Social–Ecological Factors and Ecosystem Service Trade-Offs/Synergies in Vegetation Change Zones of Qilian Mountain National Park During 2000–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Assessment of FVC
2.3.2. Assessment of Ecosystem Services
2.3.3. Theil–Sen Median Trend Analysis and Mann–Kendall Test
2.3.4. Bivariate Spatial Correlation Analysis
2.3.5. Spatial Random Forest
2.3.6. Zoning Method
3. Results
3.1. FVC Trend in the QLMNP
3.2. Temporal and Spatial Trends in Ecosystem Services in the QLMNP
3.3. Spatial Correlation Analysis of FVC and Ecosystem Services
3.4. Analysis of the Driving Factors of Vegetation Trends in the QLMNP
3.5. Ecological Restoration Project Implementation and Land-Use Management Zones in the QLMNP
4. Discussions
4.1. Effects of Ecological Restoration Implementation
4.2. Influences of Ecological Effectiveness
4.3. Implications for Zoning Management
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Zhao, H. The Assessment of Urban Ecological Environment in Watershed Scale. Procedia Environ. Sci. 2016, 36, 169–175. [Google Scholar] [CrossRef]
- Balkanlou, K.R.; Müller, B.; Cord, A.F.; Panahi, F.; Malekian, A.; Jafari, M.; Egli, L. Spatiotemporal dynamics of ecosystem services provision in a degraded ecosystem: A systematic assessment in the Lake Urmia basin, Iran. Sci. Total Environ. 2020, 716, 137100. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Kong, L.; Zhang, L.; Ouyang, Z. Spatial characteristics of ecological degradation and restoration in China from 2000 to 2015 using remote sensing. Restor. Ecol. 2020, 28, 1419–1430. [Google Scholar] [CrossRef]
- Huang, L.; Cao, W.; Xu, X.; Fan, J.; Wang, J. Linking the benefits of ecosystem services to sustainable spatial planning of ecological conservation strategies. J. Environ. Manag. 2018, 222, 385–395. [Google Scholar] [CrossRef]
- Shao, Q.; Liu, S.; Ning, J.; Liu, G.; Yang, F.; Zhang, X.; Niu, L.; Huang, H.; Fan, J.; Liu, J. Assessment of ecological benefits of key national ecological projects in China in 2000–2019 using remote sensing. Acta Geogr. Sin. 2022, 77, 2133–2153. [Google Scholar] [CrossRef]
- Niu, L.; Shao, Q.; Ning, J.; Liu, S.; Zhang, X.; Zhang, T. The assessment of ecological restoration effects on Beijing-Tianjin Sandstorm Source Control Project area during 2000–2019. Ecol. Eng. 2023, 186, 106831. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.J.; Wang, H.Y.; Jiang, J.; Zhang, J. Multiple ecological effects and their drivers of ecological restoration programmes in the Qinghai-Tibet Plateau, China. Land Degrad. Dev. 2023, 34, 1415–1429. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, D.; Zhang, Y.; Yao, S.; Zhang, J. Evaluating the vegetation restoration potential achievement of ecological projects: A case study of Yan’an, China. Land Use Policy 2020, 90, 104293. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, B.; Wu, X.; Wang, S.; Li, Y.; Feng, Y.; Zhang, L.; Hu, Y.; Cheng, L.; Li, B. Distinguishing Trajectories and Drivers of Vegetated Ecosystems in China’s Loess Plateau. Earth’s Future 2024, 12, e2023EF003769. [Google Scholar] [CrossRef]
- Li, M.; Yu, H.; Meng, B.; Sun, Y.; Zhang, J.; Zhang, H.; Wu, J.; Yi, S. Drought reduces the effectiveness of ecological projects: Perspectives from the inter-annual variability of vegetation index. Ecol. Indic. 2021, 130, 108158. [Google Scholar] [CrossRef]
- LaPaix, R.; Freedman, B.; Patriquin, D. Ground vegetation as an indicator of ecological integrity. Environ. Rev. 2009, 17, 249–265. [Google Scholar] [CrossRef]
