Spatiotemporal Dynamics and Driving Factors of Vegetation Gross Primary Productivity in a Typical Coastal City: A Case Study of Zhanjiang, China
Highlights
- Driver Shift with Natural Dominance: While natural factors generally remain dominant, the driving mechanism is shifting toward anthropogenic factors, with Nighttime Light (NTL) rapidly escalating to become the most significant individual driving factor.
- “Pseudo-Growth Effect”: A counterintuitive GPP increase was observed in degraded wetlands, stemming from the remote sensing underestimation of sparse wetland vegetation and their subsequent conversion into land types with higher estimated GPP (e.g., cropland).
- Policy Transition: Conservation strategies in coastal–urban complex ecosystems must transition from passive climate adaptation to the proactive regulation of human activities, strictly controlling the encroachment of urbanization and agriculture on coastal zones.
- Assessment Caution: Relying solely on satellite-derived GPP is insufficient for assessing coastal wetland health due to sparse vegetation estimation errors; a holistic framework integrating high-resolution data and hydrological metrics is required to avoid misleading conclusions.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. GPP Datasets
2.2.2. Other Datasets
| Dataset | Data | Abbreviation | Spatial Resolution | Temporal Resolution | Period | Data Source |
|---|---|---|---|---|---|---|
| GPP Datasets | Gross Primary Productivity | GPP | 500 m | 8-Day | 2001–2020 | GEE:MOD17A2H V006 |
| Climate Datasets | Average Temperature | TAVG | 4 km | Monthly | GEE:TerraClimate (IDAHO_EPSCOR/TERRACLIMATE) | |
| Precipitation | PRCP | |||||
| Solar Radiation | SRAD | |||||
| Anthropogenic Activity Datasets | Population Density | Pop | 100 m | Annual | GEE:WorldPop (https://hub.worldpop.org, accessed on 10 November 2025) | |
| Nighttime Light | NTL | 500 m | Monthly | Global NPP-VIIRS-like nighttime light (2000–2023) Datasets [43] | ||
| Topographic &LULC Datasets | Land Use and Land Cover | LULC | 500 m | Annual | GLC_FCS30D | |
| Elevation | Elevation | 30 m | N\A | 2000 | NASA SRTM Digital Elevation 30 m [45] | |
| Slope | Slope | |||||
| Aspect | Aspect |
2.3. Methods
2.3.1. Sen’s Slope Estimation
2.3.2. Mann–Kendall Significance Test
2.3.3. Land Use Transfer Matrix
2.3.4. Geodetector
3. Results
3.1. Spatiotemporal Distribution and Evolution Characteristics of GPP
3.2. Land Use Dynamics and Coastal Wetland Evolution
3.2.1. Land Use Transitions
3.2.2. Evolution of Coastal Wetlands
3.3. Analysis of Driving Factors for Spatiotemporal Differentiation of GPP
3.3.1. Geodetector Analysis of GPP Spatial Distribution
3.3.2. Analysis of Driving Factors for Coastal Wetland GPP Changes
4. Discussion
4.1. Spatiotemporal Evolution and Driving Mechanisms of GPP in Zhanjiang
4.2. Mechanisms of Coastal Wetland GPP Changes: The “Pseudo-Growth Effect” Induced by Remote Sensing Estimation Errors
4.3. Implications, Limitations, and Future Perspectives
5. Conclusions
- (1)
- From 2001 to 2020, the GPP in Zhanjiang exhibited an oscillating upward trend characterized by strong spatial heterogeneity. The distribution pattern generally featured higher values in the southwestern and southern regions, and lower values in the northern and coastal areas. Vegetation productivity in the vast majority of the region maintained a growth trend, with a mere 0.65% of pixels showing significant or highly significant declining trends.
- (2)
- Coastal wetlands are primarily distributed in the western and eastern coastal zones of Zhanjiang and exhibited a continuous degradation trend. However, the overall coastal wetland landscape developed towards increasing GPP. This phenomenon is attributed to the conversion of degraded, low-GPP wetlands (e.g., tidal flats) into higher-GPP ecosystems, such as grasslands, during the transition process.
