The Impact of the Densest and Highest-Capacity Reservoirs on the Ecological Environment in the Upper Yellow River Basin of China: From 2000 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Analytical Methods
2.3.1. Buffer Analysis
2.3.2. Trend Analysis
- Linear Regression Method: We applied the least squares method to perform linear regression on the annual mean values of NDVI and selected climate variables for each pixel. The slope of the fitted line reflects the trend over time and is calculated as
- 2.
- MK–Sen Test: To improve the robustness of trend detection, we applied the MK–Sen test, which integrates the Mann–Kendall (M-K) test, a non-parametric method for assessing the significance of monotonic trends, and Sen′s slope estimator, a non-parametric approach for quantifying the rate of change. This combined method is particularly effective for identifying long-term trends in environmental time-series data, such as the NDVI, temperature, and precipitation.
2.3.3. Partial Correlation Analysis
2.3.4. Generalized Linear Modeling (GLM)
2.3.5. Path Analysis
3. Results
3.1. Spatial and Temporal Changes in Vegetation
3.2. Temporal and Spatial Variability of Climatic Factors
3.3. Relationship Between Vegetation and Climatic Factors
4. Discussion
4.1. Biased Correlation Analysis of Vegetation and Climate Factors
4.2. Contribution of Climatic Factors and Reservoir Construction to Vegetation Cover
4.3. Quantifying Path Relationships Between Climate, Reservoir Construction, and Vegetation Cover
4.4. Limitations of the Study
5. Conclusions
- (1)
- The study reveals that vegetation cover in the upper Yellow River Basin reservoir exhibits an overall increasing trend. However, the rate of vegetation growth slows to approximately half its original pace after reservoir construction. Additionally, the NDVI shows a marked decline within 1–2 km of the reservoir.
- (2)
- Climate change is primarily reflected in increases in temperature, precipitation, ETp, and soil moisture after reservoir construction, with marked regional differences in the rates of change. Following reservoir construction, the rate of temperature rise declined, while both precipitation and soil moisture showed substantial increases. In contrast, ETp significantly decreased. These trends exhibited spatial heterogeneity, predominantly concentrated near the reservoir area.
- (3)
- Reservoir construction strengthened the positive correlation between temperature and the NDVI while weakening the positive correlation between precipitation and soil moisture, as revealed by bias correlation analysis. Additionally, the correlation between ETp and the NDVI shifted from positive to negative after reservoir construction.
- (4)
- GLM analysis revealed that reservoir construction was the primary factor promoting riparian vegetation growth, contributing over 50%. Among climatic factors, temperature and soil moisture had the most substantial impact on vegetation growth, with precipitation and ETp having lesser effects. This finding suggests that regional vegetation growth did not solely depend on precipitation, as the reservoir effectively supplemented natural precipitation shortages, playing a crucial role in promoting vegetation growth.
