Analysis of Factors Affecting Random Measurement Error in LiDAR Point Cloud Feature Matching Positioning
Abstract
:1. Introduction
2. Methods
2.1. Feature Matching Positioning Model
2.2. Influencing Factors
3. Results
3.1. Different Specifications
3.2. Different Densities
3.3. Different Prior Maps
3.4. Different Scenes
3.5. Parameter Estimation Verification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LiDAR | Light Detection and Ranging |
GNSS | Global Navigation Satellite System |
HD map | High-Definition Map |
INS | Inertial Navigation System |
ICP | Iterative Closest Point |
NDT | Normal Distributions Transform |
RPM | Revolution(s) Per Minute |
DIA | Detection, Identification, and Adaptation |
ROS | Robot Operating System |
GAMIT | GPS Analysis at MIT |
References
- Raj, R.; Kos, A. A Comprehensive Study of Mobile Robot: History, Developments, Applications, and Future Research Perspectives. Appl. Sci. 2022, 12, 6951. [Google Scholar] [CrossRef]
- Dzedzickis, A.; Subačiūtė-Žemaitienė, J.; Šutinys, E.; Samukaitė-Bubnienė, U.; Bučinskas, V. Advanced Applications of Industrial Robotics: New Trends and Possibilities. Appl. Sci. 2022, 12, 135. [Google Scholar] [CrossRef]
- Vogt, J. Where is the human got to go? Artificial intelligence, machine learning, big data, digitalisation, and human–robot interaction in Industry 4.0 and 5.0. AI Soc. 2021, 36, 1083–1087. [Google Scholar] [CrossRef]
- Bae, I.; Hong, J. Survey on the Developments of Unmanned Marine Vehicles: Intelligence and Cooperation. Sensors 2023, 23, 4643. [Google Scholar] [CrossRef] [PubMed]
- Reis, W.P.N.; Junior, M.O. Sensors applied to automated guided vehicle position control: A systematic literature review. Int. J. Adv. Manuf. Technol. 2021, 113, 21–34. [Google Scholar] [CrossRef]
- Parekh, D.; Poddar, N.; Rajpurkar, A.; Chahal, M.; Kumar, N.; Joshi, G.P.; Cho, W. A Review on Autonomous Vehicles: Progress, Methods and Challenges. Electronics 2022, 11, 2162. [Google Scholar] [CrossRef]
- Wang, Z.; Zhan, J.; Duan, C.; Guan, X.; Lu, P.; Yang, K. A Review of Vehicle Detection Techniques for Intelligent Vehicles. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 3811–3831. [Google Scholar] [CrossRef]
- Lee, D.; Jung, M.; Yang, W.; Kim, A. LiDAR odometry survey: Recent advancements and remaining challenges. Intell. Serv. Robot. 2024, 17, 95–118. [Google Scholar] [CrossRef]
- Belkin, I.; Abramenko, A.; Yudin, D. Real-time lidar-based localization of mobile ground robot. Procedia Comput. Sci. 2021, 186, 440–448. [Google Scholar] [CrossRef]
- Xue, H.; Fu, H.; Ren, R.; Zhang, J.; Liu, B.; Fan, Y.; Dai, B. LiDAR-based Drivable Region Detection for Autonomous Driving. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and System, Prague, Czech Republic, 27 September–1 October 2021; pp. 1110–1116. [Google Scholar] [CrossRef]
- Hassan, T.; Fath-Allah, T.; Elhabiby, M.; Awad, A.; El-Tokhey, M. Detection of GNSS No-Line of Sight Signals Using LiDAR Sensors for Intelligent Transportation Systems. Surv. Rev. 2021, 54, 301–309. [Google Scholar] [CrossRef]
- Aldibaja, M.; Suganuma, N.; Yoneda, K.; Yanase, R. Challenging Environments for Precise Mapping Using GNSS/INS-RTK Systems: Reasons and Analysis. Remote Sens. 2022, 14, 4058. [Google Scholar] [CrossRef]
- Zhou, B.; Xie, D.; Chen, S.; Mo, H.; Li, C.; Li, Q. Comparative Analysis of SLAM Algorithms for Mechanical LiDAR and Solid-State LiDAR. IEEE Sens. J. 2023, 23, 5325–5338. [Google Scholar] [CrossRef]
- Van Nam, D.; Gon-Woo, K. Solid-State LiDAR based-SLAM: A Concise Review and Application. In Proceedings of the IEEE International Conference on Big Data and Smart Computing, Jeju Island, Republic of Korea, 17–20 January 2021; pp. 302–305. [Google Scholar] [CrossRef]
- Aldao, E.; Santos, L.M.G.-D.; González-Jorge, H. LiDAR Based Detect and Avoid System for UAV Navigation in UAM Corridors. Drones 2022, 6, 185. [Google Scholar] [CrossRef]