- (3)
- During the study period, Precipitation (PRCP), Temperature (TAVG), and LULC Type consistently served as the primary driving factors for the spatial differentiation of GPP in Zhanjiang. Notably, the Nighttime Light Index (NTL) developed rapidly over the two decades, surging to become a dominant factor. The explanatory power of anthropogenic factors (NTL, Population) showed a steady increase among all factors, indicating that under the backdrop of urbanization, human activities have gradually emerged as critical drivers of GPP spatial differentiation. Furthermore, the interaction detection results revealed that all interactions manifested as bivariate enhancement or nonlinear enhancement, demonstrating that the spatial differentiation of GPP is the result of multi-factor coupling. The driving mechanism evolved from an early “Climate–Topography” binary synergistic drive to a complex “Climate–Soil–Human” ternary composite pattern in the later period.
- (4)
- Regarding the driving forces of GPP spatial differentiation in coastal wetlands, NTL and LULC Type were identified as the strongest drivers, while TAVG remained the principal climatic factor. Overall, with the progression of global climate change and urbanization, the driving status of anthropogenic factors on coastal wetland GPP is gradually ascending; however, natural factors currently remain dominant.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GPP | Gross Primary Productivity |
| TAVG | Average Temperature |
| PRCP | Precipitation |
| SRAD | Solar Radiation |
| Pop | Population Density |
| NTL | Nighttime Light |
| LULC | Land Use and Land Cover |
Appendix A

| Unit: km2 | |||||
|---|---|---|---|---|---|
| Land Use Type | 2001 | 2005 | 2010 | 2015 | 2020 |
| Cropland | 9976.7 | 10,188.9 | 9980.2 | 10,204.6 | 10,171.3 |
| Forest | 608.4 | 438.3 | 547.6 | 277.9 | 259.1 |
| Impervious surfaces | 553.6 | 630.7 | 662.4 | 822.9 | 844.0 |
| Marsh | 296.9 | 297.0 | 230.9 | 236.3 | 211.6 |
| Shrubland & Grassland | 514.0 | 432.6 | 448.7 | 341.3 | 363.7 |
| Water body | 384.8 | 346.8 | 464.4 | 451.3 | 484.5 |
| Area | 12,334.3 | 12,334.3 | 12,334.3 | 12,334.3 | 12,334.3 |
| 2001 LULC_Type | 2020 LULC Type | Pixel Count | Percentage (%) |
|---|---|---|---|
| Marsh | Shrubland & Grassland | 231 | 84.93 |
| Marsh | Croplands | 36 | 13.24 |
| Marsh | Impervious surfaces | 3 | 1.10 |
| Marsh | N/A | 2 | 0.70 |

| Degraded Wetland Source Type | Total Pixels | Pixels with Sig. Increase GPP | Percentage (%) |
|---|---|---|---|
| Type A (Mangrove Source) | 18 | 13 | 72.22 |
| Type A (Non-Mangrove Source) | 254 | 190 | 74.80 |
| Source Type | Destination (LULC 2020) | Percentage (%) |
|---|---|---|
| Type A (Mangrove Source) | Shrublands & Grasslands | 83.33 |
| Croplands | 16.67 | |
| Type A (Non-Mangrove Source) | Shrublands & Grasslands | 85.04 |
| Croplands | 12.99 | |
| Impervious Surface | 1.18 | |
| N/A | 0.79 |
References
- Barragán, J.M.; De Andrés, M. Analysis and trends of the world’s coastal cities and agglomerations. Ocean. Coast. Manag. 2015, 114, 11–20. [Google Scholar] [CrossRef]
- Bullock, A.; Acreman, M. The role of wetlands in the hydrological cycle. Hydrol. Earth Syst. Sci. 2003, 7, 358–389. [Google Scholar] [CrossRef]
- Acreman, M.; Joseph, H. How wetlands affect floods. Wetlands 2013, 33, 773–786. [Google Scholar] [CrossRef]
- Ji, P.; Su, R.; Wu, G.; Xue, L.; Zhang, Z.; Fang, H.; Gao, R.; Zhang, W.; Zhang, D. Projecting Future Wetland Dynamics Under Climate Change and Land Use Pressure: A Machine Learning Approach Using Remote Sensing and Markov Chain Modeling. Remote Sens. 2025, 17, 1089. [Google Scholar] [CrossRef]
