Advanced Plant Phenotyping Technologies for Enhanced Detection and Mode of Action Analysis of Herbicide Damage Management
Abstract
:1. Introduction
1.1. Challenges in Herbicide Development and Usage
- Monitoring and detecting herbicide damage on crops is essential to minimize its detrimental effects. By utilizing advanced monitoring technologies such as sensor networks and remote sensing, farmers and agronomists can quickly identify instances of drift and implement timely mitigation strategies.
- Analyzing herbicide resistance in weeds is also paramount. Understanding the genetic and biochemical mechanisms behind resistance can inform the development of management strategies to mitigate its spread. This includes rotating herbicides with different MOAs and integrating non-chemical control methods.
- The development of new herbicides with novel MOAs remains a high priority. Discovering new targets for herbicide action can rejuvenate the herbicide pipeline and provide fresh tools to combat resistant weeds. Identifying herbicide MOAs and analyzing their interactions at the molecular level can lead to the design of more effective and selective compounds.
1.2. Role of Phenotyping and Advanced Technologies
1.3. Outline
2. Overview of Plant Phenotyping Technologies
2.1. RGB and Multispectral Sensing
2.2. Hyperspectral Imaging
2.3. Fluorescence Imaging
2.4. Thermal Imaging
2.5. Integration of Machine Learning with Image Data for Herbicide Resistance Detection
3. Applications of Imaging Techniques in Herbicide Challenges
3.1. Detection of Herbicide Damage on Crops
3.2. Weed Herbicide Resistance Analysis
3.3. Discovery of Herbicide Mode of Actions
4. Conclusions, Future Perspectives, and Challenges
Author Contributions
Funding
Conflicts of Interest
References
- Horvath, D.P.; Clay, S.A.; Swanton, C.J.; Anderson, J.V.; Chao, W.S. Weed-Induced Crop Yield Loss: A New Paradigm and New Challenges. Trends Plant Sci. 2023, 28, 567–582. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, R.; Stenger, J.; Ostlie, M.; Flores, P. Towards Reducing Chemical Usage for Weed Control in Agriculture Using UAS Imagery Analysis and Computer Vision Techniques. Sci. Rep. 2023, 13, 6548. [Google Scholar] [CrossRef]
- Paul, S.K.; Mazumder, S.; Naidu, R. Herbicidal Weed Management Practices: History and Future Prospects of Nanotechnology in an Eco-Friendly Crop Production System. Heliyon 2024, 10, e26527. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O. Why Have No New Herbicide Modes of Action Appeared in Recent Years? Pest Manag. Sci. 2012, 68, 505–512. [Google Scholar] [CrossRef]
- McCurdy, J.D.; Bowling, R.G.; de Castro, E.B.; Patton, A.J.; Kowalewski, A.R.; Mattox, C.M.; Brosnan, J.T.; Ervin, D.E.; Askew, S.D.; Goncalves, C.G.; et al. Developing and Implementing a Sustainable, Integrated Weed Management Program for Herbicide-Resistant Poa Annua in Turfgrass. Crop Forage Turfgrass Manag. 2023, 9, e20225. [Google Scholar] [CrossRef]
- Gaines, T.A.; Duke, S.O.; Morran, S.; Rigon, C.A.G.; Tranel, P.J.; Küpper, A.; Dayan, F.E. Mechanisms of Evolved Herbicide Resistance. J. Biol. Chem. 2020, 295, 10307–10330. [Google Scholar] [CrossRef]
- Dayan, F.E. Current Status and Future Prospects in Herbicide Discovery. Plants 2019, 8, 341. [Google Scholar] [CrossRef]
- Reddy, K.N.; Huang, Y.; Lee, M.A.; Nandula, V.K.; Fletcher, R.S.; Thomson, S.J.; Zhao, F. Glyphosate-Resistant and Glyphosate-Susceptible Palmer Amaranth (Amaranthus palmeri S. Wats.): Hyperspectral Reflectance Properties of Plants and Potential for Classification. Pest Manag. Sci. 2014, 70, 1910–1917. [Google Scholar] [CrossRef]
