Bioclimatic Characterization of Jalisco (Mexico) Based on a High-Resolution Climate Database and Its Relationship with Potential Vegetation
Abstract
:1. Introduction
- -
- The study establishes the relationship between climatophyllous potential vegetation distribution and bioclimatic units in the state of Jalisco. This was achieved by utilizing high-resolution CHELSA climatic data and considering potential vegetation as units corresponding to vegetation types that include climacic communities.
- -
- This investigation represents the primary research in Mexico to employ bioclimatic variants. These variants, which represent lower-ranking bioclimatic typological units within specific bioclimates, facilitate the identification of climatic peculiarities, particularly of an ombric and occasionally thermic nature.
- -
- The study incorporates an analysis of continentality based on the continentality index, which expresses the average monthly thermal oscillation over the year in degrees Celsius. The degree of continentality is directly proportional to this amplitude, with its opposite being oceanity.
- -
- This research proposes a first approach of an alternative bioclimatic classification that enhances the understanding of the interrelationship between climate and the distribution of climatophyllous potential vegetation within the territory of Jalisco. This classification will be further developed in subsequent research.
2. Materials and Methods
2.1. Study Area
2.2. Climate Database
2.3. Bioclimatic Diagnosis
- Simple continentality index (Ic).
- Thermicity index (It).
- Annual ombrothermic index (Io).
2.4. Bioclimatic Cartography
2.5. Diagnosis of Potential Vegetation and Its Correspondence with Bioclimatic Units
3. Results
3.1. Bioclimatic Characterization
3.2. Correlation Between the Isobioclimates and the Climatophyllous Potential Vegetation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GIS | Geographic Information System |
INEGI | Instituto Nacional de Estadística y Geografía |
TVB | Transmexican Volcanic Belt |
SMS | Sierra Madre del Sur |
SMO | Sierra Madre Occidental |
PL | Pacific Lowlands |
CD | Chihuahuan Desert |
BB | Balsas Basin |
Trps | Tropical pluviseasonal |
Trxe | Tropical xeric |
uhow | Ultrahyperoceanic weak |
ehos | Euhyperoceanic strong |
ehow | Euhyperoceanic weak |
shos | Subhyperoceanic strong |
spl | Seropluvial |
xph | Xerophytic |
sxp | Subxerophytic |
smp | Submesophytic |
mph | Mesophytic |
low | Lower |
upp | Upper |
itr | Infratropical |
ttr | Thermotropical |
mtr | Mesotropical |
str | Supratropical |
otr | Orotropical |
ctr | Cryorotropical |
sar | Semiarid |
dry | Dry |
shu | Subhumid |
hum | Humid |
hhu | Hyperhumid |
uhh | Ultrahyperhumid |
ehh | Extreme hyperhumid |
Appendix A
No. | Bioclimate | Thermotype | Ombrotype | Isobioclimate |
---|---|---|---|---|
1 | Trps | ctr | ehh | Trps-ctr-ehh |
2 | Trps | ctr | uhh | Trps-ctr-uhh |
3 | Trps | otr | uhh | Trps-otr-uhh |
4 | Trps | otr | hhu | Trps-otr-hhu |
5 | Trps | otr | hum | Trps-otr-hum |
6 | Trps | str | hhu | Trps-str-hhu |
7 | Trps | str | hum | Trps-str-hum |
8 | Trps | str | shu | Trps-str-shu |
9 | Trps | mtr | hhu | Trps-mtr-hhu |
10 | Trps | mtr | hum | Trps-mtr-hum |
11 | Trps | mtr | shu | Trps-mtr-shu |
12 | Trps | ttr | hum | Trps-ttr-hum |
13 | Trps | ttr | shu | Trps-ttr-shu |
14 | Trps | itr | hum | Trps-itr-hum |
15 | Trps | itr | shu | Trps-itr-shu |
16 | Trxe | str | dry | Trxe-str-dry |
17 | Trxe | mtr | dry | Trxe-mtr-dry |
18 | Trxe | ttr | dry | Trxe-ttr-dry |
19 | Trxe | ttr | sar | Trxe-ttr-sar |
20 | Trxe | itr | dry | Trxe-itr-dry |
21 | Trxe | itr | sar | Trxe-itr-sar |
No. | Bioclimate | Continentality | Bioclimatic Variant | Thermotypic Horizon | Ombric Horizon | Meroisobioclimate | ||
---|---|---|---|---|---|---|---|---|
1 | Trps | ehos | mph | low | ctr | ehh | Trps-ehos-mph-low-ctr-ehh | |
2 | Trps | ehos | mph | low | ctr | upp | uhh | Trps-ehos-mph-low-ctr-upp-uhh |
3 | Trps | ehos | mph | low | ctr | low | uhh | Trps-ehos-mph-low-ctr-low-uhh |
4 | Trps | ehos | mph | upp | otr | low | uhh | Trps-ehos-mph-upp-otr-low-uhh |
5 | Trps | ehos | mph | upp | otr | upp | hhu | Trps-ehos-mph-upp-otr-upp-hhu |
6 | Trps | ehos | smp | upp | otr | upp | hhu | Trps-ehos-smp-upp-otr-upp-hhu |
7 | Trps | ehos | smp | upp | otr | low | hhu | Trps-ehos-smp-upp-otr-low-hhu |