- Foody, G.M. Editorial: Ecological applications of remote sensing and GIS. Ecol. Inform. 2007, 2, 71–72. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Z.; Long, H.; Liu, Y.; Li, W. Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban–rural development: The case of Mu Us Sandy Land, China. J. Clean. Prod. 2017, 142, 697–715. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, C.; Li, Q.; Liu, H.; Gao, W.; Shi, T.; Liu, X.; Wu, G. Rapid urbanization and policy variation greatly drive ecological quality evolution in Guangdong-Hong Kong-Macau Greater Bay Area of China: A remote sensing perspective. Ecol. Indic. 2020, 115, 106373. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Díaz, S.; Pascual, U.; Stenseke, M.; Martín-López, B.; Watson, R.T.; Molnár, Z.; Hill, R.; Chan, K.M.A.; Baste, I.A.; Brauman, K.A.; et al. Assessing nature’s contributions to people. Science 2018, 359, 270–272. [Google Scholar] [CrossRef]
- Zhang, D.; Jia, Q.; Xu, X.; Yao, S.; Chen, H.; Hou, X.; Zhang, J.; Jin, G. Assessing the coordination of ecological and agricultural goals during ecological restoration efforts: A case study of Wuqi County, Northwest China. Land Use Policy 2019, 82, 550–562. [Google Scholar] [CrossRef]
- Dymond, J.R.; Ausseil, A.-G.E.; Ekanayake, J.C.; Kirschbaum, M.U.F. Tradeoffs between soil, water, and carbon—A national scale analysis from New Zealand. J. Environ. Manag. 2012, 95, 124–131. [Google Scholar] [CrossRef]
- Tomscha, S.A.; Gergel, S.E. Ecosystem service trade-offs and synergies misunderstood without landscape history. Ecol. Soc. 2016, 21, 43. [Google Scholar] [CrossRef]
- Li, G.; Jiang, C.; Gao, Y.; Du, J. Natural driving mechanism and trade-off and synergy analysis of the spatiotemporal dynamics of multiple typical ecosystem services in Northeast Qinghai-Tibet Plateau. J. Clean. Prod. 2022, 374, 134075. [Google Scholar] [CrossRef]
- Wang, L.-J.; Ma, S.; Qiao, Y.-P.; Zhang, J.-C. Simulating the Impact of Future Climate Change and Ecological Restoration on Trade-Offs and Synergies of Ecosystem Services in Two Ecological Shelters and Three Belts in China. Int. J. Environ. Res. Public Health 2020, 17, 7849. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.-J.; Jiang, J.; Chu, L.; Zhang, J.-C. Threshold effect of ecosystem services in response to climate change and vegetation coverage change in the Qinghai-Tibet Plateau ecological shelter. J. Clean. Prod. 2021, 318, 128592. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Sun, Y.; Sun, J.; Wang, F.; Li, M. Effect of grazing exclusion on ecosystem services dynamics, trade-offs and synergies in Northern Tibet. Ecol. Eng. 2022, 179, 106638. [Google Scholar] [CrossRef]
- Li, R.N.; Zheng, H.; O’Connor, P.; Xu, H.S.; Li, Y.K.; Lu, F.; Robinson, B.E.; Ouyang, Z.Y.; Hai, Y.; Daily, G.C. Time and space catch up with restoration programs that ignore ecosystem service trade-offs. Sci. Adv. 2021, 7, eabf8650. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, M.; Fu, B.; Kemp, D.; Zhao, W.; Liu, G.; Han, G.; Wilkes, A.; Lu, X.; Chen, Y.; et al. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Sci. Bull. 2020, 65, 1405–1414. [Google Scholar] [CrossRef]
- Zhang, B.; Feng, Q.; Lu, Z.; Li, Z.; Zhang, B.; Cheng, W. Ecosystem service value and ecological compensation in Qilian Mountain National Park: Implications for ecological conservation strategies. Ecol. Indic. 2024, 167, 112661. [Google Scholar] [CrossRef]
- Du, Q.; Wang, Q.; Guan, Q.; Sun, Y.; Liang, L.; Pan, N.; Ma, Y.; Li, H. Ecological carrying capacity evaluation from the perspective of social-ecological coupling in the Qilian Mountains, northwest China. Gondwana Res. 2025, 141, 26–39. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Liu, X.Y.; Zhao, C.Y.; Wang, H.; Zang, F. The trade-offs and synergies of the ecological-production-living functions of grassland in the Qilian mountains by ecological priority. J. Environ. Manag. 2023, 327, 116883. [Google Scholar] [CrossRef]
