet in Resnet: Generalizing Residual Architectures. arXiv 2016, arXiv:1603.08029. [Google Scholar] [CrossRef]
- Sengupta, A.; Ye, Y.; Wang, R.; Liu, C.; Roy, K. Going Deeper in Spiking Neural Networks: VGG and Residual Architectures. Front. Neurosci. 2019, 13, 95. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved Training of Wasserstein GANs. arXiv 2017, arXiv:1704.00028. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar]
- Wang, L.; Yoon, K.-J. Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3048–3068. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Lecture Notes in Computer Science; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. ISBN 978-3-319-24573-7. [Google Scholar]
- Ma, X. A Comparison of Art Style Transfer in Cycle-GAN Based on Different Generators. J. Phys. Conf. Ser. 2024, 2711, 012006. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, Y.; Lin, X.; Liu, C. Style Transfer for Anime Sketches with Enhanced Residual U-Net and Auxiliary Classifier Gan. In Proceedings of the 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), Nanjing, China, 26–29 November 2017; pp. 506–511. [Google Scholar]
- Lu, Z.; Chen, Y. Single Image Super-Resolution Based on a Modified U-Net with Mixed Gradient Loss. Signal Image Video Process. 2022, 16, 1143–1151. [Google Scholar] [CrossRef]
- Siddique, N.; Sidike, P.; Elkin, C.; Devabhaktuni, V. U-Net and Its Variants for Medical Image Segmentation: Theory and Applications. arXiv 2020, arXiv:2011.01118. [Google Scholar] [CrossRef]
- Wang, H.; Cao, P.; Wang, J.; Zaiane, O.R. Uctransnet: Rethinking the Skip Connections in u-Net from a Channel-Wise Perspective with Transformer. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2 February–1 March 2022; Volume 36, pp. 2441–2449. [Google Scholar]
- Luo, C.; Huang, M.; Guan, S.; Zhao, W.; Tian, F.; Yang, Y. Subsurface Temperature and Salinity Structures Inversion Using a Stacking-Based Fusion Model from Satellite Observations in the South China Sea. Adv. Atmos. Sci. 2025, 42, 204–220. [Google Scholar] [CrossRef]








| I/O | Type | Data | Source | Time Coverage & Resolution | Spatial Resolution |
|---|---|---|---|---|---|
| Input (X) | Surface | Surface zonal current U | GLORYS12V1 | January 1993–December 2022, daily | 1/12° |
| Surface meridional current V | |||||
| Sea surface height (SSH) | |||||
| Sea surface temperature (SST) | |||||
| Sea surface salinity (SSS) | |||||
| Zonal Wind Stress U (SWSU) | ERA5 | 1/4° | |||
| Meridional Wind Stress V (SWSV) | |||||
| Input (X3D) | Subsurface | Temperature | GLORYS12V1 | January 1993–December 2022, daily | 1/12° |
| Salinity | |||||
| Target (Y) | Subsurface | Zonal current U | GLORYS12V1 | January 1993–December 2022, daily | 1/12° |
| Meridional current V |
| Models | Parameters | U RMSE (m/s) | V RMSE (m/s) |
|---|---|---|---|
| SpadeUp | 6.54 M | 0.050 | 0.046 |
| DiSpade | 7.35 M | 0.066 | 0.060 |
| U-Net | 31.03 M | 0.072 | 0.064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, X.; Duan, Q.; Zhang, Y.; Zhang, Y.; Du, Y. Deep Learning-Based 3D Ocean Current Reconstruction Improved by Vertical Temperature and Salinity. Remote Sens. 2026, 18, 96. https://doi.org/10.3390/rs18010096
Li X, Duan Q, Zhang Y, Zhang Y, Du Y. Deep Learning-Based 3D Ocean Current Reconstruction Improved by Vertical Temperature and Salinity. Remote Sensing. 2026; 18(1):96. https://doi.org/10.3390/rs18010096
Chicago/Turabian StyleLi, Xinlong, Qin Duan, Ying Zhang, Yuhong Zhang, and Yan Du. 2026. "Deep Learning-Based 3D Ocean Current Reconstruction Improved by Vertical Temperature and Salinity" Remote Sensing 18, no. 1: 96. https://doi.org/10.3390/rs18010096
APA StyleLi, X., Duan, Q., Zhang, Y., Zhang, Y., & Du, Y. (2026). Deep Learning-Based 3D Ocean Current Reconstruction Improved by Vertical Temperature and Salinity. Remote Sensing, 18(1), 96. https://doi.org/10.3390/rs18010096