8 | Trps | ehos | smp | low | otr | low | hhu | Trps-ehos-smp-low-otr-low-hhu |
9 | Trps | ehos | sxp | low | otr | low | hhu | Trps-ehos-sxp-low-otr-low-hhu |
10 | Trps | ehos | smp | low | otr | upp | hum | Trps-ehos-smp-low-otr-upp-hum |
11 | Trps | ehos | smp | upp | str | low | hhu | Trps-ehos-smp-upp-str-low-hhu |
12 | Trps | ehos | sxp | upp | str | low | hhu | Trps-ehos-sxp-upp-str-low-hhu |
13 | Trps | ehos | smp | upp | str | upp | hum | Trps-ehos-smp-upp-str-upp-hum |
14 | Trps | ehos | sxp | upp | str | upp | hum | Trps-ehos-sxp-upp-str-upp-hum |
15 | Trps | ehos | xph | upp | str | upp | hum | Trps-ehos-xph-upp-str-upp-hum |
16 | Trps | ehos | sxp | upp | str | low | hum | Trps-ehos-sxp-upp-str-low-hum |
17 | Trps | ehos | xph | upp | str | low | hum | Trps-ehos-xph-upp-str-low-hum |
18 | Trps | ehow | sxp | upp | str | low | hum | Trps-ehow-sxp-upp-str-low-hum |
19 | Trps | ehow | xph | upp | str | low | hum | Trps-ehow-xph-upp-str-low-hum |
20 | Trps | shos | xph | upp | str | low | hum | Trps-shos-xph-upp-str-low-hum |
21 | Trps | ehos | sxp | low | str | low | hhu | Trps-ehos-sxp-low-str-low-hhu |
22 | Trps | ehos | xph | low | str | low | hhu | Trps-ehos-xph-low-str-low-hhu |
23 | Trps | ehos | sxp | low | str | upp | hum | Trps-ehos-sxp-low-str-upp-hum |
24 | Trps | ehos | xph | low | str | upp | hum | Trps-ehos-xph-low-str-upp-hum |
25 | Trps | ehos | sxp | low | str | low | hum | Trps-ehos-sxp-low-str-low-hum |
26 | Trps | ehos | xph | low | str | low | hum | Trps-ehos-xph-low-str-low-hum |
27 | Trps | ehow | sxp | low | str | low | hum | Trps-ehow-sxp-low-str-low-hum |
28 | Trps | ehow | xph | low | str | low | hum | Trps-ehow-xph-low-str-low-hum |
29 | Trps | shos | xph | low | str | low | hum | Trps-shos-xph-low-str-low-hum |
30 | Trps | ehow | xph | low | str | upp | shu | Trps-ehow-xph-low-str-upp-shu |
31 | Trps | shos | xph | low | str | upp | shu | Trps-shos-xph-low-str-upp-shu |
32 | Trps | shos | absence | low | str | low | shu | Trps-shos-low-str-low-shu |
33 | Trps | shos | xph | low | str | low | shu | Trps-shos-xph-low-str-low-shu |
34 | Trps | ehos | sxp | upp | mtr | low | hhu | Trps-ehos-sxp-upp-mtr-low-hhu |
35 | Trps | ehos | sxp | upp | mtr | upp | hum | Trps-ehos-sxp-upp-mtr-upp-hum |
36 | Trps | ehos | xph | upp | mtr | upp | hum | Trps-ehos-xph-upp-mtr-upp-hum |
37 | Trps | ehos | xph | upp | mtr | low | hum | Trps-ehos-xph-upp-mtr-low-hum |
38 | Trps | ehow | xph | upp | mtr | low | hum | Trps-ehow-xph-upp-mtr-low-hum |
39 | Trps | shos | xph | upp | mtr | low | hum | Trps-shos-xph-upp-mtr-low-hum |
40 | Trps | ehos | xph | upp | mtr | upp | shu | Trps-ehos-xph-upp-mtr-upp-shu |
41 | Trps | ehow | xph | upp | mtr | upp | shu | Trps-ehow-xph-upp-mtr-upp-shu |
42 | Trps | shos | xph | upp | mtr | upp | shu | Trps-shos-xph-upp-mtr-upp-shu |
43 | Trps | ehos | xph | upp | mtr | low | shu | Trps-ehos-xph-upp-mtr-low-shu |
44 | Trps | ehow | absence | upp | mtr | low | shu | Trps-ehow-upp-mtr-low-shu |
45 | Trps | ehow | xph | upp | mtr | low | shu | Trps-ehow-xph-upp-mtr-low-shu |
46 | Trps | shos | absence | upp | mtr | low | shu | Trps-shos-upp-mtr-low-shu |
47 | Trps | shos | xph | upp | mtr | low | shu | Trps-shos-xph-upp-mtr-low-shu |
48 | Trps | ehos | sxp | low | mtr | low | hhu | Trps-ehos-sxp-low-mtr-low-hhu |
49 | Trps | ehos | sxp | low | mtr | upp | hum | Trps-ehos-sxp-low-mtr-upp-hum |
50 | Trps | ehos | xph | low | mtr | upp | hum | Trps-ehos-xph-low-mtr-upp-hum |
51 | Trps | uhow | xph | low | mtr | low | hum | Trps-uhow-xph-low-mtr-low-hum |
52 | Trps | ehos | xph | low | mtr | low | hum | Trps-ehos-xph-low-mtr-low-hum |
53 | Trps | ehow | xph-spl | low | mtr | low | hum | Trps-ehow-xph-spl-low-mtr-low-hum |
54 | Trps | ehow | xph | low | mtr | low | hum | Trps-ehow-xph-low-mtr-low-hum |
55 | Trps | uhow | xph | low | mtr | upp | shu | Trps-uhow-xph-low-mtr-upp-shu |
56 | Trps | ehos | xph | low | mtr | upp | shu | Trps-ehos-xph-low-mtr-upp-shu |
57 | Trps | ehow | xph-spl | low | mtr | upp | shu | Trps-ehow-xph-spl-low-mtr-upp-shu |
58 | Trps | ehow | absence | low | mtr | upp | shu | Trps-ehow-low-mtr-upp-shu |
59 | Trps | ehow | xph | low | mtr | upp | shu | Trps-ehow-xph-low-mtr-upp-shu |
60 | Trps | shos | xph | low | mtr | upp | shu | Trps-shos-xph-low-mtr-upp-shu |