- (5)
- Path analysis and meteorological factor analysis results were consistent, further confirming that reservoirs indirectly influence vegetation growth by regulating the local climate (e.g., enhancing precipitation, mitigating temperature increases, and raising soil humidity). Reservoir construction not only directly improves water availability for vegetation growth in the reservoir area but also indirectly fosters vegetation growth through microclimate modification.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Yang, M.; Liu, X.; Lu, X. Attribution and Sensitivity Analysis of Runoff Variation in the Yellow River Basin under Climate Change. Sustainability 2022, 14, 14981. [Google Scholar] [CrossRef]
- Hu, Q.; Li, C.; Wang, Z.; Liu, Y.; Liu, W. Continuous monitoring of the surface water area in the Yellow River basin during 1986–2019 using available Landsat imagery and the Google Earth Engine. ISPRS Int. J. Geo-Inf. 2022, 11, 305. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, D.; Gao, B.; Wang, T.; Chen, J.; Chen, Y.; Wang, Y.; Zheng, G. Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China. Sci. Total Environ. 2017, 605, 830–841. [Google Scholar] [CrossRef]
- Su, X.; Li, X.; Niu, Z.; Wang, N.; Liang, X. A new complexity-based three-stage method to comprehensively quantify positive/negative contribution rates of climate change and human activities to changes in runoff in the upper Yellow River. J. Clean. Prod. 2021, 287, 125017. [Google Scholar] [CrossRef]
- Wang, R.; Dong, Z.; Zhou, Z. Effect of decreasing soil frozen depth on vegetation growth in the source region of the Yellow River for 1982–2015. Theor. Appl. Climatol. 2020, 140, 1185–1197. [Google Scholar] [CrossRef]
- Ma, P.; Peng, J.; Wang, Q.; Zhuang, J.; Zhang, F. The mechanisms of a loess landslide triggered by diversion-based irrigation: A case study of the South Jingyang Platform, China. Bull. Eng. Geol. Environ. 2019, 78, 4945–4963. [Google Scholar] [CrossRef]
- Ma, P.; Peng, J.; Nan, Y.; Wang, N.; Liu, K.; Wei, B.; Wang, S. The shear behavior of the slip zone loess and landslide mechanism. J. Asian Earth Sci. 2023, 257, 105833. [Google Scholar] [CrossRef]
- Eekhout, J.P.; Boix-Fayos, C.; Pérez-Cutillas, P.; de Vente, J. The impact of reservoir construction and changes in land use and climate on ecosystem services in a large Mediterranean catchment. J. Hydrol. 2020, 590, 125208. [Google Scholar] [CrossRef]
- Li, D.; Tian, P.; Luo, H.; Hu, T.; Dong, B.; Cui, Y.; Khan, S.; Luo, Y. Impacts of land use and land cover changes on regional climate in the Lhasa River basin, Tibetan Plateau. Sci. Total Environ. 2020, 742, 140570. [Google Scholar] [CrossRef]
- Chen, L.; Ma, P.; Nan, Y.; Liu, K. Impacts of Cascade Reservoirs on Adjacent Climate and Land Use Change in the Upper Yellow River, China. Appl. Sci. 2025, 15, 2816. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Bao, Z.; Wang, G.; Wang, W.; Yang, Y.; Wang, J.; Kan, G. The impacts of natural and anthropogenic factors on vegetation change in the Yellow-Huai-Hai River Basin. Front. Earth Sci. 2022, 10, 959403. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, S.; Shi, H. Impacts of dams and reservoirs on local climate change: A global perspective. Environ. Res. Lett. 2021, 16, 104043. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, W.; Fu, J. Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Sci. Rep. 2020, 10, 830. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Piao, S.; Lü, Y.; Ciais, P.; Feng, X.; Wang, Y. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Tealdi, S.; Camporeale, C.; Ridolfi, L. Modeling the impact of river damming on riparian vegetation. J. Hydrol. 2011, 396, 302–312. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Liu, J.; Hu, Q. Changes of precipitation-runoff relationship induced by climate variation in a large glaciated basin of the Tibetan Plateau. J. Geophys. Res. Atmos. 2021, 126, e2020JD034367. [Google Scholar] [CrossRef]