- Tao, M.; He, Y.; Bai, X.; Chen, X.; Wei, Y.; Peng, C.; Feng, X. Combination of Spectral Index and Transfer Learning Strategy for Glyphosate-Resistant Cultivar Identification. Front. Plant Sci. 2022, 13, 973745. [Google Scholar]
- Zhang, J.; Huang, Y.; Reddy, K.N.; Wang, B. Assessing Crop Damage from Dicamba on Non-Dicamba-Tolerant Soybean by Hyperspectral Imaging through Machine Learning. Pest Manag. Sci. 2019, 75, 3260–3272. [Google Scholar] [CrossRef]
- Jin, X.; Bagavathiannan, M.; Maity, A.; Chen, Y.; Yu, J. Deep Learning for Detecting Herbicide Weed Control Spectrum in Turfgrass. Plant Methods 2022, 18, 94. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lee, M.A.; Thomson, S.J.; Reddy, K.N. Ground-Based Hyperspectral Remote Sensing for Weed Management in Crop Production. Int. J. Agric. Biol. Eng. 2016, 9, 98–109. [Google Scholar] [CrossRef]
- Hassannejad, S.; Lotfi, R.; Ghafarbi, S.P.; Oukarroum, A.; Abbasi, A.; Kalaji, H.M.; Rastogi, A. Early Identification of Herbicide Modes of Action by the Use of Chlorophyll Fluorescence Measurements. Plants 2020, 9, 529. [Google Scholar] [CrossRef]
- Ghatrehsamani, S.; Jha, G.; Dutta, W.; Molaei, F.; Nazrul, F.; Fortin, M.; Bansal, S.; Debangshi, U.; Neupane, J. Artificial Intelligence Tools and Techniques to Combat Herbicide Resistant Weeds—A Review. Sustainability 2023, 15, 1843. [Google Scholar] [CrossRef]
- Nugent, P.W.; Shaw, J.A.; Jha, P.; Scherrer, B.; Donelick, A.; Kumar, V. Discrimination of Herbicide-Resistant Kochia with Hyperspectral Imaging. J. Appl. Remote Sens. 2018, 12, 016037. [Google Scholar] [CrossRef]
- Wang, P.; Peteinatos, G.; Li, H.; Brändle, F.; Pfündel, E.; Drobny, H.G.; Gerhards, R. Rapid Monitoring of Herbicide-Resistant Alopecurus Myosuroides Huds. Using Chlorophyll Fluorescence Imaging Technology. J. Plant Dis. Prot. 2018, 125, 187–195. [Google Scholar] [CrossRef]
- Robinson, A.P.; Davis, V.M.; Simpson, D.M.; Johnson, W.G. Response of Soybean Yield Components to 2,4-D. Weed Sci. 2013, 61, 68–76. [Google Scholar]
- Niu, Z.; Young, J.; Johnson, W.G.; Young, B.; Wei, X.; Jin, J. Early Detection of Dicamba and 2, 4-D Herbicide Drifting Injuries on Soybean with a New Spatial–Spectral Algorithm Based on LeafSpec, an Accurate Touch-Based Hyperspectral Leaf Scanner. Remote Sens. 2023, 15, 5771. [Google Scholar]
- Bazhenov, M.; Litvinov, D.; Kocheshkova, A.; Karlov, G.; Divashuk, M. Chlorophyll Fluorescence Imaging Reveals the Dynamics of Bentazon Action on Sunflower (Helianthus annuus L.) Plants. Agronomy 2024, 14, 1748. [Google Scholar] [CrossRef]
- Eide, A.; Koparan, C.; Zhang, Y.; Ostlie, M.; Howatt, K.; Sun, X. UAV-Assisted Thermal Infrared and Multispectral Imaging of Weed Canopies for Glyphosate Resistance Detection. Remote Sens. 2021, 13, 4606. [Google Scholar] [CrossRef]
- Niu, Z.; Rehman, T.; Young, J.; Johnson, W.G.; Yokoo, T.; Young, B.; Jin, J. Hyperspectral Analysis for Discriminating Herbicide Site of Action: A Novel Approach for Accelerating Herbicide Research. Sensors 2023, 23, 9300. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z. PhenoBee: Drone-Based Robot for Advanced Field Proximal Phenotyping in Agriculture. Ph.D. Thesis, Purdue University Graduate School, West Lafayette, IN, USA, 2023. [Google Scholar]
- Ma, D.; Amatya, S.; Wang, L.; Carpenter, N.; Maki, H.; Zhang, L.; Neeno, S.; Tuinstra, M.R.; Jin, J. Removal of Greenhouse Microclimate Heterogeneity with Conveyor System for Indoor Phenotyping High-Throughput Field Gantry Hyperspectral Platform View Project High Throughput Phenotyping Systems View Project Removal of Greenhouse Microclimate Heterogeneity. Comput. Electron. Agric. 2019, 166, 104979. [Google Scholar] [CrossRef]