- Hu, S.; Niu, Z.; Chen, Y.; Li, L.; Zhang, H. Global wetlands: Potential distribution, wetland loss, and status. Sci. Total Environ. 2017, 586, 319–327. [Google Scholar] [CrossRef]
- Barbier, E.B. Chapter 27—The Value of Coastal Wetland Ecosystem Services. In Coastal Wetlands, 2nd ed.; Gerardo, M.E., Perillo, E.W., Donald, R., Cahoon, C.S., Eds.; Hopkinson, Coastal Wetlands; Elsevier: Amsterdam, The Netherlands, 2019; pp. 947–964. ISBN 9780444638939. [Google Scholar] [CrossRef]
- Li, X.; Bellerby, R.; Craft, C.; Widney, S.E. Coastal wetland loss, consequences, and challenges for restoration. Anthr. Coasts. 2018, 1, 1–15. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, Y.; Li, W.; Sun, G.; McNulty, S. Detecting coastal wetland degradation by combining remote sensing and hydrologic modeling. Forests 2022, 13, 411. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Matson, P.A.; Mooney, H.A. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2002. [Google Scholar]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhpfer, C.; Davis, K.; Evans, R.; et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Change Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Liao, Z.; Zhou, B.; Zhu, J.; Jia, H.; Fei, X. A critical review of methods, principles and progress for estimating the gross primary productivity of terrestrial ecosystems. Front. Environ. Sci. 2023, 11, 1093095. [Google Scholar] [CrossRef]
- Hu, J.; Liu, L.; Guo, J.; Du, S.; Liu, X. Upscaling solar-induced chlorophyll fluorescence from an instantaneous to daily scale gives an improved estimation of the gross primary productivity. Remote Sens. 2018, 10, 1663. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Papale, D. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Yin, S.; Du, H.; Mao, F.; Li, X.; Zhou, G.; Xu, C.; Sun, J. Spatiotemporal patterns of net primary productivity of subtropical forests in China and its response to drought. Sci. Total Environ. 2024, 913, 169439. [Google Scholar] [CrossRef]
- He, C.; Wang, Y.; Yan, F.; Lu, Q. Spatiotemporal characteristics and influencing factors of vegetation water use efficiency on the Tibetan Plateau in 2001–2020. J. Geogr. Sci. 2025, 35, 39–64. [Google Scholar] [CrossRef]
- Wang, B.; Kong, X.; Bian, S.; Quan, Y.; Wu, Z.; Liu, J.; Li, M. Evaluating the spatiotemporal patterns of GPP and tree growth for their response to CO2 fertilization effects in mid-latitude forests of China. Geo-Spat. Inf. Sci. 2025, 28, 2449–2461. [Google Scholar] [CrossRef]
- Chen, L.; Yu, S.; Shen, S.; Wan, Y.; Song, C. Spatial and Temporal Variation of GPP and Its Response to Urban Environmental Changes in Beijing. ISPRS Int. J. Geo-Inf. 2024, 13, 396. [Google Scholar] [CrossRef]
- Yang, M.; Xue, L.; Liu, Y.; Liu, S.; Han, Q.; Yang, L.; Chi, Y. Asymmetric response of vegetation GPP to impervious surface expansion: Case studies in the Yellow and Yangtze River Basins. Environ. Res. 2024, 243, 117813. [Google Scholar] [CrossRef]
- Osland, M.J.; Enwright, N.M.; Day, R.H.; Gabler, C.A.; Stagg, C.L.; Grace, J.B. Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Glob. Change Biol. 2016, 22, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhi, C.; Gao, Y.; Chen, C.; Chen, Z.; Su, H.; Lu, W.; Tian, B. Increasing fragmentation and squeezing of coastal wetlands: Status, drivers, and sustainable protection from the perspective of remote sensing. Sci. Total Environ. 2022, 811, 152339. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.Y.; Cui, L.; Wang, J.; Chen, S. Multi-scenario simulation of urban green space development and construction Timeline based on PLUS model analysis: A case study of the central Zhanjiang City. Acta Ecol. Sin. 2023, 43, 6307–6320. [Google Scholar]
