Thermal Deformation Correction for the FY-4A LMI
Highlights
- This study identifies thermal-deformation-induced deviations in the current FY-4A LMI product. By applying corrections using ground-based lightning data as references, the lightning positioning accuracy of the LMI products has been significantly improved.
- The study reveals that the displacement of the lightning detection payload caused by thermal deformation exhibits periodic characteristics and a correction method was developed.
- The complex Gaussian model effectively captures the variation trend of thermal deformation and the proposed correction method can effectively rectify the thermal deformation errors.
Abstract
1. Introduction
2. Thermal Deformation and Correction Method
2.1. Deviations Caused by Thermal Deformation
2.2. Satellite and Ground-Based Lightning Data
2.3. Data Matching Method
2.4. Weighted Gaussian Curve Fitting Method
3. Results
3.1. Thermal Deformation Bias Statistics
3.2. Fitting Analysis
3.3. Deviation Correction Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| FY-4A | Fengyun-4A |
| LMI | Lightning Mapping Imager |
| WWLLN | World Wide Lightning Location Network |
| GOES-R | Geostationary Operational Environmental Satellite R-series |
| GLM | Geostationary Lightning Mapper |
| MTG | Meteosat Third Generation satellite |
| LI | Lightning Imager |
| LIS | Lightning Imaging Sensor |
| BLNET | Beijing Broadband Lightning Network |
| ABI | Advanced Baseline Imager |
| AGRI | Advanced Geosynchronous Radiation Imager |
| CTH | Cloud Top Height |
References
- Qie, X.; Zhang, Y.; Zhang, D.; Yin, Y.; Yu, Y.; Lu, G.; Jiang, R. Principles and Forecast of Thunderbolt Weather System; Science Press: Beijing, China, 2023. [Google Scholar]
- Qie, X.; Yuan, S.; Chen, Z.; Wang, D.; Liu, D.; Sun, M.; Sun, Z.; Srivastava, A.; Zhang, H.; Lu, J.; et al. Understanding the dynamical-microphysical-electrical processes associated with severe thunderstorms over the Beijing metropolitan region. Sci. China Earth Sci. 2021, 64, 10–26. [Google Scholar] [CrossRef]
- Rudlosky, S.D.; Goodman, S.J.; Virts, K.S.; Bruning, E.C. Initial Geostationary Lightning Mapper Observations. Geophys. Res. Lett. 2019, 46, 1097–1104. [Google Scholar] [CrossRef]
- Loto’aniu, P.T.M.; Davis, A.; Jarvis, A.; Grotenhuis, M.; Rich, F.J.; Califf, S.; Inceoglu, F.; Pacini, A.; Singer, H.J. Initial on-Orbit Results from the GOES-18 Spacecraft Science Magnetometer. Space Sci. Rev. 2023, 219, 84. [Google Scholar] [CrossRef]
- Goodman, S.J.; Blakeslee, R.J.; Koshak, W.J.; Mach, D.; Bailey, J.; Buechler, D.; Carey, L.; Schultz, C.; Bateman, M.; McCaul, E.; et al. The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res. 2013, 125–126, 34–49. [Google Scholar] [CrossRef]
- Peterson, M.; Light, T.E.L.; Mach, D. The Illumination of Thunderclouds by Lightning: 1. The Extent and Altitude of Optical Lightning Sources. J. Geophys. Res. Atmos. 2022, 127, e2021JD035515. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Cao, D. The Development of Product Algorithm of the Fengyun-4 Geostationary Lightning Mapping Imager. Adv. Meteorol. Sci. Technol. 2016, 6, 94–98. [Google Scholar]