- Bao, Z.; Zhang, J.; Wang, G.; Chen, Q.; Guan, T.; Yan, X.; Liu, C.; Liu, J.; Wang, J. The impact of climate variability and land use/cover change on the water balance in the Middle Yellow River Basin, China. J. Hydrol. 2019, 577, 123942. [Google Scholar] [CrossRef]
- Li, P.; Sheng, M.; Yang, D.; Tang, L. Evaluating flood regulation ecosystem services under climate, vegetation and reservoir influences. Ecol. Indic. 2019, 107, 105642. [Google Scholar] [CrossRef]
- Yang, S.L.; Shi, B.; Fan, J.; Luo, X.; Tian, Q.; Yang, H.; Chen, S.; Zhang, Y.; Zhang, S.; Shi, X. Streamflow decline in the yellow river along with socioeconomic development: Past and future. Water 2020, 12, 823. [Google Scholar] [CrossRef]
- Xu, M.; Kang, S.; Chen, X.; Wu, H.; Wang, X.; Su, Z. Detection of hydrological variations and their impacts on vegetation from multiple satellite observations in the Three-River Source Region of the Tibetan Plateau. Sci. Total Environ. 2018, 639, 1220–1232. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ma, P.; Zhuang, J.; Mu, Q.; Kong, J.; Zhao, L.; Peng, J. Permeability characteristics, structural failure characteristics, and triggering process of loess landslides in two typical strata structures. Eng. Geol. 2024, 341, 107728. [Google Scholar] [CrossRef]
- Li, Z.; Ma, P.; Han, N.; Jiao, Q.; Chen, L.; Ran, L.; Jia, Z.; Zhao, L.; Nan, J.; Peng, J. The failure modes and evolution process of loess landslide dams via flume tests. Landslides 2025, 1–17. [Google Scholar] [CrossRef]
- Tranmer, A.W.; Weigel, D.; Marti, C.L.; Vidergar, D.; Benjankar, R.; Tonina, D.; Goodwin, P.; Imberger, J. Coupled reservoir-river systems: Lessons from an integrated aquatic ecosystem assessment. J. Environ. Manag. 2020, 260, 110107. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Liu, D.; Guo, S.; Xiong, L.; Liu, P.; Yin, J.; Tian, J.; Deng, L.; Zhang, J. Impacts of water resources allocation on water environmental capacity under climate change. Water 2021, 13, 1187. [Google Scholar] [CrossRef]
- Yan, D.; Lai, Z.; Ji, G. Using budyko-type equations for separating the impacts of climate and vegetation change on runoff in the source area of the yellow river. Water 2020, 12, 3418. [Google Scholar] [CrossRef]
- Verbist, K.; Maureira-Cortés, H.; Rojas, P.; Vicuña, S. A stress test for climate change impacts on water security: A CRIDA case study. Clim. Risk Manag. 2020, 28, 100222. [Google Scholar] [CrossRef]
- Mingarro, M.; Cancela, J.P.; BurÓn-Ugarte, A.; García-Barros, E.; Munguira, M.L.; Romo, H.; Wilson, R.J. Butterfly communities track climatic variation over space but not time in the Iberian Peninsula. Insect Conserv. Divers. 2021, 14, 647–660. [Google Scholar] [CrossRef]
- Ouyang, W.; Hao, F.; Zhao, C.; Lin, C. Vegetation response to 30 years hydropower cascade exploitation in upper stream of Yellow River. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1928–1941. [Google Scholar] [CrossRef]
- Tian, S.; Xu, M.; Jiang, E.; Wang, G.; Hu, H.; Liu, X. Temporal variations of runoff and sediment load in the upper Yellow River, China. J. Hydrol. 2019, 568, 46–56. [Google Scholar] [CrossRef]