61 | Trps | ehos | xph | low | mtr | low | shu | Trps-ehos-xph-low-mtr-low-shu |
62 | Trps | ehow | absence | low | mtr | low | shu | Trps-ehow-low-mtr-low-shu |
63 | Trps | ehow | xph | low | mtr | low | shu | Trps-ehow-xph-low-mtr-low-shu |
64 | Trps | shos | absence | low | mtr | low | shu | Trps-shos-low-mtr-low-shu |
65 | Trps | shos | xph | low | mtr | low | shu | Trps-shos-xph-low-mtr-low-shu |
66 | Trps | ehos | sxp | upp | ttr | upp | hum | Trps-ehos-sxp-upp-ttr-upp-hum |
67 | Trps | ehos | xph | upp | ttr | upp | hum | Trps-ehos-xph-upp-ttr-upp-hum |
68 | Trps | ehos | xph | upp | ttr | low | hum | Trps-ehos-xph-upp-ttr-low-hum |
69 | Trps | ehow | xph-spl | upp | ttr | low | hum | Trps-ehow-xph-spl-upp-ttr-low-hum |
70 | Trps | ehow | xph | upp | ttr | low | hum | Trps-ehow-xph-upp-ttr-low-hum |
71 | Trps | uhow | xph | upp | ttr | upp | shu | Trps-uhow-xph-upp-ttr-upp-shu |
72 | Trps | ehos | absence | upp | ttr | upp | shu | Trps-ehos-upp-ttr-upp-shu |
73 | Trps | ehos | xph | upp | ttr | upp | shu | Trps-ehos-xph-upp-ttr-upp-shu |
74 | Trps | ehow | xph-spl | upp | ttr | upp | shu | Trps-ehow-xph-spl-upp-ttr-upp-shu |
75 | Trps | ehow | absence | upp | ttr | upp | shu | Trps-ehow-upp-ttr-upp-shu |
76 | Trps | ehow | xph | upp | ttr | upp | shu | Trps-ehow-xph-upp-ttr-upp-shu |
77 | Trps | uhow | absence | upp | ttr | low | shu | Trps-uhow-upp-ttr-low-shu |
78 | Trps | uhow | xph | upp | ttr | low | shu | Trps-uhow-xph-upp-ttr-low-shu |
79 | Trps | ehos | absence | upp | ttr | low | shu | Trps-ehos-upp-ttr-low-shu |
80 | Trps | ehos | xph | upp | ttr | low | shu | Trps-ehos-xph-upp-ttr-low-shu |
81 | Trps | ehow | xph-spl | upp | ttr | low | shu | Trps-ehow-xph-spl-upp-ttr-low-shu |
82 | Trps | ehow | absence | upp | ttr | low | shu | Trps-ehow-upp-ttr-low-shu |
83 | Trps | ehow | xph | upp | ttr | low | shu | Trps-ehow-xph-upp-ttr-low-shu |
84 | Trps | shos | absence | upp | ttr | low | shu | Trps-shos-upp-ttr-low-shu |
85 | Trps | shos | xph | upp | ttr | low | shu | Trps-shos-xph-upp-ttr-low-shu |
86 | Trps | ehos | xph | low | ttr | low | hum | Trps-ehos-xph-low-ttr-low-hum |
87 | Trps | ehow | xph-spl | low | ttr | low | hum | Trps-ehow-xph-spl-low-ttr-low-hum |
88 | Trps | ehow | xph | low | ttr | low | hum | Trps-ehow-xph-low-ttr-low-hum |
89 | Trps | uhow | xph | low | ttr | upp | shu | Trps-uhow-xph-low-ttr-upp-shu |
90 | Trps | ehos | absence | low | ttr | upp | shu | Trps-ehos-low-ttr-upp-shu |
91 | Trps | ehos | spl | low | ttr | upp | shu | Trps-ehos-spl-low-ttr-upp-shu |
92 | Trps | ehos | xph | low | ttr | upp | shu | Trps-ehos-xph-low-ttr-upp-shu |
93 | Trps | ehow | xph-spl | low | ttr | upp | shu | Trps-ehow-xph-spl-low-ttr-upp-shu |
94 | Trps | ehow | xph | low | ttr | upp | shu | Trps-ehow-xph-low-ttr-upp-shu |
95 | Trps | uhow | absence | low | ttr | low | shu | Trps-uhow-low-ttr-low-shu |
96 | Trps | uhow | spl | low | ttr | low | shu | Trps-uhow-spl-low-ttr-low-shu |
97 | Trps | uhow | xph | low | ttr | low | shu | Trps-uhow-xph-low-ttr-low-shu |
98 | Trps | ehos | xph-spl | low | ttr | low | shu | Trps-ehos-xph-spl-low-ttr-low-shu |
99 | Trps | ehos | absence | low | ttr | low | shu | Trps-ehos-low-ttr-low-shu |
100 | Trps | ehos | spl | low | ttr | low | shu | Trps-ehos-spl-low-ttr-low-shu |
101 | Trps | ehos | xph | low | ttr | low | shu | Trps-ehos-xph-low-ttr-low-shu |
102 | Trps | ehow | xph-spl | low | ttr | low | shu | Trps-ehow-xph-spl-low-ttr-low-shu |
103 | Trps | ehow | absence | low | ttr | low | shu | Trps-ehow-low-ttr-low-shu |
104 | Trps | ehow | xph | low | ttr | low | shu | Trps-ehow-xph-low-ttr-low-shu |
105 | Trps | ehos | xph | upp | itr | low | hum | Trps-ehos-xph-upp-itr-low-hum |
106 | Trps | uhow | absence | upp | itr | upp | shu | Trps-uhow-upp-itr-upp-shu |
107 | Trps | uhow | xph | upp | itr | upp | shu | Trps-uhow-xph-upp-itr-upp-shu |
108 | Trps | ehos | absence | upp | itr | upp | shu | Trps-ehos-upp-itr-upp-shu |
109 | Trps | ehos | spl | upp | itr | upp | shu | Trps-ehos-spl-upp-itr-upp-shu |
110 | Trps | ehos | xph | upp | itr | upp | shu | Trps-ehos-xph-upp-itr-upp-shu |
111 | Trps | ehow | xph-spl | upp | itr | upp | shu | Trps-ehow-xph-spl-upp-itr-upp-shu |
112 | Trps | ehow | xph | upp | itr | upp | shu | Trps-ehow-xph-upp-itr-upp-shu |
113 | Trps | uhow | absence | upp | itr | low | shu | Trps-uhow-upp-itr-low-shu |