- Cheng, X.L.; Cubino, J.P.; Balfour, K.; Zhu, Z.X.; Wang, H.F. Drivers of spontaneous and cultivated species diversity in the tropical city of Zhanjiang, China. Urban For. Urba. Green. 2022, 67, 127428. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Xu, J.Q. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City. Remote Sens. Nat. Resour. 2023, 35, 43–52. [Google Scholar]
- Huang, Z.; Wang, Y.; Guo, F.; Ouyang, X.; Zhu, Z.; Zhang, Y. Mangrove soil carbon stocks varied significantly across community compositions and environmental gradients in the largest mangrove wetland reserve, China. Reg. Environ. Change 2024, 24, 140. [Google Scholar] [CrossRef]
- Han, Z.Y.; Xie, H.L.; Li, H.Y.; Xie, L. Evolution of the ebb-tidal delta in Zhanjiang Bay tidal inlet. Mar. Geol. Front. 2021, 37, 45–50. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.; Glassy, J.M.; Thornton, P.E. MODIS daily photosynthesis (PSN) and annual net primary production (NPP) product (MOD17) Algorithm Theoretical Basis Document. Univ. Mont. SCF Launch Algorithm ATBD Doc. 1999, 490, 13. [Google Scholar]
- Frazier, A.E.; Renschler, C.S.; Miles, S.B. Evaluating post-disaster ecosystem resilience using MODIS GPP data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 43–52. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Remote Sensing of Terrestrial Primary Production and Carbon Cycle//Advances in Land Remote Sensing: System, Modeling, Inversion and Application; Springer: Dordrecht, The Netherlands, 2008; pp. 423–444. [Google Scholar]
- Zhao, M.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Pei, Y.Y.; Dong, J.W.; Zhang, Y.; Yang, J.L.; Zhang, Y.Q.; Jiang, C.Y.; Xiao, X.M. Performance of four state-of-the-art GPP products (VPM, MOD17, BESS and PML) for grasslands in drought years. Ecol. Inform. 2020, 56, 101052. [Google Scholar] [CrossRef]
- Dong, D.; Zhang, R.; Guo, W.; Gong, D.; Zhao, Z.; Zhou, Y.; Xu, Y.; Fujioka, Y. Assessing Spatiotemporal Dynamics of Net Primary Productivity in Shandong Province, China (2001–2020) Using the CASA Model and Google Earth Engine: Trends, Patterns, and Driving Factors. Remote Sens. 2025, 17, 488. [Google Scholar] [CrossRef]
- Ge, Z.M.; Cao, H.B.; Cui, L.F.; Zhao, B.; Zhang, L.Q. Future vegetation patterns and primary production in the coastal wetlands of East China under sea level rise, sediment reduction, and saltwater intrusion. J. Geophys. Res. Biogeosci. 2015, 120, 1923–1940. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Chen, X. Quantifying influences of natural and anthropogenic factors on vegetation changes based on geodetector: A case study in the Poyang Lake Basin, China. Remote Sens. 2021, 13, 5081. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Alsdorf, D. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 2. [Google Scholar] [CrossRef]
- Huang, Y.; Fu, X.; Sha, J.; Shifaw, E. Application of a Modified Ecological Quality Monitoring Method in the Southeastern Hilly Region of China. Remote Sens. 2024, 16, 4731. [Google Scholar] [CrossRef]
- Zeng, Y.; Xiang, K.; Wang, G.; Zhang, L.; Li, J.; Deng, Y.; Xu, J. The spatiotemporal change of NPP and its influencing factors in Guangdong Province from 2000 to 2021. Ecol. Sci. 2025, 44, 74–83. [Google Scholar]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Xie, H.; Tong, X.J.; Li, J.; Zhang, J.R.; Liu, P.R.; Yu, P.Y. Changes of NDVI and EVI and their responses to climatic variables in the Yellow River Basin during the growing season of 2000–2018. Acta Ecol. Sin. 2022, 42, 4536–4549. [Google Scholar]