- Yang, L.; Feng, Q.; Adamowski, J.F.; Alizadeh, M.R.; Yin, Z.; Wen, X.; Zhu, M. The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China’s Qilian Mountains. Sci. Total Environ. 2021, 759, 143532. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- He, J.; Shi, X.; Fu, Y. Identifying vegetation restoration effectiveness and driving factors on different micro-topographic types of hilly Loess Plateau: From the perspective of ecological resilience. J. Environ. Manag. 2021, 289, 112562. [Google Scholar] [CrossRef] [PubMed]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Hua, W.; Chen, H.; Zhou, L.; Xie, Z.; Qin, M.; Li, X.; Ma, H.; Huang, Q.; Sun, S. Observational Quantification of Climatic and Human Influences on Vegetation Greening in China. Remote Sens. 2017, 9, 425. [Google Scholar] [CrossRef]
- Zhang, J.; Mengting, L.; Hui, Y.; Xiyun, C.; Chong, F. Critical thresholds in ecological restoration to achieve optimal ecosystem services: An analysis based on forest ecosystem restoration projects in China. Land Use Policy 2018, 76, 675–678. [Google Scholar] [CrossRef]
- He, J.; Shi, X. Detection of social-ecological drivers and impact thresholds of ecological degradation and ecological restoration in the last three decades. J. Environ. Manag. 2022, 318, 115513. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Wu, S.; Yang, C. Analyzing ecological environment change and associated driving factors in China based on NDVI time series data. Ecol. Indic. 2021, 129, 107933. [Google Scholar] [CrossRef]
- Cai, D.; Ge, Q.; Wang, X.; Liu, B.; Goudie, A.S.; Hu, S. Contributions of ecological programs to vegetation restoration in arid and semiarid China. Environ. Res. Lett. 2020, 15, 114046. [Google Scholar] [CrossRef]
- Shifaw, E.; Sha, J.; Li, X.; Bao, Z.; Ji, J.; Ji, Z.; Kassaye, A.Y.; Lai, S.; Yang, Y. Ecosystem services dynamics and their influencing factors: Synergies/tradeoffs interactions and implications, the case of upper Blue Nile basin, Ethiopia. Sci. Total Environ. 2024, 938, 173524. [Google Scholar] [CrossRef]
- Benito, B.M. spatialRF: Easy Spatial Regression with Random Forest(1.1.0). Available online: https://blasbenito.github.io/spatialRF/ (accessed on 8 July 2023).
- Qiao, B.; Cao, X.; Sun, W.; Gao, Y.; Chen, Q.; Yu, H.; Wang, Z.; Wang, N.; Chen, H.; Wang, Y.; et al. Ecological zoning identification and optimization strategies based on ecosystem service value and landscape ecological risk:Taking Qinghai area of Qilian Mountain National Park as an example. Acta Eeologica Sin. 2023, 43, 986–1004. [Google Scholar]
- Peng, Q.; Wang, R.; Jiang, Y.; Li, C. Contributions of climate change and human activities to vegetation dynamics in Qilian Mountain National Park, northwest China. Glob. Ecol. Conserv. 2021, 32, e01947. [Google Scholar] [CrossRef]
- Yan, K.; Ding, Y. The exploration of China’s National Park System Pilot Project: Taking Qilian Mountain National Park as an example. Int. J. Geoheritage Parks 2020, 8, 210–214. [Google Scholar] [CrossRef]
- Yao, Z.; Zhao, C.; Yang, K.; Liu, W.; Li, Y.; You, J.; Xiao, J. Alpine grassland degradation in the Qilian Mountains, China—A case study in Damaying Grassland. Catena 2016, 137, 494–500. [Google Scholar] [CrossRef]
- Didan, K. MOD13A3 MODIS/Terra Vegetation Indices Monthly L3 Global 1km SIN Grid. 2015. Available online: https://lpdaac.usgs.gov/products/mod13a3v006/ (accessed on 20 June 2024).