114 | Trps | uhow | spl | upp | itr | low | shu | Trps-uhow-spl-upp-itr-low-shu |
115 | Trps | uhow | xph | upp | itr | low | shu | Trps-uhow-xph-upp-itr-low-shu |
116 | Trps | ehos | absence | upp | itr | low | shu | Trps-ehos-upp-itr-low-shu |
117 | Trps | ehos | spl | upp | itr | low | shu | Trps-ehos-spl-upp-itr-low-shu |
118 | Trps | ehos | xph | upp | itr | low | shu | Trps-ehos-xph-upp-itr-low-shu |
119 | Trps | ehow | xph-spl | upp | itr | low | shu | Trps-ehow-xph-spl-upp-itr-low-shu |
120 | Trps | ehow | absence | upp | itr | low | shu | Trps-ehow-upp-itr-low-shu |
121 | Trps | ehow | xph | upp | itr | low | shu | Trps-ehow-xph-upp-itr-low-shu |
122 | Trxe | shos | absence | low | str | upp | dry | Trxe-shos-low-str-upp-dry |
123 | Trxe | ehow | absence | upp | mtr | upp | dry | Trxe-ehow-upp-mtr-upp-dry |
124 | Trxe | shos | absence | upp | mtr | upp | dry | Trxe-shos-upp-mtr-upp-dry |
125 | Trxe | ehow | absence | upp | mtr | low | dry | Trxe-ehow-upp-mtr-low-dry |
126 | Trxe | shos | absence | upp | mtr | low | dry | Trxe-shos-upp-mtr-low-dry |
127 | Trxe | ehos | absence | low | mtr | upp | dry | Trxe-ehos-low-mtr-upp-dry |
128 | Trxe | ehow | absence | low | mtr | upp | dry | Trxe-ehow-low-mtr-upp-dry |
129 | Trxe | shos | absence | low | mtr | upp | dry | Trxe-shos-low-mtr-upp-dry |
130 | Trxe | ehow | absence | low | mtr | low | dry | Trxe-ehow-low-mtr-low-dry |
131 | Trxe | shos | absence | low | mtr | low | dry | Trxe-shos-low-mtr-low-dry |
132 | Trxe | ehos | absence | upp | ttr | upp | dry | Trxe-ehos-upp-ttr-upp-dry |
133 | Trxe | ehow | absence | upp | ttr | upp | dry | Trxe-ehow-upp-ttr-upp-dry |
134 | Trxe | shos | absence | upp | ttr | upp | dry | Trxe-shos-upp-ttr-upp-dry |
135 | Trxe | ehow | absence | upp | ttr | low | dry | Trxe-ehow-upp-ttr-low-dry |
136 | Trxe | shos | absence | upp | ttr | low | dry | Trxe-shos-upp-ttr-low-dry |
137 | Trxe | shos | absence | upp | ttr | upp | sar | Trxe-shos-upp-ttr-upp-sar |
138 | Trxe | uhow | absence | low | ttr | upp | dry | Trxe-uhow-low-ttr-upp-dry |
139 | Trxe | uhow | spl | low | ttr | upp | dry | Trxe-uhow-spl-low-ttr-upp-dry |
140 | Trxe | ehos | absence | low | ttr | upp | dry | Trxe-ehos-low-ttr-upp-dry |
141 | Trxe | ehos | spl | low | ttr | upp | dry | Trxe-ehos-spl-low-ttr-upp-dry |
142 | Trxe | ehow | absence | low | ttr | upp | dry | Trxe-ehow-low-ttr-upp-dry |
143 | Trxe | shos | absence | low | ttr | upp | dry | Trxe-shos-low-ttr-upp-dry |
144 | Trxe | ehos | absence | low | ttr | low | dry | Trxe-ehos-low-ttr-low-dry |
145 | Trxe | ehow | absence | low | ttr | low | dry | Trxe-ehow-low-ttr-low-dry |
146 | Trxe | shos | absence | low | ttr | low | dry | Trxe-shos-low-ttr-low-dry |
147 | Trxe | shos | absence | low | ttr | upp | sar | Trxe-shos-low-ttr-upp-sar |
148 | Trxe | shos | absence | low | ttr | low | sar | Trxe-shos-low-ttr-low-sar |
149 | Trxe | uhow | absence | upp | itr | upp | dry | Trxe-uhow-upp-itr-upp-dry |
150 | Trxe | uhow | spl | upp | itr | upp | dry | Trxe-uhow-spl-upp-itr-upp-dry |
151 | Trxe | ehos | absence | upp | itr | upp | dry | Trxe-ehos-upp-itr-upp-dry |
152 | Trxe | ehos | spl | upp | itr | upp | dry | Trxe-ehos-spl-upp-itr-upp-dry |
153 | Trxe | ehow | absence | upp | itr | upp | dry | Trxe-ehow-upp-itr-upp-dry |
154 | Trxe | ehos | absence | upp | itr | low | dry | Trxe-ehos-upp-itr-low-dry |
155 | Trxe | ehos | spl | upp | itr | low | dry | Trxe-ehos-spl-upp-itr-low-dry |
156 | Trxe | ehow | absence | upp | itr | low | dry | Trxe-ehow-upp-itr-low-dry |
157 | Trxe | shos | absence | upp | itr | low | dry | Trxe-shos-upp-itr-low-dry |
158 | Trxe | ehow | absence | upp | itr | upp | sar | Trxe-ehow-upp-itr-upp-sar |
159 | Trxe | shos | absence | upp | itr | upp | sar | Trxe-shos-upp-itr-upp-sar |
160 | Trxe | ehow | absence | low | itr | upp | dry | Trxe-ehow-low-itr-upp-dry |
161 | Trxe | ehow | absence | low | itr | low | dry | Trxe-ehow-low-itr-low-dry |
162 | Trxe | ehow | absence | low | itr | upp | sar | Trxe-ehow-low-itr-upp-sar |
References
- Box, E. Macroclimate and Plant Forms: An Introduction to Predictive Modelling in Phytogeography; Springer: Dordrecht, The Netherlands, 1981; ISBN 978-94-009-8682-4. [Google Scholar]
- Troll, C. Seasonal Climates of the Earth. In Weltkarten zur Klimakunde/World Maps of Climatology; Springer: Berlin/Heidelberg, Germany, 1965; pp. 19–25. ISBN 978-3-662-13419-1. [Google Scholar]