- Fu, B.; Li, Y.; Wang, Y.; Zhang, B.; Yin, S.; Zhu, H.; Xing, Z. Evaluation of ecosystem service value of riparian zone using land use data from 1986 to 2012. Ecol. Indic. 2016, 69, 873–881. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Cong, N.; Wang, N.; Yao, W. Impacts of the Three Gorges Dam on riparian vegetation in the Yangtze River Basin under climate change. Sci. Total Environ. 2024, 912, 169415. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liang, W.; Liao, Z.; Han, Z.; Xu, X.; Jiao, R.; Liu, H. Effects of climate change on lake area and vegetation cover over the past 55 years in Northeast Inner Mongolia grassland, China. Theor. Appl. Climatol. 2019, 138, 13–25. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, P.; Zhang, S.; Sun, B. Spatiotemporal analysis of hydrological variations and their impacts on vegetation in semiarid areas from multiple satellite data. Remote Sens. 2020, 12, 4177. [Google Scholar] [CrossRef]
- Jiang, W.; Niu, Z.; Wang, L.; Yao, R.; Gui, X.; Xiang, F.; Ji, Y. Impacts of drought and climatic factors on vegetation dynamics in the Yellow River Basin and Yangtze River Basin, China. Remote Sens. 2022, 14, 930. [Google Scholar] [CrossRef]
- Cao, Y.; Xie, Z.; Huang, X.; Cui, M.; Wang, W.; Li, Q. Vegetation dynamics and its trends associated with extreme climate events in the Yellow River Basin, China. Remote Sens. 2023, 15, 4683. [Google Scholar] [CrossRef]
- Wen, Z.; Wu, S.; Chen, J.; Lü, M. NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China. Sci. Total Environ. 2017, 574, 947–959. [Google Scholar] [CrossRef]
- Tian, M.; Zhou, J.; Jia, B.; Lou, S.; Wu, H. Impact of three gorges reservoir water impoundment on vegetation–climate response relationship. Remote Sens. 2020, 12, 2860. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, F. Spatial temporal correlations of NDVI with precipitation and temperature in Yellow River Basin. Chin. J. Ecol. 2006, 25, 477. [Google Scholar]
- He, B.; Chen, A.; Jiang, W.; Chen, Z. The response of vegetation growth to shifts in trend of temperature in China. J. Geogr. Sci. 2017, 27, 801–816. [Google Scholar] [CrossRef]
- Han, J.; Zhang, X.; Wang, J.; Zhai, J. Geographic exploration of the driving forces of the NDVI spatial differentiation in the Upper Yellow River Basin from 2000 to 2020. Sustainability 2023, 15, 1922. [Google Scholar] [CrossRef]
- Jia, L.; Yu, K.X.; Li, Z.B.; Li, P.; Xu, G.C.; Cheng, Y.T.; Zhang, X.; Yang, Z. The effect of meteorological drought on vegetation cover in the Yellow River basin, China. Int. J. Climatol. 2022, 42, 4830–4849. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, J.; Liu, S.; Wang, Z.; Liu, T.; Shalamzari, M.J. Effects of climate change on vegetation growth in the Yellow River Basin from 2000 to 2019. Remote Sens. 2022, 14, 687. [Google Scholar] [CrossRef]
- Mallick, J.; AlMesfer, M.K.; Singh, V.P.; Falqi, I.I.; Singh, C.K.; Alsubih, M.; Kahla, N.B. Evaluating the NDVI–rainfall relationship in Bisha watershed, Saudi Arabia using non-stationary modeling technique. Atmosphere 2021, 12, 593. [Google Scholar] [CrossRef]
- Zhang, B.; Cui, L.; Shi, J.; Wei, P. Vegetation dynamics and their response to climatic variability in China. Adv. Meteorol. 2017, 2017, 8282353. [Google Scholar] [CrossRef]