- Yang, J.; Huang, X. The 30 m annual land cover datasets and its dynamics in China from 1985 to 2023. Earth Syst. Sci. Data 2024, 13, 3907–3925. [Google Scholar] [CrossRef]
- Liu, B. Livestock Carrying State Estimation Product in Qinghai-Tibet Plateau (2000–2019). 2023. Available online: https://data.tpdc.ac.cn/en/data/642eca0c-0738-459b-8800-ff0e806c8a0c/ (accessed on 5 August 2023).
- Peng, S. 1-km Monthly Precipitation Dataset for China (1901–2023). 2024. Available online: https://zenodo.org/records/3114194 (accessed on 25 June 2023).
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Mean Temperature Dataset for China (1901–2023). 2024. Available online: https://data.tpdc.ac.cn/en/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf/ (accessed on 25 June 2023).
- Meti; National, A.S.A. The ASTER_GDEM dataset of the Tibetan Plateau (2011). 2015. Available online: http://data.tpdc.ac.cn/ (accessed on 1 August 2023).
- Zhang, L.; Ren, Z.; Chen, B.; Fu, H.; Xu, B.; Gong, P. A Prolonged Artificial Nighttime-Light Dataset of China (1984–2020). 2021. Available online: https://data.tpdc.ac.cn/en/data/e755f1ba-9cd1-4e43-98ca-cd081b5a0b3e/ (accessed on 5 August 2023).
- Zhang, L.; Ren, Z.; Chen, B.; Gong, P.; Xu, B.; Fu, H. A Prolonged Artificial Nighttime-light Dataset of China (1984–2020). Sci. Data 2024, 11, 414. [Google Scholar] [CrossRef]
- Shangguan, W.; Li, Q.; Shi, G. A 1 km Daily Soil Moisture Dataset Over China Based on In-Situ Measurement (2000–2022). 2024. Available online: https://data.tpdc.ac.cn/en/data/49b22de9-5d85-44f2-a7d5-a1ccd17086d2/ (accessed on 27 June 2024).
- Li, Q.; Shi, G.; Shangguan, W.; Nourani, V.; Li, J.; Li, L.; Huang, F.; Zhang, Y.; Wang, C.; Wang, D.; et al. A 1 km daily soil moisture dataset over China using in situ measurement and machine learning. Earth Syst. Sci. Data 2022, 14, 5267–5286. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y. Dataset of Soil Properties for Land Surface Modeling Over China. 2019. Available online: https://data.tpdc.ac.cn/en/data/8ba0a731-5b0b-4e2f-8b95-8b29cc3c0f3a/ (accessed on 21 June 2023).
- Shangguan, W.; Dai, Y.; Liu, B.; Zhu, A.; Duan, Q.; Wu, L.; Ji, D.; Ye, A.; Yuan, H.; Zhang, Q.; et al. A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst. 2013, 5, 212–224. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z. ChinaHighPM2.5: High-Resolution and High-quality Ground-Level PM2.5 Dataset for China (2000–2023). 2024. Available online: https://zenodo.org/records/6398971 (accessed on 15 July 2023).
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sens. Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- Xu, X. Spatial Distribution Grid Dataset of GDP in China. 2017. Available online: https://www.resdc.cn/DOI/doi.aspx?DOIid=33 (accessed on 26 June 2023).
- Lloyd, C.T.; Chamberlain, H.; Kerr, D.; Yetman, G.; Pistolesi, L.; Stevens, F.R.; Gaughan, A.E.; Nieves, J.J.; Hornby, G.; MacManus, K.; et al. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data 2019, 3, 108–139. [Google Scholar] [CrossRef]
- Oda, T.; Maksyutov, S. ODIAC Fossil Fuel CO2 Emissions Dataset (ODIAC2022). 2015. Available online: https://www.nies.go.jp/doi/10.17595/20170411.001-e.html (accessed on 29 June 2024).