- Walter, H. Vegetation of the Earth and Ecological Systems of the Geo-Biosphere; Heidelberg Science Library; Springer: Berlin/Heidelberg, Germany, 1985; ISBN 978-3-540-13748-1. [Google Scholar]
- Woodward, F.I. Climate and Plant Distribution; Cambridge University Press: Cambridge, UK, 1987; ISBN 978-052-1282147. [Google Scholar]
- Navarro, G.; Maldonado, M. Geografía Ecológica de Bolivia. Vegetación y Ambientes Acuáticos; Centro de Ecología Simón I: Cochabamba, Bolivia, 2002; ISBN 99905-0-2250. [Google Scholar]
- Larcher, W. Physiological Plant Ecology; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 3-540-43516-6. [Google Scholar]
- Rivas-Martínez, S.; Rivas Sáenz, S.; Penas, Á. Worldwide Bioclimatic Classification System. Glob. Geobot. 2011, 1, 1–634. [Google Scholar]
- Macías-Rodríguez, M.Á.; Peinado Lorca, M.; Giménez de Azcárate, J.; Aguirre Martínez, J.L.; Delgadillo Rodríguez, J. Clasificación Bioclimática de La Vertiente Del Pacífico Mexicano y Su Relación Con La Vegetación Potencial. Acta Bot. Mex. 2014, 109, 133–165. [Google Scholar] [CrossRef]
- Gopar-Merino, L.F.; Macías-Rodríguez, M.Á.; Giménez de Azcárate, J. Bioclimatology, Floristic Indicators and Potential Vegetation of the Sayula Sub-Basin, Jalisco, México. Bot. Sci. 2022, 100, 877–898. [Google Scholar] [CrossRef]
- Walter, H. Zonas de Vegetación y Clima. Breve Exposición Desde El Punto de Vista Causal y Global; Omega: Barcelona, España, 1997; ISBN 9788428203104. [Google Scholar]
- Breckle, S.W. Walter’s Vegetation of the Earth; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 978-3-540-43315-6. [Google Scholar]
- Livneh, B.; Bohn, T.J.; Pierce, D.W.; Munoz-Arriola, F.; Nijssen, B.; Vose, R.; Cayan, D.R.; Brekke, L. A Spatially Comprehensive, Hydrometeorological Data Set for Mexico, the U.S., and Southern Canada 1950–2013. Sci. Data 2015, 2, 150042. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at High Resolution for the Earth’s Land Surface Areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef]
- Hernández Cerda, M.E.; Ordoñez Díaz, M.D.J.; Giménez de Azcárate, J. Comparative Analysis of Two Bioclimatic Classification Systems in Mexico. Investig. Geográficas 2018, 95, 1–14. [Google Scholar] [CrossRef]
- Cuadrat, J.M.; Pita, M.F. Climatología; Ediciones Cátedra, Geografía: Madrid, España, 2006; ISBN 9788437615318. [Google Scholar]
- Tuhkanen, S. Climatic Parameters and Indices in Plant Geography; Acta Phytogeographica Suecica: Uppsala, Sweden, 1980; Volume 67, ISBN 91-7210-067-2. [Google Scholar]
- Müller, M.J. Selected Climatic Data for a Global Set of Standard Stations for Vegetation Science; Tasks for vegetation science; Springer: Dordrecht, The Netherlands, 1982; Volume 5, ISBN 978-94-009-8042-6. [Google Scholar]
- Sayre, R.; Yanosky, A.; Muchoney, D. Mapping Global Ecosystems; The GEOSS Global Earth Observation System of Systems Approach, in Group on Earth Observations Secretariat. Available online: https://www.earthobservations.org/index.php (accessed on 7 February 2023).
- Cress, J.J.; Sayre, R.; Comer, P.; Warner, H. Terrestrial Ecosystems—Isobioclimates of the Conterminous United States; U.S. Geological Survey Scientific: Reston, VA, USA, 2009; Investigations Map 3084, Scale 1:5,000,000, 1 Sheet 2009. [Google Scholar]
- Peinado, M.; Macías-Rodríguez, M.Á.; Aguirre, J.L.; Delgadillo Rodríguez, J. Bioclimate-Vegetation Interrelations in Northwestern Mexico. Southwest Nat. 2010, 55, 311–322. [Google Scholar] [CrossRef]
- Gopar-Merino, L.F.; Velázquez, A. Landscape Components as Predictors of Vegetation Coverage: The Study Cases of the State of Michoacán, México. Investig. Geográficas 2016, 90, 75–88. [Google Scholar] [CrossRef]
- Macías-Rodríguez, M.Á.; Giménez de Azcárate-Cornide, J.; Gopar-Merino, L.F. Bioclimatic Systematization of Sierra Madre Occidental (Mexico) and It’s Relationship with Vegetation Belts. Polibotanica 2017, 43, 125–163. [Google Scholar] [CrossRef]
- Gopar-Merino, L.F.; Velázquez, A.; Giménez de Azcárate, J. Bioclimatic Mapping as a New Method to Assess Effects of Climatic Change. Ecosphere 2015, 6, 1–12. [Google Scholar] [CrossRef]
- Peinado, M.; Aguirre, J.L.; Delgadillo, J. Phytosociological, Bioclimatic and Biogeographical Classification of Woody Climax Communities of Western North America. J. Veg. Sci. 1997, 8, 505–528. [Google Scholar] [CrossRef]