- Chen, K.; Zhan, K.; Pang, F.; Yang, X.; Zhang, D. R-LIO: Rotating Lidar Inertial Odometry and Mapping. Sustainability 2022, 14, 10833. [Google Scholar] [CrossRef]
- Zeng, Q.; Kan, Y.; Tao, X.; Hu, Y. LiDAR Positioning Algorithm Based on ICP and Artificial Landmarks Assistance. Sensors 2021, 21, 7141. [Google Scholar] [CrossRef]
- Zhang, J.; Khoshelham, K.; Khodabandeh, A. Fast Converging Lidar-Aided Precise Point Positioning: A Case Study with Low-Cost Gnss. ISPRS 2023, X-1/W1-202, 687–694. [Google Scholar] [CrossRef]
- Sakib, S.M.N. LiDAR technology—An overview. IUP J. Electr. Electron. Eng. 2022, 15, 36–57. [Google Scholar]
- Zhang, J.; Singh, S. LOAM: Lidar odometry and mapping in real-time. Robot. Sci. Syst. 2014, 2, 1–9. [Google Scholar] [CrossRef]
- Shan, T.; Englot, B. LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018; pp. 4758–4765. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Chen, C.; Xie, L. F-LOAM: Fast LiDAR Odometry and Mapping. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, Czech Republic, 27 September–1 October 2021; pp. 4390–4396. [Google Scholar] [CrossRef]
- Huang, F.; Wen, W.; Zhang, J.; Hsu, L.-T. Point Wise or Feature Wise? A Benchmark Comparison of Publicly Available Lidar Odometry Algorithms in Urban Canyons. IEEE Intell. Transp. Syst. Mag. 2022, 14, 155–173. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Mendes, E.; Koch, P.; Lacroix, S. ICP-based pose-graph SLAM. In Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics, Lausanne, Switzerland, 23–27 October 2016; pp. 195–200. [Google Scholar] [CrossRef]
- Biber, P.; Strasser, W. The normal distributions transform: A new approach to laser scan matching. In Proceedings of the International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 27 October–1 November 2003; Volume 3, pp. 2743–2748. [Google Scholar] [CrossRef]
- Xia, S.; Chen, D.; Wang, R.; Li, J.; Zhang, X. Geometric Primitives in LiDAR Point Clouds: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 685–707. [Google Scholar] [CrossRef]
- Donoso, F.; Austin, K.; McAree, P. How do ICP variants perform when used for scan matching terrain point clouds? Robot. Auton. Syst. 2016, 87, 147–161. [Google Scholar] [CrossRef]
- Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 25–29 October 2020; pp. 5135–5142. [Google Scholar] [CrossRef]
- Yuan, C.; Liu, X.; Hong, X.; Zhang, F. Pixel-Level Extrinsic Self Calibration of High Resolution LiDAR and Camera in Targetless Environments. IEEE Robot. Autom. Lett. 2021, 6, 7517–7524. [Google Scholar] [CrossRef]
- Heidemann, H.K. Lidar Base Specification, 13th ed.; U.S. Geological Survey Techniques and Methods: Reston, VA, USA, 2018; Book 11, Chapter B4, p. 101. [CrossRef]
- Liu, J.; Sun, Q.; Fan, Z.; Jia, Y. TOF Lidar Development in Autonomous Vehicle. In Proceedings of the IEEE 3rd Optoelectronics Global Conference, Shenzhen, China, 4–7 September 2018; pp. 185–190. [Google Scholar] [CrossRef]
- Hu, J.S.K.; Kuai, T.; Waslander, S.L. Point Density-Aware Voxels for LiDAR 3D Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 8459–8468. [Google Scholar] [CrossRef]
- Liu, R.; Wang, J.; Zhang, B. High Definition Map for Automated Driving: Overview and Analysis. J. Navig. 2020, 73, 324–341. [Google Scholar] [CrossRef]
- Won, D.H.; Ahn, J.; Lee, S.-W.; Lee, J.; Sung, S.; Park, H.-W.; Park, J.-P.; Lee, Y.J. Weighted DOP With Consideration on Elevation-Dependent Range Errors of GNSS Satellites. IEEE Trans. Instrum. Meas. 2012, 61, 3241–3250. [Google Scholar] [CrossRef]
- Zhang, H.; Ji, S.; Wang, Z.; Chen, W. Detailed assessment of GNSS observation noise based using zero baseline data. Adv. Space Res. 2018, 62, 2454–2466. [Google Scholar] [CrossRef]