- Song, Z.; Zhao, T.; Jin, J. Early Identification of Root Damages Caused by Western Corn Rootworms Using a Minimally Invasive Root Phenotyping Robot—MISIRoot. Sensors 2023, 23, 5995. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, X.; Pan, Z.; Reddy, K.N.; Zhang, J. Hyperspectral Plant Sensing for Differentiating Glyphosate-Resistant and Glyphosate-Susceptible Johnsongrass through Machine Learning Algorithms. Pest Manag. Sci. 2022, 78, 2370–2377. [Google Scholar] [CrossRef]
- Zhang, C.; Lane, B.; Fernandez-Campos, M.; Cruz-Sancan, A.; Lee, D.-Y.; Gongora-Canul, C.; Ross, T.; Silva, C.D.; Telenko, D.; Goodwin, S.; et al. Monitoring Tar Spot Disease at Different Temporal and Canopy Levels Using Aerially-Based Multispectral Imaging and Machine Learning. In Proceedings of the ASA, CSSA, SSSA International Annual Meeting, Baltimore, MD, USA, 6–9 November 2022. [Google Scholar]
- Ramirez-Rojas, C.; Peña-Valdivia, C.; García-Esteva, A.; Padilla-Chacón, D. Phenotyping of Corn Plants with Effect of Mesotrione Herbicide. Rev. Mex. Cienc. Agríc. 2022, 13, 1399–1410. [Google Scholar] [CrossRef]
- Duddu, H.S.N.; Johnson, E.N.; Willenborg, C.J.; Shirtliffe, S.J. High-Throughput UAV Image-Based Method Is More Precise Than Manual Rating of Herbicide Tolerance. Plant Phenomics 2019, 2019, 6036453. [Google Scholar] [CrossRef]
- Feng, X.; Yu, C.; Chen, Y.; Peng, J.; Ye, L.; Shen, T.; Wen, H.; He, Y. Non-Destructive Determination of Shikimic Acid Concentration in Transgenic Maize Exhibiting Glyphosate Tolerance Using Chlorophyll Fluorescence and Hyperspectral Imaging. Front. Plant Sci. 2018, 9, 468. [Google Scholar]
- Nehurai, O.; Atsmon, G.; Kizel, F.; Kamber, E.; Bar, N.; Eizenberg, H.; Lati, R.N. Early Detection of the Herbicidal Effect of Glyphosate and Glufosinate by Using Hyperspectral Imaging. Agron. J. 2023, 115, 2558–2569. [Google Scholar] [CrossRef]
- Sanaeifar, A.; Yang, C.; de la Guardia, M.; Zhang, W.; Li, X.; He, Y. Proximal Hyperspectral Sensing of Abiotic Stresses in Plants. Sci. Total Environ. 2023, 861, 160652. [Google Scholar]
- Wang, J.; Zhang, C.; Shi, Y.; Long, M.; Islam, F.; Yang, C.; Yang, S.; He, Y.; Zhou, W. Evaluation of Quinclorac Toxicity and Alleviation by Salicylic Acid in Rice Seedlings Using Ground-Based Visible/near-Infrared Hyperspectral Imaging. Plant Methods 2020, 16, 30. [Google Scholar]
- Jeong, S.-M.; Noh, T.-K.; Kim, D.-S. Herbicide Bioassay Using a Multi-Well Plate and Plant Spectral Image Analysis. Sensors 2024, 24, 919. [Google Scholar] [CrossRef] [PubMed]
- Legendre, R.; Basinger, N.T.; van Iersel, M.W. Low-Cost Chlorophyll Fluorescence Imaging for Stress Detection. Sensors 2021, 21, 2055. [Google Scholar] [CrossRef]
- Vitek, P.; Vesela, B.; Klem, K. Spatial and Temporal Variability of Plant Leaf Responses Cascade after PSII Inhibition: Raman, Chlorophyll Fluorescence and Infrared Thermal Imaging. Sensors 2020, 20, 1015. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Snider, J.L.; Li, C.; Rains, G.C.; Paterson, A.H. Ground Based Hyperspectral Imaging to Characterize Canopy-Level Photosynthetic Activities. Remote Sens. 2020, 12, 315. [Google Scholar] [CrossRef]
- Noble, E.; Kumar, S.; Gorlitz, F.G.; Stain, C.; Dunsby, C.; French, P.M.W. In Vivo Label-Free Mapping of the Effect of a Photosystem II Inhibiting Herbicide in Plants Using Chlorophyll Fluorescence Lifetime. Plant Methods 2017, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, P.; Weber, J.F.; Gerhards, R. Early Identification of Herbicide Stress in Soybean (Glycine Max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology. Sensors 2018, 18, 21. [Google Scholar] [CrossRef]