- Peinado, M.; Bartolome, C.; Delgadillo, J.; Aguado, I. Pisos de Vegetación de La Sierra de San Pedro Mártir, Baja California, México. Acta Bot. Mex. 1994, 29, 1–30. [Google Scholar] [CrossRef]
- Peinado, M.; Alcaraz, F.; Aguirre, J.L.; Martínez-Parras, J. Vegetation Formations and Associations of the Zonobiomes along the North American Pacific Coast: From Northern California to Alaska. Plant Ecol. 1997, 129, 29–47. [Google Scholar] [CrossRef]
- Peinado, M.; Aguirre, J.L.; Delgadillo, J.; Macías, M.Á. Zonobiomes, Zonoecotones and Azonal Vegetation along the Pacific Coast of North America. Plant Ecol. 2007, 191, 221–252. [Google Scholar] [CrossRef]
- Macías-Rodríguez, M.Á. Estudio de Las Relaciones Entre Zonobiomas, Bioclimas y Vegetación En La Costa Del Pacífico Norteamericano. Ph.D. Thesis, Universidad de Alcalá, Madrid, Spain, 2009. [Google Scholar]
- Peinado, M.; Macías, M.Á.; Ocaña-Peinado, F.M.; Aguirre, J.L.; Delgadillo, J. Bioclimates and Vegetation along the Pacific Basin of Northwestern Mexico. Plant Ecol. 2011, 212, 263–281. [Google Scholar] [CrossRef]
- Giménez de Azcárate, J.; Macías Rodríguez, M.Á.; Gopar Merino, F. Bioclimatic Belts of Sierra Madre Occidental (Mexico): A Preliminary Approach. Int. J. Geobot. Res. 2013, 3, 19–35. [Google Scholar] [CrossRef]
- Ochoa-Ramos, N.Y. Clasificación Bioclimática Del Occidente de México y Su Relación Con La Vegetación Potencial; Universidad de Guadalajara: Jalisco, México, 2020. [Google Scholar]
- Giménez de Azcárate, J.; Escamilla, M. Las Comunidades Edafoxerófilas (Enebrales y Zacatonales) En Las Montañas Del Centro de México. Phytocoenologia 1999, 29, 449–468. [Google Scholar]
- Medina-García, C.; Velázquez, A.; Giménez de Azcárate, J.; Macías-Rodríguez, M.Á.; Larrazábal, A.; Gopar-Merino, L.F.; López-Barrera, F.; Pérez-Vega, A. Phytosociology of a Seasonally Dry Tropical Forest in the State of Michoacán, Mexico. Bot. Sci. 2020, 98, 441–467. [Google Scholar] [CrossRef]
- Medina García, C.; Gimenez de Azcarate, J.; Velázquez Montes, A. Las Comunidades Vegetales Del Bosque de Coníferas Altimontano En El Macizo Del Tancítaro (Michoacán, México). Acta Bot. Mex. 2020. [Google Scholar] [CrossRef]
- Villaseñor, J.L. Checklist of the Native Vascular Plants of Mexico. Rev. Mex. Biodivers 2016, 87, 559–902. [Google Scholar] [CrossRef]
- Morrone, J.J.; Escalante, T.; Rodríguez-Tapia, G. Mexican Biogeographic Provinces: Map and Shapefiles. Zootaxa 2017, 4277, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Sayre, R.; Brow, J.; Josse, C.; Sotomayor, L.; Touval, J. Terrestrial Ecosystems of South America. In North America Land Cover Summit; Association of American Geographers: Washington, DC, USA, 2008; pp. 131–152. [Google Scholar]
- Sayre, R.; Comer, P.; Warner, H.; Cress, J. A New Map of Standardized Terrestrial Ecosystems of the Conterminous United States: Professional Paper 1768; U.S. Geological Survey: Washington, DC, USA, 2009; p. 17. ISBN 978-1-4113-2432-9. [Google Scholar]
- Sayre, R.G.; Comer, P.; Hak, J.; Josse, C.; Bow, J.; Warner, H.; Larwanou, M.; Kelbessa, E.; Bekele, T.; Kehl, H. A New Map of Standardized Terrestrial Ecosystems of Africa; Association of American Geographers: Washington, DC, USA, 2013; p. 24. ISBN 978-0-89291-275-9. [Google Scholar]
- Amigo, J.; Ramírez, C. A Bioclimatic Classification of Chile: Woodland Communities in the Temperate Zone. Plant Ecol. 1998, 136, 9–26. [Google Scholar]
- INEGI Carta Del Marco Geoestadístico. Escala 1:4,000,000 2020. Available online: https://www.inegi.org.mx/app/mapas/ (accessed on 7 February 2023).
- INEGI Carta Hidrográfica. Escala 1:250,000 2006. Available online: https://www.inegi.org.mx/app/mapas/ (accessed on 7 February 2023).
- Valdivia-Ornelas, L.; Castillo-Aja, M.R. Las Regiones Geomorfológicas Del Estado de Jalisco. Rev. Geocalli 2001, 2, 17–108. [Google Scholar]
- Espinosa Organista, D.; Ocegueda Cruz, S. El Conocimiento Biogeográfico de Las Especies y Su Regionalización Natural. Cap. Nat. México 2008, 1, 33–65. [Google Scholar]
- Guía Para La Interpretación de Cartografía: Uso de Suelo y Vegetación; Escala 1:250,000, Serie VI; INEGI: Aguascalientes, México, 2017.
- Conjunto de Datos Vectoriales de Uso de Suelo y Vegetación; Escala 1:250,000, Serie VII, Conjunto Nacional; INEGI: Aguascalientes, México, 2021.