- Li, D.; Wang, Z. The characteristics of NPP of terrestrial vegetation in China based on MOD17A3 data. Ecol. Environ. Sci. 2018, 27, 397–405. [Google Scholar]
- Xu, Z.; Ke, F.; Yu, J.; Zhang, H. Spatio-Temporal Evolution and Driving Factors of Eco-Environmental Response to Land Use Transformation in China’s Southern Hilly Area During 2000–2020. Land 2025, 14, 1766. [Google Scholar] [CrossRef]
- Zhang, M.; Ning, L.; Li, J.; Wang, Y. Study on Spatial Pattern Changes and Driving Factors of Land Use/Cover in Coastal Areas of Eastern China from 2000 to 2022: A Case Study of Jiangsu Province. Land 2025, 14, 2031. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Y.; Chen, T.; Zhang, F.; Zhu, S. Exploring the Spatiotemporal Dynamics and Driving Factors of Net Ecosystem Productivity in China from 1982 to 2020. Remote Sens. 2024, 16, 60. [Google Scholar] [CrossRef]
- Guo, H.; Cao, C.; Xu, M.; Yang, X.; Chen, Y.; Wang, K.; Duerler, R.S.; Li, J.; Gao, X. Spatiotemporal Distribution Pattern and Driving Factors Analysis of GPP in Beijing-Tianjin-Hebei Region by Long-Term MODIS Data. Remote Sens. 2023, 15, 622. [Google Scholar] [CrossRef]
- Zhang, M.; Kafy, A.-A.; Ren, B.; Zhang, Y.; Tan, S.; Li, J. Application of the Optimal Parameter Geographic Detector Model in the Identification of Influencing Factors of Ecological Quality in Guangzhou, China. Land. 2022, 11, 1303. [Google Scholar] [CrossRef]
- Huo, H.; Sun, C. Spatiotemporal variation and influencing factors of vegetation dynamics based on Geodetector: A case study of the northwestern Yunnan Plateau, China. Ecol. Indic. 2021, 130, 108005. [Google Scholar] [CrossRef]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Feng, X.; Zeng, Z.; He, M. A 20-year vegetation cover change and its response to climate factors in the Guangdong-Hong Kong-Macao Greater Bay Area under the background of climate change. Front. Ecol. Evol. 2023, 10, 1080734. [Google Scholar] [CrossRef]
- Nie, C.; Chen, X.; Xu, R.; Zhu, Y.; Deng, C.; Yang, Q. The spatio-temporal variations of GPP and its climatic driving factors in the Yangtze River Basin during 2000–2018. Forests 2023, 14, 1898. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.U.; He, Y.; Myneni, R.B. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Myneni, R.B. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Wu, J. Urban ecology and sustainability: The state-of-the-science and future directions. Landsc. Urban Plan. 2014, 125, 209–221. [Google Scholar] [CrossRef]
- Tao, J.; Mishra, D.R.; Cotten, D.L.; O’Connell, J.; Leclerc, M.; Nahrawi, H.B.; Zhang, G.; Pahari, R. A Comparison between the MODIS Product (MOD17A2) and a Tide-Robust Empirical GPP Model Evaluated in a Georgia Wetland. Remote Sens. 2018, 10, 1831. [Google Scholar] [CrossRef]
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Flanagan, L.B.; Xu, L. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. J. Geophys. Res. Biogeosci. 2006, 111, G4. [Google Scholar] [CrossRef]
- Ozesmi, S.L.; Bauer, M.E. Satellite remote sensing of wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Tan, L.; Ge, Z.; Zhou, X.; Li, S.; Li, X.; Tang, J. Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: A global meta-analysis. Glob. Change Biol. 2020, 26, 1638–1653. [Google Scholar] [CrossRef]
- Jiang, W.; Li, J.; Wang, W.; Xie, Z.; Mai, S. Assessment of wetland ecosystem health based on RS and GIS in Liaohe River Delta. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Republic of Korea, 25–29 July 2005; IGARSS’IEEE: Washington, DC, USA, 2005; Volume 4, pp. 2384–2386. [Google Scholar]
- Zheng, Z.; Wu, Z.; Chen, Y.; Yang, Z.; Marinello, F. Exploration of eco-environment and urbanization changes in coastal zones: A case study in China over the past 20 years. Ecol. Indic. 2020, 119, 106847. [Google Scholar] [CrossRef]
