High-Accuracy Identification of Cropping Structure in Irrigation Districts Using Data Fusion and Machine Learning
Highlights
- Tri-source spatiotemporal fusion reduces cloud-related data gaps and sharpens field boundaries.
- Anchor-date NDVI is the dominant predictor for crop separation.
- Enables reliable field-scale crop mapping in heterogeneous farmland.
- Phenology-encoded features improve accuracy and show potential for cross-regional transferability.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Satellite Data
2.2.2. Sampling Data
2.3. Methods
2.3.1. Multisource Remote-Sensing Data Fusion
2.3.2. NDVI Time-Series Construction
2.3.3. Random Forest Classification
3. Results
3.1. NDVI Time-Series Characteristics of Crops
3.2. SHAP-Based Analysis of Feature Importance
3.3. Accuracy Assessment
4. Discussion
4.1. Tri-Source Fusion for Stable Phenology-Level NDVI Reconstruction
4.2. Phenology-Based Feature Extraction
4.3. Transferability and Scalability of the Proposed Fusion–Classification Framework
4.4. Limitations
5. Conclusions
- (1)
- Using MODIS MOD09GA (500 m, daily), Landsat (30 m, 16-day), and Sentinel-2 MSI (10 m, 5-day) as fusion inputs, the fused series—relative to any single sensor—markedly reduces temporal gaps, mitigates cloud/shadow noise, and better preserves parcel boundaries and key-window phenological information.
- (2)
- From the reconstructed series, we extract anchor-date and curve-shape phenological indicators and input them to the RF classifier; SHAP quantifies feature contributions at global and sample levels. The June–August window provides the strongest class separability, and the synergy between shape descriptors and anchor-date NDVI substantially improves fine-grained discrimination compared with baseline designs lacking fusion or explicit phenology.
- (3)
- Regional validation demonstrates robust accuracy and stability: OA = 90.78% and kappa = 0.882, indicating effective discrimination among crop types and good adaptability in complex agricultural mosaics.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| STARFM | Spatiotemporal Adaptive Reflectance Fusion Model |
| NDVI | Normalized Difference Vegetation Index |
| RF | Random Forest |
| SHAP | SHapley Additive exPlanations |
| OA | Overall Accuracy |
| BI | Band-before-Index |
| IB | Index-before-Fusion |
| OOB | Out-of-Bag |
| YCID | Yichang Irrigation District |
| GEE | Google Earth Engine |
| LULC | Land Use/Land Cover |
| HR | High-Resolution |
| LR | Low-Resolution |
| SNIC | Simple Non-Iterative Clustering |
References
- Yao, R.; Ma, Z.; Wu, H.; Xie, Y. Mechanism and Measurement of the Effects of Industrial Agglomeration on Agricultural Economic Resilience. Agriculture 2024, 14, 337. [Google Scholar] [CrossRef]
- Xie, W.; Zhu, A.; Ali, T.; Zhang, Z.; Chen, X.; Wu, F.; Huang, J.; Davis, K.F. Crop Switching Can Enhance Environmental Sustainability and Farmer Incomes in China. Nature 2023, 616, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Dong, C.; Zhang, Y. Impacts of Cropland Utilization Patterns on the Sustainable Use Efficiency of Cropland Based on the Human–Land Perspective. Land 2024, 13, 863. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, W. Spatio-Temporal Patterns and Drivers of Irrigation Water Requirement in Mainland China. Agric. Water Manag. 2025, 308, 109283. [Google Scholar] [CrossRef]