- Ruiz-Corral, J.A.; Contreras Rodriguez, S.H.; García Romero, G.E.; Villavicencio García, R. Climates of Jalisco According to the Köppen-García System with Adjustment for Potential Vegetation. Rev. Mex. Cienc. Agrícolas 2021, 12, 805–821. [Google Scholar]
- Morrone, J.J. Neotropical Biogeography; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781315390666. [Google Scholar]
- Gámez, N.; Escalante, T.; Rodríguez, G.; Linaje, M.; Morrone, J.J. Caracterización Biogeográfica de La Faja Volcánica Transmexicana y Análisis de Los Patrones de Distribución de Su Mastofauna. Rev. Mex. Biodivers 2012, 83, 258–272. [Google Scholar] [CrossRef]
- Rzedowski, J. Vegetación de México; Limusa: Ciudad de México, Mexico, 1978; ISBN 968-1800028. [Google Scholar]
- Dinerstein, E.; Olson, D.M.; Graham, D.J.; Webster, A.L.; Primm, S.A.; Bookbinder, M.P.; Ledec, G. Una Evaluación Del Estado de Conservación de Las Ecorregiones Terrestres de América Latina y El Caribe; World Bank: Washington, DC, USA, 1995; ISBN 0-8213-3296-1. [Google Scholar]
- Luna-Vega, I.; Espinosa, D.; Contreras-Medina, R. Biodiversidad de La Sierra Madre Del Sur: Una Síntesis Preliminar; UNAM: Ciudad de México, Mexico, 2016; ISBN 978-6070279065. [Google Scholar]
- Morrone, J.J. Biogeographic Regionalization and Biotic Evolution of Mexico: Biodiversity’s Crossroads of the New World. Rev. Mex. Biodivers 2019, 90, 1–68. [Google Scholar] [CrossRef]
- Linares-Palomino, R.; Oliveira-Filho, A.T.; Pennington, R.T. Neotropical Seasonally Dry Forests: Diversity, Endemism, and Biogeography of Woody Plants. In Seasonally Dry Tropical Forests; Island Press/Center for Resource Economics: Washington, DC, USA, 2011; pp. 3–21. [Google Scholar]
- Cabrera, A.L.; Willink, S.E. Biogeografía de América Latina; OEA: Washington, DC, USA, 1973; Volume 13. [Google Scholar]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at High Resolution for the Earth’s Land Surface Areas. EnviDat 2021. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring Agreement in Method Comparison Studies. Stat Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Lousã, M.; Costa, J.C.; Duarte, M.C. Geobotanical Survey of Cabo Verde Island (West Africa). Int. J. Geobot. Res. 2017, 7, 1–103. [Google Scholar]
- Esri ArcGIS PRO; Esri: Redlands, CA, USA, 2023.
- González, M.; Hernández Xolocotzi, E. Los Tipos de Vegetación de México y Su Clasificación. Bot. Sci. 1963, 28, 29–179. [Google Scholar] [CrossRef]
- Pennington, T.D.; Sarukhán, J. Árboles Tropicales de México; Fondo de Cultura Económica: Ciudad de México, México, 1998; ISBN 970-32-1643-9. [Google Scholar]
- González Medrano, F. Las Comunidades Vegetales de México; Segunda edición; INE-SEMARNAT: Ciudad de México, México, 2004; ISBN 968-817-611-7. [Google Scholar]
- Challenger, A.; Soberón, J. Los Ecosistemas Terrestres, En Capital Natural de México. In Vol I: Conocimiento actual de la Biodiversidad; CONABIO, Ed.; CONABIO: Ciudad de México, México, 2008; pp. 87–108. [Google Scholar]
- Villaseñor, J.L.; Ortiz, E. Biodiversidad de Las Plantas Con Flores (División Magnoliophyta) En México. Rev. Mex. Biodivers 2014, 85, 134–142. [Google Scholar] [CrossRef]
- Flores Mata, G.; Jiménez, L.; Madrigal, S.; Takaki, T. Tipos de Vegetación de La República Mexicana; Secretaría de Recursos Hidráulicos: Ciudad de México, México, 1971. [Google Scholar]
- Giménez de Azcárate, J.; González Costilla, O. Pisos de Vegetación de La Sierra de Catorce y Territorios Circundantes (San Luis Potosí, México). Acta Bot. Mex. 2011, 94, 91–123. [Google Scholar]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen; Instituto de Geografía/Universidad Nacional Autónoma de México: Ciudad de México, México, 1998; Volume 6, ISBN 970-32-1010-4. [Google Scholar]
- Martinez, S.R.; Aguiar, C.; Aguilella, A.; Alonso, R.; Alvarez, M.; Amich, F.; Arnaiz, C.; Baccheta, G.; Barbero, M.; Barbour, M.G.; et al. Map of Series, Geoseries and Geopermaseries of Vegetation in Spain. Itinera Geobot. 2007, 17, 5–436. [Google Scholar]
- Barber, A.; Tun, J.; Crespo, B. A New Approach on the Bioclimatology and Potential Vegetation of the Yucatan Peninsula (Mexico). Phytocoenologia 2001, 31, 1–31. [Google Scholar]
- Giménez de Azcárate, J.; Ramírez, M.I.; Pinto, M. Las Comunidades Vegetales de La Sierra de Angangueo (Estados de Michoacán y México, México): Clasificación, Composición y Distribución. Lazaroa 2003, 24, 87–111. [Google Scholar]
- Almeida-Leñero, L.; Giménez de Azcárate, J.; Cleef, A.; González Trápaga, A. Las Comunidades Vegetales Del Zacatonal Alpino de Los Volcanes Popocatépetl y Nevado de Toluca, Región Central de México. Phytocoenologia 2004, 34, 91–132. [Google Scholar] [CrossRef]