- Davenport, J.; Davenport, J.L. The impact of tourism and personal leisure transport on coastal environments: A review. Estuar. Coast. Shelf Sci. 2006, 67, 280–292. [Google Scholar] [CrossRef]
- Giri, C.; Pengra, B.; Zhu, Z.; Singh, A.; Tieszen, L.L. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 2007, 73, 91–100. [Google Scholar] [CrossRef]
- Xiong, L.; Jiao, Y.; Wang, F.; Zhou, S. Spatial–temporal variations in regional sea level change in the south China sea over the altimeter era. J. Mar. Sci. Eng. 2023, 11, 2360. [Google Scholar] [CrossRef]
- Li, Y.; Yu, J.; Ning, K.; Du, S.; Han, G.; Qu, F.; Wang, G.; Fu, Y.; Zhan, C. Ecological effects of roads on the plant diversity of coastal wetland in the Yellow River Delta. Sci. World J. 2014, 2014, 952051. [Google Scholar] [CrossRef] [PubMed]









| Category of Change | Criteria for Determination |
|---|---|
| Highly significant increase | Sgpp > 0, |Z| > 2.58 |
| Significant increase | Sgpp > 0, |Z| > 1.96 |
| No significant trend | |Z| ≤ 1.96 |
| Significant decrease | Sgpp < 0, |Z| > 1.96 |
| Highly significant decrease | Sgpp < 0, |Z| > 2.58 |
| Unit: km2 | |||||||
|---|---|---|---|---|---|---|---|
| To (2020) Land Use Type | |||||||
| From (2001) Land Use Type | Cropland | Forest | Impervious Surfaces | Marsh | Shrubland & Grassland | Water Body | Total (2001) |
| Cropland | 9305.96 | 89.61 | 316.56 | 17.64 | 174.16 | 72.74 | 9976.67 |
| Forest | 401.30 | 141.88 | 15.60 | 1.39 | 44.03 | 4.18 | 608.38 |
| Impervious surfaces | 69.82 | 0.47 | 475.17 | 4.41 | 0 | 3.71 | 553.58 |
| Marsh | 31.30 | 0 | 10.91 | 133.86 | 0.46 | 120.38 | 296.91 |
| Shrubland & Grassland | 331.27 | 26.95 | 9.29 | 0.70 | 144.86 | 0.93 | 514.00 |
| Water body | 31.59 | 0.23 | 16.46 | 53.65 | 0.23 | 282.60 | 384.78 |
| Total (2020) | 10,171.25 | 259.14 | 844.00 | 211.65 | 363.73 | 484.54 | 12,334.31 |
| Wetland Type | GPP Trend | Percentage (%) | Pixel Count |
|---|---|---|---|
| Degraded Wetlands | No Significant Trend | 58.93 | 99 |
| Significant Increase | 4.76 | 8 | |
| Highly Significant Increase | 36.31 | 61 | |
| Newly added Wetlands | Highly Significant Decrease | 0.74 | 3 |
| Significant Decrease | 0.25 | 1 | |
| No Significant Trend | 44.33 | 180 | |
| Significant Increase | 5.17 | 21 | |
| Highly Significant Increase | 49.51 | 201 | |
| Stable Wetlands | No Significant Trend | 89.39 | 337 |
| Significant Increase | 1.59 | 6 | |
| Highly Significant Increase | 9.02 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hu, Y.; Jia, W.; Wang, J.; Wang, L.; Li, Y. Spatiotemporal Dynamics and Driving Factors of Vegetation Gross Primary Productivity in a Typical Coastal City: A Case Study of Zhanjiang, China. Remote Sens. 2026, 18, 89. https://doi.org/10.3390/rs18010089
Hu Y, Jia W, Wang J, Wang L, Li Y. Spatiotemporal Dynamics and Driving Factors of Vegetation Gross Primary Productivity in a Typical Coastal City: A Case Study of Zhanjiang, China. Remote Sensing. 2026; 18(1):89. https://doi.org/10.3390/rs18010089
Chicago/Turabian StyleHu, Yuhe, Wenqi Jia, Jia Wang, Longhuan Wang, and Yujie Li. 2026. "Spatiotemporal Dynamics and Driving Factors of Vegetation Gross Primary Productivity in a Typical Coastal City: A Case Study of Zhanjiang, China" Remote Sensing 18, no. 1: 89. https://doi.org/10.3390/rs18010089
APA StyleHu, Y., Jia, W., Wang, J., Wang, L., & Li, Y. (2026). Spatiotemporal Dynamics and Driving Factors of Vegetation Gross Primary Productivity in a Typical Coastal City: A Case Study of Zhanjiang, China. Remote Sensing, 18(1), 89. https://doi.org/10.3390/rs18010089