- Li, S.; Pu, J.; Deng, X. Agricultural Land Use Transition under Multidimensional Topographical Gradients and Its Impact on Ecosystem Service Interactions. J. Integr. Agric. 2025, 24, 3222–3241. [Google Scholar] [CrossRef]
- Barrile, V.; Maesano, C.; Genovese, E. Optimization of Crop Yield in Precision Agriculture Using WSNs, Remote Sensing, and Atmospheric Simulation Models for Real-Time Environmental Monitoring. J. Sens. Actuator Netw. 2025, 14, 14. [Google Scholar] [CrossRef]
- Hu, G.; Ren, Z.; Chen, J.; Ren, N.; Mao, X. Using the MSFNet Model to Explore the Temporal and Spatial Evolution of Crop Planting Area and Increase Its Contribution to the Application of UAV Remote Sensing. Drones 2024, 8, 432. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, X.; Jiang, Q.; Pan, H.; Deng, G.; Chen, H.; You, Y.; Li, S.; Hou, H. Parcel-Scale Crop Planting Structure Extraction Combining Time-Series of Sentinel-1 and Sentinel-2 Data Based on a Semantic Edge-Aware Multi-Task Neural Network. Int. J. Digit. Earth 2025, 18, 2497487. [Google Scholar] [CrossRef]
- Shen, Q.; He, D.; Liu, X.; Shi, Q. Integrating Phenology Knowledge Graph into Parcel-Scale Crop Classification Using Multi-Period Deep Time Series Modelling. Int. J. Appl. Earth Obs. Geoinf. 2025, 143, 104809. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A Flexible Spatiotemporal Method for Fusing Satellite Images with Different Resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Cheng, Q.; Liu, H.; Shen, H.; Wu, P.; Zhang, L. A Spatial and Temporal Nonlocal Filter-Based Data Fusion Method. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4476–4488. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, H.; Niu, X.; Shao, W.; Yang, Y. Comparative Analysis and Comprehensive Trade-Off of Four Spatiotemporal Fusion Models for NDVI Generation. Remote Sens. 2022, 14, 5996. [Google Scholar] [CrossRef]
- Jarihani, A.A.; McVicar, T.R.; Van Niel, T.G.; Emelyanova, I.V.; Callow, J.N.; Johansen, K. Blending Landsat and MODIS Data to Generate Multispectral Indices: A Comparison of “Index-then-Blend” and “Blend-then-Index” Approaches. Remote Sens. 2014, 6, 9213–9238. [Google Scholar] [CrossRef]
- Chen, X.; Liu, M.; Zhu, X.; Chen, J.; Zhong, Y.; Cao, X. “Blend-then-Index” or “Index-then-Blend”: A Theoretical Analysis for Generating High-Resolution NDVI Time Series by STARFM. Photogramm. Eng. Remote Sens. 2018, 84, 66–74. [Google Scholar] [CrossRef]
- Li, M.; Wang, P.; Tansey, K.; Sun, Y.; Guo, F.; Zhou, J. Improved Field-Scale Drought Monitoring Using MODIS and Sentinel-2 Data for Vegetation Temperature Condition Index Generation through a Fusion Framework. Comput. Electron. Agric. 2025, 234, 110256. [Google Scholar] [CrossRef]
- Zaka, M.M.; Samat, A. Advances in Remote Sensing and Machine Learning Methods for Invasive Plants Study: A Comprehensive Review. Remote Sens. 2024, 16, 3781. [Google Scholar] [CrossRef]
- Morais, T.G.; Jongen, M.; Tufik, C.; Rodrigues, N.R.; Gama, I.; Fangueiro, D.; Serrano, J.; Vieira, S.; Domingos, T.; Teixeira, R.F.M. Characterization of Portuguese Sown Rainfed Grasslands Using Remote Sensing and Machine Learning. Precis. Agric. 2023, 24, 161–186. [Google Scholar] [CrossRef]
- Yu, L.; Tao, H.; Li, Q.; Xie, H.; Xu, Y.; Mahemujiang, A.; Jiang, Y. Research on Machine Learning-Based Extraction and Classification of Crop Planting Information in Arid Irrigated Areas Using Sentinel-1 and Sentinel-2 Time-Series Data. Agriculture 2025, 15, 1196. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 4766–4775. [Google Scholar]
