Aerodynamic Roughness Retrieval at Typical Antarctic Stations Based on Multi-Source Remote Sensing
Highlights
- A Raupach-based framework successfully retrieved aerodynamic roughness using UAV, REMA, and ICESat-2 data.
- The aerodynamic roughness (z0m) derived from ICESat-2 ATL06 data demonstrated accuracy comparable to that from the ATL03 data, with optimal performance achieved at a 2 km window.
- This study confirms that the more accessible standard ICESat-2 ATL06 data product can be used for large-scale, high-precision aerodynamic roughness mapping, reducing data processing complexity.
- The finding that elevation changes and slope gradients are the primary factors influencing roughness variability provides key insights for improving parameterizations in climate models and studying land–atmosphere interactions.
Abstract
1. Introduction
2. Data and Study Area
2.1. Study Area
2.2. High-Resolution UAV Aerial Survey Data
2.3. REMA Medium-Resolution Digital Elevation Model
2.4. ICESat-2 Satellite Laser Altimetry Data
3. Methods and Aerodynamic Roughness Retrieval Model
3.1. Raupach Drag Model Framework and Parameterization
3.2. Aerodynamic Roughness Retrieval Method Based on UAV DEM Data
3.3. Aerodynamic Roughness Retrieval Method Based on REMA Data
3.4. Aerodynamic Roughness Retrieval Method Based on ICESat-2 Data
4. Results
4.1. Aerodynamic Roughness Retrieval Results Based on UAV Data
4.2. Aerodynamic Roughness Inversion Based on REMA Data
4.3. Aerodynamic Roughness Inversion Results Based on ICESat-2 Data
4.4. Comparison and Validation of Inversion Accuracy
5. Discussion
6. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Golledge, N.R.; Keller, E.D.; Gomez, N.; Naughten, K.A.; Bernales, J.; Trusel, L.D.; Edwards, T.L. Global Environmental Consequences of Twenty-First-Century Ice-Sheet Melt. Nature 2019, 566, 65–72. [Google Scholar] [CrossRef]
- Otosaka, I.N.; Shepherd, A.; Ivins, E.R.; Schlegel, N.-J.; Amory, C.; van den Broeke, M.R.; Horwath, M.; Joughin, I.; King, M.D.; Krinner, G.; et al. Mass Balance of the Greenland and Antarctic Ice Sheets from 1992 to 2020. Earth Syst. Sci. Data 2023, 15, 1597–1616. [Google Scholar] [CrossRef]
- Hock, R. Glacier Melt: A Review of Processes and Their Modelling. Prog. Phys. Geogr. 2005, 29, 362–391. [Google Scholar] [CrossRef]
- Quincey, D.; Smith, M.; Rounce, D.; Ross, A.; King, O.; Watson, C. Evaluating Morphological Estimates of the Aerodynamic Roughness of Debris Covered Glacier Ice. Earth Surf. Process. Landf. 2017, 42, 2541–2553. [Google Scholar] [CrossRef]
- van Tiggelen, M.; Smeets, P.C.J.P.; Reijmer, C.H.; Wouters, B.; Steiner, J.F.; Nieuwstraten, E.J.; Immerzeel, W.W.; van den Broeke, M.R. Mapping the Aerodynamic Roughness of the Greenland Ice Sheet Surface Using ICESat-2: Evaluation over the K-Transect. Cryosphere 2021, 15, 2601–2621. [Google Scholar] [CrossRef]
- Cheng, F.; Yang, Q.; Liu, C.; Han, B.; Peng, S.; Hao, G. Evaluating Parameterizations for Turbulent Fluxes over the Landfast Sea-Ice Surface in Prydz Bay, Antarctica. Adv. Atmos. Sci. 2023, 40, 1816–1832. [Google Scholar] [CrossRef]
- Smeets, C.J.P.P.; van den Broeke, M.R. Temporal and Spatial Variations of the Aerodynamic Roughness Length in the Ablation Zone of the Greenland Ice Sheet. Bound.-Layer Meteorol. 2008, 128, 315–338. [Google Scholar] [CrossRef]
- Lettau, B. The Transport of Moisture into the Antarctic Interior. Tellus 1969, 21, 331–340. [Google Scholar] [CrossRef]
- Munro, D.S. Surface Roughness and Bulk Heat Transfer on a Glacier: Comparison with Eddy Correlation. J. Glaciol. 1989, 35, 343–348. [Google Scholar] [CrossRef]
- Raupach, M.R. Drag and Drag Partition on Rough Surfaces. Bound.-Layer Meteorol. 1992, 60, 375–395. [Google Scholar] [CrossRef]
- Dachauer, A.; Hann, R.; Hodson, A.J. Aerodynamic Roughness Length of Crevassed Tidewater Glaciers from UAV Mapping. Cryosphere 2021, 15, 5513–5528. [Google Scholar] [CrossRef]
- van Tiggelen, M.; Smeets, P.C.J.P.; Reijmer, C.H.; van den Broeke, M.R.; van As, D.; Box, J.E.; Fausto, R.S. Observed and Parameterized Roughness Lengths for Momentum and Heat Over Rough Ice Surfaces. J. Geophys. Res. Atmos. 2023, 128, e2022JD036970. [Google Scholar] [CrossRef]
- Mosadegh, E.; Nolin, A.W. A New Data Processing System for Generating Sea Ice Surface Roughness Products from the Multi-Angle Imaging SpectroRadiometer (MISR) Imagery. Remote Sens. 2022, 14, 4979. [Google Scholar] [CrossRef]
- Scanlan, K.M.; Rutishauser, A.; Simonsen, S.B. Greenland Ice Sheet Surface Roughness from Ku- and Ka-Band Radar Altimetry Surface Echo Strengths. Cryosphere 2025, 19, 1221–1239. [Google Scholar] [CrossRef]
- Sun, Y. UAV DEM Data from Zhongshan, Great Wall, and Qinling Stations in Antarctica [Data Set]. Zenodo. 2025. Available online: https://zenodo.org/records/17093633 (accessed on 5 June 2025).