- Huang, Y.; Thomson, S.J. Airborne Multispectral and Thermal Remote Sensing for Detecting the Onset of Crop Stress Caused by Multiple Factors. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XII, Toulouse, France, 20–22 September 2010; Neale, C.M.U., Maltese, A., Eds.; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 2010; Volume 7824, p. 78240E. [Google Scholar]
- Eide, A.; Zhang, Y.; Koparan, C.; Stenger, J.; Ostlie, M.; Howatt, K.; Bajwa, S.; Sun, X. Image Based Thermal Sensing for Glyphosate Resistant Weed Identification in Greenhouse Conditions. Comput. Electron. Agric. 2021, 188, 106348. [Google Scholar] [CrossRef]
- Farooque, A.; Vieira, C.C.; Sarkar, S.; Tian, F.; Zhou, J.; Jarquin, D.; Nguyen, H.T.; Zhou, J.; Chen, P. Differentiate Soybean Response to Off-Target Dicamba Damage Based on UAV Imagery and Machine Learning. Remote Sens. 2022, 14, 1618. [Google Scholar] [CrossRef]
- Rehman, T.U.; Mahmud, M.S.; Chang, Y.K.; Jin, J.; Shin, J. Current and Future Applications of Statistical Machine Learning Algorithms for Agricultural Machine Vision Systems. Comput. Electron. Agric. 2019, 156, 585–605. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Chu, H.; Zhang, C.; Wang, M.; Gouda, M.; Wei, X.; He, Y.; Liu, Y. Hyperspectral Imaging with Shallow Convolutional Neural Networks (SCNN) Predicts the Early Herbicide Stress in Wheat Cultivars. J. Hazard. Mater. 2022, 421, 126706. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Xiao, T.; Yang, L.; Zhang, D.; Cui, T.; Wang, L.; Du, Z.; Xie, C.; Li, Z.; Gong, C.; Li, H.; et al. Early Prediction of Maize Resistance to Nicosulfuron Using Hyperspectral Imaging and Deep Learning: Method and Mechanism. Comput. Electron. Agric. 2024, 227, 109511. [Google Scholar] [CrossRef]
- CWSS_SCM Rating Scale. Available online: https://weedscience.ca/cwss_scm-rating-scale/ (accessed on 17 March 2025).
- Xiao, T.; Yang, L.; Zhang, D.; Cui, T.; Zhang, X.; Deng, Y.; Li, H.; Wang, H. Early Detection of Nicosulfuron Toxicity and Physiological Prediction in Maize Using Multi-Branch Deep Learning Models and Hyperspectral Imaging. J. Hazard. Mater. 2024, 474, 134723. [Google Scholar] [PubMed]
- Suarez, L.A.; Apan, A.; Werth, J. Hyperspectral Sensing to Detect the Impact of Herbicide Drift on Cotton Growth and Yield. ISPRS J. Photogramm. Remote Sens. 2016, 120, 65–76. [Google Scholar] [CrossRef]
- Marques, M.G.; da Cunha, J.P.A.R.; Lemes, E.M. Dicamba Injury on Soybean Assessed Visually and with Spectral Vegetation Index. AgriEngineering 2021, 3, 240–250. [Google Scholar] [CrossRef]
- Weber, J.F.; Kunz, C.; Peteinatos, G.G.; Santel, H.-J.; Gerhards, R. Utilization of Chlorophyll Fluorescence Imaging Technology to Detect Plant Injury by Herbicides in Sugar Beet and Soybean. Weed Technol. 2017, 31, 523–535. [Google Scholar]
- Huang, Y.; Reddy, K.N.; Thomson, S.J.; Yao, H. Assessment of Soybean Injury from Glyphosate Using Airborne Multispectral Remote Sensing. Pest Manag. Sci. 2015, 71, 545–552. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, Y.; Huang, Y.; Reddy, K.N.; Lee, M.A.; Fletcher, R.S.; Thomson, S.J. Early Detection of Crop Injury from Herbicide Glyphosate by Leaf Biochemical Parameter Inversion. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 78–85. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, Y.; Reddy, K.N.; Yang, P.; Zhao, X.; Zhang, J. Using Machine Learning and Hyperspectral Images to Assess Damages to Corn Plant Caused by Glyphosate and to Evaluate Recoverability. Agronomy 2021, 11, 583. [Google Scholar] [CrossRef]