- Teunissen, P.J.G. Adjustment Theory: An Introduction; TU Delft OPEN Publishing: Delft, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Bergelt, R.; Khan, O.; Hardt, W. Improving the intrinsic calibration of a Velodyne LiDAR sensor. In Proceedings of the IEEE Sensors, Scotland, UK, 29 October–1 November 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Gentil, L.; Vidal-Calleja, T.; Huang, S. 3D Lidar-IMU Calibration Based on Upsampled Preintegrated Measurements for Motion Distortion Correction. In Proceedings of the IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018; pp. 2149–2155. [Google Scholar] [CrossRef]
- Groll, L.; Kapp, A. Effect of Fast Motion on Range Images Acquired by Lidar Scanners for Automotive Applications. IEEE Trans. Signal Process. 2007, 55, 2945–2953. [Google Scholar] [CrossRef]
- Kim, G.; Eom, J.; Park, Y. Investigation on the occurrence of mutual interference between pulsed terrestrial LIDAR scanners. In Proceedings of the IEEE Intelligent Vehicles Symposium, Seoul, Republic of Korea, 28 June–1 July 2015; pp. 437–442. [Google Scholar] [CrossRef]
- Raisuddin, A.M.; Cortinhal, T.; Holmblad, J.; Aksoy, E.E. 3D-OutDet: A Fast and Memory Efficient Outlier Detector for 3D LiDAR Point Clouds in Adverse Weather. In Proceedings of the IEEE Intelligent Vehicles Symposium, Jeju Island, Republic of Korea, 2–5 June 2024; pp. 2862–2868. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, G. Improved LeGO-LOAM method based on outlier points elimination. Measurement 2023, 214, 112767. [Google Scholar] [CrossRef]
- Teunissen, P.J.G. Distributional theory for the DIA method. J. Geod. 2018, 92, 59–80. [Google Scholar] [CrossRef]
- Zaminpardaz, S.; Teunissen, P.J.G. DIA-datasnooping and identifiability. J. Geod. 2019, 93, 85–101. [Google Scholar] [CrossRef]
- Qingqing, L.; Xianjia, Y.; Queralta, J.P.; Westerlund, T. Multi-Modal Lidar Dataset for Benchmarking General-Purpose Localization and Mapping Algorithms. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyoto, Japan, 23–27 October 2022; pp. 3837–3844. [Google Scholar] [CrossRef]
- Hsu, L.-T.; Huang, F.; Ng, H.-F.; Zhang, G.; Zhong, Y.; Bai, X.; Wen, W. Hong Kong UrbanNav: An open-source multisensory dataset for benchmarking urban navigation algorithms. Navigation 2023, 70, navi.602. [Google Scholar] [CrossRef]
- Agarwal, S.; Vora, A.; Pandey, G.; Williams, W.; Kourous, H.; McBride, J. Ford Multi-AV Seasonal Dataset. Int. J. Robot. Res. 2020, 39, 1367–1376. [Google Scholar] [CrossRef]
Sensor | Channels | Range | Field of View | Angular Resolution | Frequency |
---|---|---|---|---|---|
Velodyne VLP-16 | 16 | 100 m | V: −15° to +15°, H: 0° to 360° | V: 2.0°, H: 0.2° | 10 Hz |
Robosense Helios-32 1 | 32 | 150 m | V: −55° to +15°, H: 0° to 360° | V: 0.5°, H: 0.2° | 10 Hz |
Ouster OS1-64 | 64 | 170 m | V: −21.2° to +21.2°, H: 0° to 360° | V: 0.7°, H: 0.18° | 10 Hz |
Ouster OS0-128 | 128 | 75 m | V: −45° to +45°, H: 0° to 360° | V: 0.7°, H: 0.18° | 10 Hz |
Sensor | Channels | Range | Field of View | Angular Resolution | Frequency |
---|---|---|---|---|---|
Velodyne HDL-32E | 32 | 100 m | V: −30° to +10° H: 0° to 360° | V: 1.33° H: 0.2° | 10 Hz |
Model | Planar Feature | Edge Feature | ||
---|---|---|---|---|
0.03 m | 0.58 m | 0.08 m | 0.27 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Gao, W.; Pan, S. Analysis of Factors Affecting Random Measurement Error in LiDAR Point Cloud Feature Matching Positioning. Remote Sens. 2025, 17, 1457. https://doi.org/10.3390/rs17081457
Liu G, Gao W, Pan S. Analysis of Factors Affecting Random Measurement Error in LiDAR Point Cloud Feature Matching Positioning. Remote Sensing. 2025; 17(8):1457. https://doi.org/10.3390/rs17081457
Chicago/Turabian StyleLiu, Guoliang, Wang Gao, and Shuguo Pan. 2025. "Analysis of Factors Affecting Random Measurement Error in LiDAR Point Cloud Feature Matching Positioning" Remote Sensing 17, no. 8: 1457. https://doi.org/10.3390/rs17081457
APA StyleLiu, G., Gao, W., & Pan, S. (2025). Analysis of Factors Affecting Random Measurement Error in LiDAR Point Cloud Feature Matching Positioning. Remote Sensing, 17(8), 1457. https://doi.org/10.3390/rs17081457