- Guillod, B.P.; Orlowsky, B.; Miralles, D.G.; Teuling, A.J.; Seneviratne, S.I. Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun. 2015, 6, 6443. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, Z.; He, T.; Tang, Q.; Xiao, P.; Zhang, P.; Wang, L. Attributing the evapotranspiration trend in the upper and middle reaches of Yellow River Basin using global evapotranspiration products. Remote Sens. 2021, 14, 175. [Google Scholar] [CrossRef]
- Xu, S.; Yu, Z.; Yang, C.; Ji, X.; Zhang, K. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agric. For. Meteorol. 2018, 263, 118–129. [Google Scholar] [CrossRef]
- Qiu, J.; Li, T.-J.; Li, F.-F. Evaluation of environmental and ecological impacts of the leading large-scale reservoir on the upper reaches of the Yellow River. Sustainability 2019, 11, 3818. [Google Scholar] [CrossRef]
- Jiang, Z.-Y.; Yang, Z.-G.; Zhang, S.-Y.; Liao, C.-M.; Hu, Z.-M.; Cao, R.-C.; Wu, H.-W. Revealing the spatio-temporal variability of evapotranspiration and its components based on an improved Shuttleworth-Wallace model in the Yellow River Basin. J. Environ. Manag. 2020, 262, 110310. [Google Scholar] [CrossRef]
- Sun, R.; Gao, X.; Liu, C.-M.; Li, X.-W. Evapotranspiration estimation in the Yellow River Basin, China using integrated NDVI data. Int. J. Remote Sens. 2004, 25, 2523–2534. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Xue, B.; Wang, Y.; Wang, L. Spatiotemporal variation of evapotranspiration on different land use/cover in the inner Mongolia reach of the Yellow River Basin. Remote Sens. 2022, 14, 4499. [Google Scholar] [CrossRef]
- Guo, L.; Zhu, B.; Jin, H.; Zhang, Y.; Min, Y.; He, Y.; Shi, H. Spatial-temporal variation characteristics and influencing factors of soil moisture in the Yellow River Basin using ESA CCI SM products. Atmosphere 2022, 13, 962. [Google Scholar] [CrossRef]
- Engstrom, R.; Hope, A.; Kwon, H.; Stow, D. The relationship between soil moisture and NDVI near Barrow, Alaska. Phys. Geogr. 2008, 29, 38–53. [Google Scholar] [CrossRef]
- Huang, C.; Yang, Q.; Huang, W. Analysis of the spatial and temporal changes of NDVI and its driving factors in the Wei and Jing River Basins. Int. J. Environ. Res. Public Health 2021, 18, 11863. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Anderson, M.; Holmes, T.; Hain, C.; Reichle, R.; Koster, R.; Middleton, E.; Zeng, F.-W. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales. Remote Sens. Environ. 2018, 219, 339–352. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Jiang, W.; Yuan, L.; Wang, W.; Lv, Z.; Chen, Z. Inter-annual variations in vegetation and their response to climatic factors in the upper catchments of the Yellow River from 2000 to 2010. J. Geogr. Sci. 2014, 24, 963–979. [Google Scholar] [CrossRef]
- Lu, C.; Hou, M.; Liu, Z.; Li, H.; Lu, C. Variation characteristic of NDVI and its response to climate change in the middle and upper reaches of Yellow River Basin, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8484–8496. [Google Scholar] [CrossRef]
- Gu, H.; Luo, J.; Li, G.; Yao, Y.; Huang, Y.; Huang, D. Spatial-Temporal Variations of Active Accumulated Temperature and Its Impact on Vegetation NDVI in the Source Region of China’s Yellow River. Water 2022, 14, 3458. [Google Scholar] [CrossRef]
- Ma, L.; Xia, H.; Meng, Q. Spatiotemporal variability of asymmetric daytime and night-time warming and its effects on vegetation in the Yellow River Basin from 1982 to 2015. Sensors 2019, 19, 1832. [Google Scholar] [CrossRef]
- Feng, J.; Dong, B.; Qin, T.; Liu, S.; Zhang, J.; Gong, X. Temporal and Spatial Variation Characteristics of NDVI and Its Relationship with Environmental Factors in Huangshui River Basin from 2000 to 2018. Pol. J. Environ. Stud. 2021, 30, 3043. [Google Scholar] [CrossRef]