- Brunt, K.M.; Neumann, T.A.; Smith, B.E. Assessment of ICESat-2 Ice Sheet Surface Heights, Based on Comparisons Over the Interior of the Antarctic Ice Sheet. Geophys. Res. Lett. 2019, 46, 13072–13078. [Google Scholar] [CrossRef]
- Andreas, E.L. Air-ice Drag Coefficients in the Western Weddell Sea: 2. A Model Based on Form Drag and Drifting Snow. J. Geophys. Res. Ocean. 1995, 100, 4833–4843. [Google Scholar] [CrossRef]
- Smith, M.W.; Quincey, D.J.; Dixon, T.; Bingham, R.G.; Carrivick, J.L.; Irvine-Fynn, T.D.L.; Rippin, D.M. Aerodynamic Roughness of Glacial Ice Surfaces Derived from High-resolution Topographic Data. J. Geophys. Res. Earth Surf. 2016, 121, 748–766. [Google Scholar] [CrossRef]
- Sun, Y. Aerodynamic Roughness Retrieval Model at Typical Antarctic Stations Based on Multi-Source Remote Sensing 2025. [Code]. Zenodo. 2025. Available online: https://zenodo.org/records/17181747 (accessed on 5 June 2025).
- Garbrecht, T.; Lüpkes, C.; Hartmann, J.; Wolff, M. Atmospheric Drag Coefficients over Sea Ice—Validation of a Parameterisation Concept. Tellus A Dyn. Meteorol. Oceanogr. 2002, 54, 205–219. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Mitigating Systematic Error in Topographic Models Derived from UAV and Ground-based Image Networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef]
- Guo, S.; Chen, R.; Liu, G.; Han, C.; Song, Y.; Liu, J.; Yang, Y.; Liu, Z.; Wang, X.; Liu, X.; et al. Simple Parameterization of Aerodynamic Roughness Lengths and the Turbulent Heat Fluxes at the Top of Midlatitude August-One Glacier, Qilian Mountains, China. J. Geophys. Res. Atmos. 2018, 123, 12066–12080. [Google Scholar] [CrossRef]
- Alekseychik, P.K.; Korrensalo, A.; Mammarella, I.; Vesala, T.; Tuittila, E.S. Relationship between aerodynamic roughness length and bulk sedge leaf area index in a mixed-species boreal mire complex. Geophys. Res. Lett. 2017, 16, 5836–5843. [Google Scholar] [CrossRef]
- Reijmer, C.H.; Van Meijgaard, E.; Van Den Broeke, M.R. Numerical Studies with a Regional Atmospheric Climate Model Based on Changes in the Roughness Length for Momentum and Heat over Antarctica. Bound.-Layer Meteorol. 2004, 111, 313–337. [Google Scholar] [CrossRef]
- Weiss, A.I.; King, J.; Lachlan-Cope, T.; Ladkin, R. On the Effective Aerodynamic and Scalar Roughness Length of Weddell Sea Ice. J. Geophys. Res. 2011, 116, D19119. [Google Scholar] [CrossRef]
- Brock, B.W.; Willis, I.C.; Sharp, M.J. Measurement and Parameterization of Aerodynamic Roughness Length Variations at Haut Glacier d’Arolla, Switzerland. J. Glaciol. 2006, 52, 281–297. [Google Scholar] [CrossRef]
- Chambers, J.R.; Smith, M.W.; Quincey, D.J.; Carrivick, J.L.; Ross, A.N.; James, M.R. Glacial Aerodynamic Roughness Estimates: Uncertainty, Sensitivity, and Precision in Field Measurements. J. Geophys. Res. Earth Surf. 2020, 125, e2019JF005167. [Google Scholar] [CrossRef]
- Munevar Garcia, S.; Miller, L.E.; Falcini, F.A.M.; Stearns, L.A. Characterizing Bed Roughness on the Antarctic Continental Margin. J. Glaciol. 2023, 69, 2114–2125. [Google Scholar] [CrossRef]