- Holmlund, K.; Grandell, J.; Schmetz, J.; Stuhlmann, R.; Bojkov, B.; Munro, R.; Lekouara, M.; Coppens, D.; Viticchie, B.; August, T.; et al. Meteosat Third Generation (MTG): Continuation and Innovation of Observations from Geostationary Orbit. Bull. Am. Meteorol. Soc. 2021, 102, E990–E1026. [Google Scholar] [CrossRef]
- Carr, J.L.; Tillier, C.E.; Shu, Y. Validation of image navigation and registration for the Geostationary Lightning Mapper. J. Appl. Remote Sens. 2020, 14, 032410. [Google Scholar] [CrossRef]
- Peterson, M.; Light, T.E.L.; Mach, D. The Illumination of Thunderclouds by Lightning: 2. The Effect of GLM Instrument Threshold on Detection and Clustering. Earth Space Sci. 2022, 9, e2021EA001928. [Google Scholar] [CrossRef]
- Peterson, M.; Light, T.E.L.; Mach, D. The Illumination of Thunderclouds by Lightning: 3. Retrieving Optical Source Altitude. Earth Space Sci. 2022, 9, e2021EA001929. [Google Scholar] [CrossRef]
- Peterson, M.; Mach, D. The Illumination of Thunderclouds by Lightning: 4. Volumetric Thunderstorm Imagery. Earth Space Sci. 2022, 9, e2022EA002360. [Google Scholar] [CrossRef]
- Buechler, D.; Varghese, T.; Armstrong, P.; Bremer, J.; Lamb, R.; Fulbright, J.; Goodman, S.; Butler, J.J.; Xiong, X.J.; Gu, X. On-orbit validation of the geolocation accuracy of GOES-16 Geostationary Lightning Mapper (GLM) flashes using ground-based laser beacons. In Proceedings of the Earth Observing Systems XXIII, San Diego, CA, USA, 19–23 August 2018; Volume 10764, p. 107640J. [Google Scholar]
- Hui, W.; Huang, F.; Liu, R. Characteristics of lightning signals over the Tibetan Plateau and the capability of FY-4A LMI lightning detection in the Plateau. Int. J. Remote Sens. 2020, 41, 4605–4625. [Google Scholar] [CrossRef]
- Hui, W.; Zhang, W.; Lyu, W.; Li, P. Preliminary Observations from the China Fengyun-4A Lightning Mapping Imager and Its Optical Radiation Characteristics. Remote Sens. 2020, 12, 2622. [Google Scholar] [CrossRef]
- Cheng, K.; Tong, X.; Liu, S.; Yan, X.; Li, H. An On-orbit Geometric Calibration Approach Based on Double Tubes Edge-binding Feng Yun-4A Lightning Mapping Imager. J. Geomat. Sci. Technol. 2021, 38, 477–484. [Google Scholar]
- Wang, J.; Tong, X.; Yang, L.; Shang, J.; Liu, C.; Bao, S.; Zhang, Z.; Yang, J. Image Navigation for FY-4A Lightning Mapping Imager. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11450–11465. [Google Scholar] [CrossRef]
- Cao, D.; Lu, F.; Zhang, X.; Yang, J. Lightning Activity Observed by the FengYun-4A Lightning Mapping Imager. Remote Sens. 2021, 13, 3013. [Google Scholar] [CrossRef]
- Chen, Z.; Qie, X.; Sun, J.; Xiao, X.; Zhang, Y.; Cao, D.; Yang, J. Evaluation of Fengyun-4A Lightning Mapping Imager (LMI) Performance during Multiple Convective Episodes over Beijing. Remote Sens. 2021, 13, 1746. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, D.; Yang, J.; Lu, F.; Wang, D.; Liu, R.; Zhang, H.; Liu, D.; Chen, Z.; Lyu, H.; et al. A Parallax Shift Effect Correction Based on Cloud Top Height for FY-4A Lightning Mapping Imager (LMI). Remote Sens. 2023, 15, 4856. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Su, X.; Hu, Z.; Chen, F. A Correction Method for Thermal Deformation Positioning Error of Geostationary Optical Payloads. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7986–7994. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.; Mei, Q.; Wang, Y.; Song, S.; Yu, F. On-orbit thermal deformation prediction for a high-resolution satellite camera. Appl. Therm. Eng. 2021, 195, 117152. [Google Scholar] [CrossRef]