- Jian, S.; Zhang, Q.; Wang, H. Spatial–temporal trends in and attribution analysis of vegetation change in the Yellow River Basin, China. Remote Sens. 2022, 14, 4607. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, Q.; Chen, H.; Quan, Q.; Li, C.; Dong, J.; Chang, M.; Yan, S.; Liu, J. Effect of vegetation carryover and climate variability on the seasonal growth of vegetation in the upper and middle reaches of the Yellow River Basin. Remote Sens. 2022, 14, 5011. [Google Scholar] [CrossRef]
- Peng, R. Many rivers’ harnessing all needs to study and revise data of water sediment in the new period. J. Water Resour. Res. 2015, 4, 303–309. [Google Scholar] [CrossRef]
- Song, W.; Xu, Q.; Fu, X.; Wang, C.; Pang, Y.; Song, D. EFDC simulation of fishway in the Diversion Dahaerteng River to Danghe Reservoir, China. Ecol. Indic. 2019, 102, 704–715. [Google Scholar] [CrossRef]
- Deng, X.; Song, C.; Liu, K.; Ke, L.; Zhang, W.; Ma, R.; Zhu, J.; Wu, Q. Remote sensing estimation of catchment-scale reservoir water impoundment in the upper Yellow River and implications for river discharge alteration. J. Hydrol. 2020, 585, 124791. [Google Scholar] [CrossRef]
- Zhang, X.; Qiao, W.; Lu, Y.; Huang, J.; Xiao, Y. Quantitative analysis of the influence of the Xiaolangdi reservoir on water and sediment in the middle and lower reaches of the Yellow River. Int. J. Environ. Res. Public Health 2023, 20, 4351. [Google Scholar] [CrossRef]
Name of Reservoir | Year of Completion | Normal Storage Water Levels | Reservoir Area (m2) | Reservoir Capacity Billions of (m3) | Installed Capacity 10,000 kW |
---|---|---|---|---|---|
LX (Laxiwa) | 2010 | 2452 | 4.5 | 10.79 | 420 |
NN (Nina) | 2003 | 2335.5 | 4.45 | 0.262 | 16 |
LJ (Lijiaxia) | 2001 | 2180 | 6.78 | 16.5 | 200 |
ZG (Zhiganglaka) | 2006 | 2050 | 7.57 | 0.154 | 19 |
KY (Kangyang) | 2007 | 2033 | 7.35 | 0.288 | 28.35 |
GB (Gongboxia) | 2004 | 2005 | 4.85 | 6.2 | 150 |
SZ (Suzhi) | 2005 | 1900 | 4.5 | 0.455 | 22.5 |
HF (HuangFeng) | 2011 | 1880.5 | 3.61 | 0.59 | 25.5 |
JS (Jishixia) | 2010 | 1856 | 3.6 | 2.635 | 102 |
SG (Sigouxia) | 2009 | 1748 | 41.81 | 0.47 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, P.; Chen, L.; Huang, Q.; Cheng, Y.; Li, Z.; Jin, Z.; Li, C.; Han, N.; Jiao, Q.; Li, Z.; et al. The Impact of the Densest and Highest-Capacity Reservoirs on the Ecological Environment in the Upper Yellow River Basin of China: From 2000 to 2020. Remote Sens. 2025, 17, 1535. https://doi.org/10.3390/rs17091535
Ma P, Chen L, Huang Q, Cheng Y, Li Z, Jin Z, Li C, Han N, Jiao Q, Li Z, et al. The Impact of the Densest and Highest-Capacity Reservoirs on the Ecological Environment in the Upper Yellow River Basin of China: From 2000 to 2020. Remote Sensing. 2025; 17(9):1535. https://doi.org/10.3390/rs17091535
Chicago/Turabian StyleMa, Penghui, Lisen Chen, Qiangbing Huang, Yuxiang Cheng, Zekun Li, Zhao Jin, Chao Li, Ning Han, Qixian Jiao, Zhenhong Li, and et al. 2025. "The Impact of the Densest and Highest-Capacity Reservoirs on the Ecological Environment in the Upper Yellow River Basin of China: From 2000 to 2020" Remote Sensing 17, no. 9: 1535. https://doi.org/10.3390/rs17091535
APA StyleMa, P., Chen, L., Huang, Q., Cheng, Y., Li, Z., Jin, Z., Li, C., Han, N., Jiao, Q., Li, Z., & Peng, J. (2025). The Impact of the Densest and Highest-Capacity Reservoirs on the Ecological Environment in the Upper Yellow River Basin of China: From 2000 to 2020. Remote Sensing, 17(9), 1535. https://doi.org/10.3390/rs17091535