- Oda, T.; Maksyutov, S.; Andres, R.J. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): A global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions. Earth Syst. Sci. Data 2018, 10, 87–107. [Google Scholar] [CrossRef]
- Oda, T.; Maksyutov, S. A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos. Chem. Phys. 2011, 11, 543–556. [Google Scholar] [CrossRef]
- Hua, T.; Zhao, W.; Cherubini, F.; Hu, X.; Pereira, P. Sensitivity and future exposure of ecosystem services to climate change on the Tibetan Plateau of China. Landsc. Ecol. 2021, 36, 3451–3471. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; Lan, A.; Fan, Z.; Wang, R.; Tao, Q.; Zou, Y.; Xu, J. Spatiotemporal variation characteristics and influencing factors of NPP in Guizhou Province from 2000 to 2020. Res. Soil Water Conserv. 2023, 30, 408–416+426. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, Y.; Zhou, Y.; Li, X.; Yang, S.; Chen, Y.; Qu, Y.; Ma, J. A novel method to analyze the spatial distribution and potential sources of pollutant combinations in the soil of Beijing urban parks. Environ. Pollut. 2021, 284, 117191. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Yuan, X.; Gao, W.; Wang, R.; Chen, W. Assessment of urban cooling effect based on downscaled land surface temperature: A case study for Fukuoka, Japan. Urban Clim. 2021, 36, 100790. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Du, Z.; Xu, Y.; Zhao, J.; Zhao, H.; Zhang, G.; Peng, D.; Gong, P. Distribution of ecological restoration projects associated with land use and land cover change in China and their ecological impacts. Sci. Total Environ. 2022, 825, 153938. [Google Scholar] [CrossRef]
- Wright, M.N.; Ziegler, A. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [Google Scholar] [CrossRef]
- Xu, Y.; Xiao, F.; Liao, Y. Assessment of Grassland Ecosystem Service Value in Response to Climate Change in China. Diversity 2022, 14, 160. [Google Scholar] [CrossRef]
- Xiao, S.; Fügener, T.; Wende, W.; Yan, W.; Chen, H.; Syrbe, R.; Xue, B. The dynamics of vegetation and implications for ecosystem services in the context of urbanisation: An example from Huangyan-Taizhou, China. Ecol. Eng. 2022, 179, 106614. [Google Scholar] [CrossRef]
- Wang, D.L.; Feng, H.M.; Zhang, B.Z.; Wei, Z.; Tian, Y.L. Quantifying the impacts of climate change and vegetation change on decreased runoff in china’s yellow river basin. Ecohydrol. Hydrobiol. 2022, 22, 310–322. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, T.; Chen, J.; Xue, S.; Zhou, Q.; Wang, Y.; Wang, Y.; Huang, Z.; Yang, S. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Yuan, S.; Prishchepov, A.V. Spatial-temporal heterogeneity of ecosystem service interactions and their social-ecological drivers: Implications for spatial planning and management. Resour. Conserv. Recycl. 2023, 189, 106767. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Pickett, S.T.A.; Yu, W.; Li, W. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Li, S.; Liang, Z.; Liu, L.; Li, D.; Wu, S. Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration. Ecosyst. Serv. 2020, 43, 101103. [Google Scholar] [CrossRef]
- Wei, X.; Yang, J.; Luo, P.; Lin, L.; Lin, K.; Guan, J. Assessment of the variation and influencing factors of vegetation NPP and carbon sink capacity under different natural conditions. Ecol. Indic. 2022, 138, 108834. [Google Scholar] [CrossRef]
- Zhu, M.Y.; He, W.M.; Zhang, Q.F.; Xiong, Y.Z.; Tan, S.D.; He, H.M. Spatial and temporal characteristics of soil conservation service in the area of the upper and middle of the Yellow River, China. Heliyon 2019, 5, e02985. [Google Scholar] [CrossRef]