- Liu, J.; Chen, R.; Han, C. Spatial and Temporal Variations in Glacier Aerodynamic Surface Roughness during the Melting Season, as Estimated at the August-One Ice Cap, Qilian Mountains, China. Cryosphere 2020, 14, 967–984. [Google Scholar] [CrossRef]
- Andreas, E.L. A Relationship between the Aerodynamic and Physical Roughness of Winter Sea Ice. Q. J. R. Meteorol. Soc. 2011, 137, 1581–1588. [Google Scholar] [CrossRef]
- Howat, I.M.; Porter, C.; Smith, B.E.; Noh, M.-J.; Morin, P. The Reference Elevation Model of Antarctica. Cryosphere 2019, 13, 665–674. [Google Scholar] [CrossRef]
- Herzfeld, U.C.; Trantow, T.; Lawson, M.; Hans, J.; Medley, G. Surface Heights and Crevasse Morphologies of Surging and Fast-Moving Glaciers from ICESat-2 Laser Altimeter Data—Application of the Density-Dimension Algorithm (DDA-Ice) and Evaluation Using Airborne Altimeter and Planet SkySat Data. Sci. Remote Sens. 2021, 3, 100013. [Google Scholar] [CrossRef]
- Enderlin, E.M.; Elkin, C.M.; Gendreau, M.; Marshall, H.P.; O’Neel, S.; McNeil, C.; Florentine, C.; Sass, L. Uncertainty of ICESat-2 ATL06- and ATL08-Derived Snow Depths for Glacierized and Vegetated Mountain Regions. Remote Sens. Environ. 2022, 283, 113307. [Google Scholar] [CrossRef]
- Geng, T.; Zhang, S.; Xiao, F.; Li, J.; Xuan, Y.; Li, X.; Li, F. DEM Generation with ICESat-2 Altimetry Data for the Three Antarctic Ice Shelves: Ross, Filchner–Ronne and Amery. Remote Sens. 2021, 13, 5137. [Google Scholar] [CrossRef]







| Window Length (m) | 200 | 1000 | 2000 | 4000 | 8000 |
|---|---|---|---|---|---|
| RMSE (m) | 9.83 × 10−6 | 7.86 × 10−6 | 7.45 × 10−6 | 15.8 × 10−6 | 54.0 × 10−6 |
| Over Bare | UAV | REMA | ICESat-2 |
|---|---|---|---|
| Great Wall Station | 7.1 × 10−4 | 5.4 × 10−4 | 9.0 × 10−4 |
| Qinling Station | 3.4 × 10−4 | 4.5 × 10−4 | 7.4 × 10−4 |
| Zhongshan Station | 6.0 × 10−4 | 5.3 × 10−4 | 2.1 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sun, Y.; Zeng, Z.; Wang, C.; Zhu, L.; Tian, B.; Zhu, R.; Ding, M. Aerodynamic Roughness Retrieval at Typical Antarctic Stations Based on Multi-Source Remote Sensing. Remote Sens. 2026, 18, 67. https://doi.org/10.3390/rs18010067
Sun Y, Zeng Z, Wang C, Zhu L, Tian B, Zhu R, Ding M. Aerodynamic Roughness Retrieval at Typical Antarctic Stations Based on Multi-Source Remote Sensing. Remote Sensing. 2026; 18(1):67. https://doi.org/10.3390/rs18010067
Chicago/Turabian StyleSun, Yongzhe, Zhaoliang Zeng, Che Wang, Lizhong Zhu, Biao Tian, Ruqing Zhu, and Minghu Ding. 2026. "Aerodynamic Roughness Retrieval at Typical Antarctic Stations Based on Multi-Source Remote Sensing" Remote Sensing 18, no. 1: 67. https://doi.org/10.3390/rs18010067
APA StyleSun, Y., Zeng, Z., Wang, C., Zhu, L., Tian, B., Zhu, R., & Ding, M. (2026). Aerodynamic Roughness Retrieval at Typical Antarctic Stations Based on Multi-Source Remote Sensing. Remote Sensing, 18(1), 67. https://doi.org/10.3390/rs18010067