- Abarca, S.F.; Corbosiero, K.L.; Galarneau, T.J. An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res. Atmos. 2010, 115, JD013411. [Google Scholar] [CrossRef]
- Rodger, C.J.; Werner, S.; Brundell, J.B.; Lay, E.H.; Thomson, N.R.; Holzworth, R.H.; Dowden, R.L. Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study. Ann. Geophys. 2006, 24, 3197–3214. [Google Scholar] [CrossRef]
- Fan, P.; Zheng, D.; Zhang, Y.; Gu, S.; Zhang, W.; Yao, W.; Yan, B.; Xu, Y. A Performance Evaluation of the World Wide Lightning Location Network (WWLLN) over the Tibetan Plateau. J. Atmos. Ocean. Technol. 2018, 35, 927–939. [Google Scholar] [CrossRef]
- Wang, D.; Sun, Z.; Yuan, S.; Lu, J.; Qie, X.; Liu, M.; Xu, Y.; Lu, G.; Tian, Y. Beijing Broadband Lightning NETwork and the Spatiotemporal Evolution of Lightning Flashes during a Thunderstorm. Chin. J. Atmos. Sci. 2020, 44, 851–864. [Google Scholar]
- Wang, Y.; Qie, X.; Wang, D.; Liu, M.; Su, D.; Shen, Y.; Wu, Z.; Liu, D.; Sun, Z. Beijing Lightning NETwork (BLNET): Configuration and Preliminary Results of Lightning Location. Chin. J. Atmos. Sci. 2015, 39, 571–582. [Google Scholar]
- Xiao, X.; Qie, X.; Chen, Z.; Lu, J.; Ji, L.; Wang, D.; Zhang, L.; Chen, M.; Chen, M. Evaluating the Performance of Lightning Data Assimilation from BLNET Observations in a 4DVAR-Based Weather Nowcasting Model for a High-Impact Weather over Beijing. Remote Sens. 2021, 13, 2084. [Google Scholar] [CrossRef]












| Data and Region | Daytime (UTC 22–10) | Nighttime (UTC 10–22) | Total |
|---|---|---|---|
| LMI event (Beijing) | 1540 | 10,921 | 12,461 |
| LMI event (Southeast of China) | 19,485 | 77,969 | 97,454 |
| WWLLN flash (Beijing) | 1021 | 1192 | 2213 |
| WWLLN flash (Southeast of China) | 6156 | 3913 | 10,069 |
| BLNET flash (Beijing) | 12,502 | 71,161 | 83,663 |
| LMI matching WWLLN (Beijing) | 269 | 2155 | 2424 |
| LMI matching WWLLN (Southeast) | 7996 | 9417 | 17,413 |
| LMI matching BLNET (Beijing) | 1388 | 27,383 | 28,771 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, Y.; Qie, X.; Cao, D.; Yuan, S.; Wang, D.; Zhang, H.; Liu, D.; Sun, Z.; Liu, M.; Zhu, K.; et al. Thermal Deformation Correction for the FY-4A LMI. Remote Sens. 2026, 18, 163. https://doi.org/10.3390/rs18010163
Zhang Y, Qie X, Cao D, Yuan S, Wang D, Zhang H, Liu D, Sun Z, Liu M, Zhu K, et al. Thermal Deformation Correction for the FY-4A LMI. Remote Sensing. 2026; 18(1):163. https://doi.org/10.3390/rs18010163
Chicago/Turabian StyleZhang, Yuansheng, Xiushu Qie, Dongjie Cao, Shanfeng Yuan, Dongfang Wang, Hongbo Zhang, Dongxia Liu, Zhuling Sun, Mingyuan Liu, Kexin Zhu, and et al. 2026. "Thermal Deformation Correction for the FY-4A LMI" Remote Sensing 18, no. 1: 163. https://doi.org/10.3390/rs18010163
APA StyleZhang, Y., Qie, X., Cao, D., Yuan, S., Wang, D., Zhang, H., Liu, D., Sun, Z., Liu, M., Zhu, K., Jiang, R., & Yang, J. (2026). Thermal Deformation Correction for the FY-4A LMI. Remote Sensing, 18(1), 163. https://doi.org/10.3390/rs18010163