- Giménez de Azcárate, J.; Ramírez, M.I. Análisis Fitosociológico de Los Bosques de Oyamel [Abies Religiosa (H.B.K.) Cham. & Schlecht.] de La Sierra de Angangueo, Región Central de México. Fitosociologia 2004, 41, 91–100. [Google Scholar]
- Almeida, L.; Escamilla, M.; Giménez de Azcárate, J.; González, A.; Cleef, A. La Vegetación Alpina de Los Volcanes Popocatépetl, Iztacíhuatl y Nevado de Toluca. In Biodiversidad de la Faja Volcánica Transmexicana; FES Zaragoza-CONABIO: Ciudad de México, México, 2007; pp. 179–198. [Google Scholar]
- del Río, S. El Cambio Climático y Su Influencia En La Vegetación de Castilla y León (España). Itinera Geobot. 2005, 16, 5–534. [Google Scholar]
Types | Subtypes | Levels | Values (Ic) |
---|---|---|---|
Hyperoceanic | Ultrahyperoceanic | Ultrahyperoceanic strong | 0.0–2.0 |
Ultrahyperoceanic weak | 2.0–4.0 | ||
Euhyperoceanic | Euhyperoceanic strong | 4.0–6.0 | |
Euhyperoceanic weak | 6.0–8.0 | ||
Subhyperoceanic | Subhyperoceanic strong | 8.00–10.0 | |
Subhyperoceanic weak | 10.0–11.0 | ||
Oceanic | Semihyperoceanic | Semihyperoceanic strong | 11.0–12.0 |
Semihyperoceanic weak | 12.0–14.0 | ||
Euoceanic | Euoceanic strong | 14.0–15.0 | |
Euoceanic weak | 15.0–17.0 | ||
Semicontinental | Semicontinental weak | 17.0–19.0 | |
Semicontinental strong | 19.0–21.0 | ||
Continental | Subcontinental | Subcontinental weak | 21.0–24.0 |
Subcontinental strong | 24.0–28.0 | ||
Eucontinental | Eucontinental weak | 28.0–37.0 | |
Eucontinental strong | 37.0–46.0 | ||
Hypercontinental | Hypercontinental weak | 46.0–56.0 | |
Hypercontinental strong | 56.0–66.0 |
Ic | fi | Ci | Max. Value |
---|---|---|---|
Ic ≤ 8 | f0 = 10 | Ci = C0; C0 = f0 (8 − Ic) | C0 = −80 |
18 < Ic ≤ 21 | f1 = 5 | Ci = C1; C1 = f1 (Ic − 18) | C1 = +15 |
21 < Ic ≤ 28 | f2 = 15 | Ci = C1 + C2; C1 = f1 (21 − 18) = 15; C2 = f2 (Ic − 21) | C2 = +105 |
28 < Ic ≤ 46 | f3 = 25 | Ci = C1 + C2 + C3; C1 = 15; C2 = f2 (28 − 21) = 105; C3 = f3 (Ic − 28) | C3 = +450 |
46 < Ic ≤ 65 | f4 = 30 | Ci = C1 + C2 + C3 + C4; C1 = 15; C2 = 105; C3 = f3 (46 − 28) = 450; C4 = f4 (Ic − 48) | C4 = +570 |
Thermotype | Abbr. | It, Itc | Tp: Ic ≥ 21, Itc < 120 |
---|---|---|---|
Infratropical | itr | 670–890 | >2860 |
Thermotropical | ttr | 490–670 | >2300 |
Mesotropical | mtr | 320–490 | >1700 |
Supratropical | str | 160–320 | >1000 |
Orotropical | otr | < 160 | 500–1000 |
Cryorotropical | ctr | - | 1–500 |
Gelid | gtr | - | 0 |
Ombroclimatic Type | Abbr. | Io |
---|---|---|
UItrahyperarid | uha | <0.2 |
Hyperarid | har | 0.2–0.4 |
Arid | ari | 0.4–1.0 |
Semiarid | sar | 1.0–2.0 |
Dry | dry | 2.0–3.6 |
Subhumid | shu | 3.6–6.0 |
Humid | hum | 6.0–12.0 |
Hyperhumid | hhu | 12.0–24.0 |
Ultrahyperhumid | uhh | 24.0–48.0 |
Extreme hyperhumid | ehh | >48.0 |
Bioclimate | Abbr. | Io | Iod2 |
---|---|---|---|
Tropical pluvial | Trpl | ≥3.6 | >2.5 |
Tropical pluviseasonal | Trps | ≥3.6 | ≤2.5 |
Tropical xeric | Trxe | 1.0–3.6 | - |
Tropical desertic | Trde | 0.2–1.0 | - |
Tropical hyperdesertic | Trhd | <0.2 | - |
Bioclimate Variable | Tr | Me | Te | Bo | Po |
---|---|---|---|---|---|
Submediterranean | - | - | * | * | * |
Steppic | - | * | * | * | * |
Bixeric | * | - | - | - | - |
Antitropical | * | - | - | - | - |
Seropluvial | * | - | - | - | - |
Tropical drought | * | - | - | - | - |
Polar semiboreal | - | - | - | * | * |
Semitropical hyperdesertic | * | * | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochoa-Ramos, N.-Y.; Macías-Rodríguez, M.Á.; Giménez de Azcárate, J.; Álvarez-Esteban, R.; Penas, Á.; del Río, S. Bioclimatic Characterization of Jalisco (Mexico) Based on a High-Resolution Climate Database and Its Relationship with Potential Vegetation. Remote Sens. 2025, 17, 1232. https://doi.org/10.3390/rs17071232
Ochoa-Ramos N-Y, Macías-Rodríguez MÁ, Giménez de Azcárate J, Álvarez-Esteban R, Penas Á, del Río S. Bioclimatic Characterization of Jalisco (Mexico) Based on a High-Resolution Climate Database and Its Relationship with Potential Vegetation. Remote Sensing. 2025; 17(7):1232. https://doi.org/10.3390/rs17071232
Chicago/Turabian StyleOchoa-Ramos, Norma-Yolanda, Miguel Ángel Macías-Rodríguez, Joaquín Giménez de Azcárate, Ramón Álvarez-Esteban, Ángel Penas, and Sara del Río. 2025. "Bioclimatic Characterization of Jalisco (Mexico) Based on a High-Resolution Climate Database and Its Relationship with Potential Vegetation" Remote Sensing 17, no. 7: 1232. https://doi.org/10.3390/rs17071232
APA StyleOchoa-Ramos, N.-Y., Macías-Rodríguez, M. Á., Giménez de Azcárate, J., Álvarez-Esteban, R., Penas, Á., & del Río, S. (2025). Bioclimatic Characterization of Jalisco (Mexico) Based on a High-Resolution Climate Database and Its Relationship with Potential Vegetation. Remote Sensing, 17(7), 1232. https://doi.org/10.3390/rs17071232