- Zhao, Z.; Dai, E. Vegetation cover dynamics and its constraint effect on ecosystem services on the Qinghai-Tibet Plateau under ecological restoration projects. J. Environ. Manag. 2024, 356, 120535. [Google Scholar] [CrossRef]
- Jiang, C.; Guo, H.; Wei, Y.; Yang, Z.; Wang, X.; Wen, M.; Yang, L.; Zhao, L.; Zhang, H.; Zhou, P. Ecological restoration is not sufficient for reconciling the trade-off between soil retention and water yield: A contrasting study from catchment governance perspective. Sci. Total Environ. 2021, 754, 142139. [Google Scholar] [CrossRef]
- Zhang, K.; Lyu, Y.; Fu, B.; Yin, L.; Yu, D. The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau. Acta Geogr. Sin. 2020, 75, 949–960. [Google Scholar]
- Zhang, Y.; Zhao, X.; Gong, J.; Luo, F.; Pan, Y. Effectiveness and driving mechanism of ecological restoration efforts in China from 2009 to 2019. Sci. Total Environ. 2024, 910, 168676. [Google Scholar] [CrossRef]
- Du, J.; Shu, J.; Yin, J.; Yuan, X.; Jiaerheng, A.; Xiong, S.; He, P.; Liu, W. Analysis on spatio-temporal trends and drivers in vegetation growth during recent decades in Xinjiang, China. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 216–228. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, J.; Qi, S.; Ye, H.; Huang, M.; Xu, Y.; Ying, T.; Tao, J. Spatial patterns of vegetation net primary productivity in Jiangxi Provinceof China in relation to climate factors. Chin. J. Ecol. 2013, 32, 726–732. [Google Scholar] [CrossRef]
- Xu, Y.; Xiao, F.; Yu, L. Review of spatio—Temporal distribution of net primary productity in forest ecosystem and its responses to climate change in China. Acta Ecol. Sin. 2020, 40, 4710–4723. [Google Scholar]
- Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Moore, B.; Vorosmarty, C.J.; Schloss, A.L. Global Climate-Change and Terrestrial Net Primary Production. Nature 1993, 363, 234–240. [Google Scholar] [CrossRef]
- Li, Q.; Shi, X.Y.; Wu, Q.Q. Exploring suitable topographical factor conditions for vegetation growth in Wanhuigou catchment on the Loess Plateau, China: A new perspective for ecological protection and restoration. Ecol. Eng. 2020, 158, 106053. [Google Scholar] [CrossRef]
- Burt, T.P.; Butcher, D.P. Topographic Controls of Soil-Moisture Distributions. J. Soil Sci. 1985, 36, 469–486. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D. Improvement of terrain niche index model and its application in vegetation cover evaluation. Acta Geogr. Sin. 2022, 77, 2757–2772. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Q.; Zhang, Z.Y.; Tong, L.J.; Wang, Z.Q.; Li, J.L. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Sci. Total Environ. 2019, 690, 27–39. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, J.; Chen, L.; Zhao, T. Ecosystem water imbalances created during ecological restoration by afforestation in China, and lessons for other developing countries. J. Environ. Manag. 2016, 183, 843–849. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Hou, X.; Zhang, D.; Zhang, H. Time to adopt a context-specific and market-based compensation scheme for a new round of the Grain for Green Program. Land Use Policy 2021, 108, 105675. [Google Scholar] [CrossRef]
- Xia, M.; Jia, K.; Zhao, W.; Liu, S.; Wei, X.; Wang, B. Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau. Ecol. Indic. 2021, 123, 107274. [Google Scholar] [CrossRef]
- Liu, L.-Y.; Wang, X.-J.; Gou, X.-H.; Yang, M.-X.; Zhang, Z.-H. Projections of surface air temperature and precipitation in the 21st century in the Qilian Mountains, Northwest China, using REMO in the CORDEX. Adv. Clim. Change Res. 2022, 13, 344–358. [Google Scholar] [CrossRef]