- Huang, F.; Chunyu, X.; Zhang, D.; Chen, X.; Ochoa, C.G. A Framework to Assess the Impact of Ecological Water Conveyance on Groundwater-Dependent Terrestrial Ecosystems in Arid Inland River Basins. Sci. Total Environ. 2020, 709, 136155. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Yang, G.; Wang, J.; Qi, Z. Maize Classification in Arid Regions via Spatiotemporal Feature Optimization and Multi-Source Remote Sensing Integration. Agronomy 2025, 15, 1667. [Google Scholar] [CrossRef]
- Dubrovin, K.; Verkhoturov, A.; Stepanov, A.; Aseeva, T. Multi-Year Cropland Mapping Based on Remote Sensing Data: A Case Study for the Khabarovsk Territory, Russia. Remote Sens. 2024, 16, 1633. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, S. Fine Crop Classification by Remote Sensing in Complex Planting Areas Based on Field Parcel. Trans. Chin. Soc. Agric. Eng. 2019, 35, 125–134. [Google Scholar]
- Niu, Q.; Liu, L.; Huang, G.; Cheng, Q.; Cheng, Y. Extraction of Complex Crop Structure in the Hetao Irrigation District of Inner Mongolia Using GEE and Machine Learning. Trans. Chin. Soc. Agric. Eng. 2022, 38, 165–174. [Google Scholar]
- Tan, Z.; Tan, Z.; Luo, J.; Duan, H. Mapping 30-m Cotton Areas Based on an Automatic Sample Selection and Machine Learning Method Using Landsat and MODIS Images. Geo-Spat. Inf. Sci. 2023, 27, 1767–1784. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 Surface Reflectance Data Set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Chen, G.; Hay, G.J.; Carvalho, L.M.T.; Wulder, M.A. Spatiotemporal Fusion for Spectral Remote Sensing: A Statistical Analysis and Review. J. King Saud Univ. Comput. Inf. Sci. 2023, 35, 259–273. [Google Scholar] [CrossRef]
- Xiao, J.; Aggarwal, A.K.; Duc, N.H.; Arya, A.; Rage, U.K.; Avtar, R. A Review of Remote Sensing Image Spatiotemporal Fusion: Challenges, Applications and Recent Trends. Remote Sens. Appl. Soc. Environ. 2023, 32, 101005. [Google Scholar] [CrossRef]
- Li, G.; Cui, J.; Han, W.; Zhang, H.; Huang, S.; Chen, H.; Ao, J. Crop Type Mapping Using Time-Series Sentinel-2 Imagery and U-Net in Early Growth Periods in the Hetao Irrigation District in China. Comput. Electron. Agric. 2022, 203, 107478. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P. Conterminous United States Crop Field Size Quantification from Multi-Temporal Landsat Data. Remote Sens. Environ. 2016, 172, 67–86. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hu, X.; Cao, C.; Zan, Z.; Wang, K.; Chai, M.; Su, L.; Yue, W. High-Accuracy Identification of Cropping Structure in Irrigation Districts Using Data Fusion and Machine Learning. Remote Sens. 2026, 18, 101. https://doi.org/10.3390/rs18010101
Hu X, Cao C, Zan Z, Wang K, Chai M, Su L, Yue W. High-Accuracy Identification of Cropping Structure in Irrigation Districts Using Data Fusion and Machine Learning. Remote Sensing. 2026; 18(1):101. https://doi.org/10.3390/rs18010101
Chicago/Turabian StyleHu, Xinli, Changming Cao, Ziyi Zan, Kun Wang, Meng Chai, Lingming Su, and Weifeng Yue. 2026. "High-Accuracy Identification of Cropping Structure in Irrigation Districts Using Data Fusion and Machine Learning" Remote Sensing 18, no. 1: 101. https://doi.org/10.3390/rs18010101
APA StyleHu, X., Cao, C., Zan, Z., Wang, K., Chai, M., Su, L., & Yue, W. (2026). High-Accuracy Identification of Cropping Structure in Irrigation Districts Using Data Fusion and Machine Learning. Remote Sensing, 18(1), 101. https://doi.org/10.3390/rs18010101