- Sheng, J.; Cheng, Q. National Parks as the materialized imaginary of ecological civilization in China. Environ. Sci. Policy 2024, 152, 103660. [Google Scholar] [CrossRef]
- Xue, J.; Li, Z.; Feng, Q.; Li, Z.; Gui, J.; Li, Y. Ecological conservation pattern based on ecosystem services in the Qilian Mountains, northwest China. Environ. Dev. 2023, 46, 100834. [Google Scholar] [CrossRef]
Index | Original Data Source | Resolution | Period | Reference |
---|---|---|---|---|
NDVI | https://lpdaac.usgs.gov/products/ (accessed on 20 June 2024) | 1 km | 2000–2020 | [44] |
NPP | https://lpdaac.usgs.gov/products/ (accessed on 21 June 2024) | 500 m | 2000–2020 | NASA |
Land use and land cover | https://zenodo.org (accessed on 24 July 2023) | 30 m | 2000–2020 | [45] |
Grazing pressure | http://data.tpdc.ac.cn/ (accessed on 5 August 2023) | 300 m | 2000–2020 | [46] |
Temperature/°C | http://data.tpdc.ac.cn/ (accessed on 21 June 2023) | 1 km | 2000–2020 | [47,48,49] |
Precipitation/mm | http://data.tpdc.ac.cn/ (accessed on 25 June 2023) | 1 km | 2000–2020 | [47] |
DEM | http://data.tpdc.ac.cn/ (accessed on 1 August 2023) | 30 m | 2000–2020 | [50] |
Nighttime light | http://data.tpdc.ac.cn/ (accessed on 5 August 2023) | 1 km | 2000–2020 | [51,52] |
Soil moisture | http://data.tpdc.ac.cn/ (accessed on 27 June 2024) | 1 km | 2000–2020 | [53,54] |
Soil physicochemical properties (including nitrogen (N), phosphorus (P), potassium (K), soil organic matter (SOM), bulk density (BD), and pH) | http://data.tpdc.ac.cn/ (accessed on 21 June 2023) | 1 km | 2009 | [55,56] |
PM2.5 | http://data.tpdc.ac.cn/ (accessed on 15 July 2023) | 1 km | 2000–2020 | [57,58] |
GDP | https://www.resdc.cn/ (accessed on 26 June 2023) | 1 km | 2000–2020 | [59] |
POP | https://hub.worldpop.org/ (accessed on 27 June 2024) | 1 km | 2000–2020 | [60] |
CO2 | https://db.cger.nies.go.jp/dataset/ODIAC/ (accessed on 29 June 2024) | 1 km | 2000–2020 | [61,62,63] |
Vegetation Trend Zone | Statistical Criteria | Vegetation Cover Zone | FVC Range |
---|---|---|---|
Significantly increased (SIN) | s ≥ 0.0005, |Z| > 1.96 | High (H) | 0.8–1 |
Insignificantly increased (IIN) | s ≥ 0.0005, |Z| < 1.96 | Relatively high (RH) | 0.6–0.8 |
Unchanged (UNC) | −0.0005 < s < 0.0005 | Moderate (M) | 0.4–0.6 |
Insignificantly decreased (IDE) | s ≤ −0.0005, |Z| < 1.96 | Relatively low (RL) | 0.2–0.4 |
Significantly decreased (SDE) | s ≤ −0.0005, |Z| > 1.96 | Low (L) | 0–0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Zhang, Z.; Zhou, H.; Liu, F.; Yu, H.; Zhao, B.; Wang, X.; Li, H.; Shi, Z. Social–Ecological Factors and Ecosystem Service Trade-Offs/Synergies in Vegetation Change Zones of Qilian Mountain National Park During 2000–2020. Remote Sens. 2025, 17, 1402. https://doi.org/10.3390/rs17081402
Yang X, Zhang Z, Zhou H, Liu F, Yu H, Zhao B, Wang X, Li H, Shi Z. Social–Ecological Factors and Ecosystem Service Trade-Offs/Synergies in Vegetation Change Zones of Qilian Mountain National Park During 2000–2020. Remote Sensing. 2025; 17(8):1402. https://doi.org/10.3390/rs17081402
Chicago/Turabian StyleYang, Xiaoyuan, Zhonghua Zhang, Huakun Zhou, Fanglin Liu, Hongyan Yu, Baowei Zhao, Xianying Wang, Honglin Li, and Zhengchen Shi. 2025. "Social–Ecological Factors and Ecosystem Service Trade-Offs/Synergies in Vegetation Change Zones of Qilian Mountain National Park During 2000–2020" Remote Sensing 17, no. 8: 1402. https://doi.org/10.3390/rs17081402
APA StyleYang, X., Zhang, Z., Zhou, H., Liu, F., Yu, H., Zhao, B., Wang, X., Li, H., & Shi, Z. (2025). Social–Ecological Factors and Ecosystem Service Trade-Offs/Synergies in Vegetation Change Zones of Qilian Mountain National Park During 2000–2020. Remote Sensing, 17(8), 1402. https://doi.org/10.3390/rs17081402