- Jones, E.A.L.; Austin, R.; Dunne, J.C.; Cahoon, C.W.; Jennings, K.M.; Leon, R.G.; Everman, W.J. Utilization of Image-Based Spectral Reflectance to Detect Herbicide Resistance in Glufosinate-Resistant and Glufosinate-Susceptible Plants: A Proof of Concept. Weed Sci. 2023, 71, 11–21. [Google Scholar]
- Henry, W.B.; Shaw, D.R.; Reddy, K.R.; Bruce, L.M.; Tamhankar, H.D. Remote Sensing to Detect Herbicide Drift on Crops. Weed Technol. 2004, 18, 358–368. [Google Scholar] [CrossRef]
- Burgos, N.R.; Tranel, P.J.; Streibig, J.C.; Davis, V.M.; Shaner, D.; Norsworthy, J.K.; Ritz, C. Review: Confirmation of Resistance to Herbicides and Evaluation of Resistance Levels. Weed Sci. 2013, 61, 4–20. [Google Scholar] [CrossRef]
- Panozzo, S.; Scarabel, L.; Collavo, A.; Sattin, M. Protocols for Robust Herbicide Resistance Testing in Different Weed Species. J. Vis. Exp. 2015, 52923. [Google Scholar] [CrossRef]
- Wang, P.; Peteinatos, G.; Li, H.; Gerhards, R. Rapid In-Season Detection of Herbicide Resistant Alopecurus Myosuroides Using a Mobile Fluorescence Imaging Sensor. Crop Prot. 2016, 89, 170–177. [Google Scholar] [CrossRef]
- Linn, A.I.; Mink, R.; Peteinatos, G.G.; Gerhards, R. In-Field Classification of Herbicide-Resistant Papaver rhoeas and Stellaria media Using an Imaging Sensor of the Maximum Quantum Efficiency of Photosystem II. Weed Res. 2019, 59, 357–366. [Google Scholar]
- Scherrer, B.; Sheppard, J.; Jha, P.; Shaw, J.A. Hyperspectral Imaging and Neural Networks to Classify Herbicide-Resistant Weeds. J. Appl. Remote Sens. 2019, 13, 044516. [Google Scholar] [CrossRef]
- Xia, F.; Quan, L.; Lou, Z.; Sun, D.; Li, H.; Lv, X. Identification and Comprehensive Evaluation of Resistant Weeds Using Unmanned Aerial Vehicle-Based Multispectral Imagery. Front. Plant Sci. 2022, 13, 938604. [Google Scholar] [CrossRef]
- Shirzadifar, A.; Bajwa, S.; Nowatzki, J.; Bazrafkan, A. Field Identification of Weed Species and Glyphosate-Resistant Weeds Using High Resolution Imagery in Early Growing Season. Biosyst. Eng. 2020, 200, 200–214. [Google Scholar] [CrossRef]
- Jones, E.A.L.; Austin, R.; Dunne, J.C.; Leon, R.G.; Everman, W.J. Discrimination between Protoporphyrinogen Oxidase-Inhibiting Herbicide-Resistant and Herbicide-Susceptible Redroot Pigweed (Amaranthus retroflexus) with Spectral Reflectance. Weed Sci. 2023, 71, 198–205. [Google Scholar]
- Wang, P.; Li, H.; Jia, W.; Chen, Y.; Gerhards, R. A Fluorescence Sensor Capable of Real-Time Herbicide Effect Monitoring in Greenhouses and the Field. Sensors 2018, 18, 3771. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, K. What It Takes to Get a Herbicide’s Mode of Action. Physionomics, a Classical Approach in a New Complexion. Pest Manag. Sci. 2005, 61, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Vítek, P.; Novotná, K.; Hodaňová, P.; Rapantová, B.; Klem, K. Detection of Herbicide Effects on Pigment Composition and PSII Photochemistry in Helianthus annuus by Raman Spectroscopy and Chlorophyll a Fluorescence. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 170, 234–241. [Google Scholar] [CrossRef]
- Suarez, L.A.; Apan, A.; Werth, J. Detection of Phenoxy Herbicide Dosage in Cotton Crops through the Analysis of Hyperspectral Data. Int. J. Remote Sens. 2017, 38, 6528–6553. [Google Scholar] [CrossRef]
- Chu, H.; Gouda, M.; He, Y.; Li, X.; Li, Y.; Zhao, Y.; Zhang, X.; Liu, Y. Developing Fluorescence Hyperspectral Imaging Methods for Non-Invasive Detection of Herbicide Safeners Action Mechanism and Effectiveness. Plant Physiol. Biochem. 2025, 218, 109309. [Google Scholar] [CrossRef]
- Tao, M.; Bai, X.; Zhang, J.; Wei, Y.; He, Y. Time-Series Monitoring of Transgenic Maize Seedlings Phenotyping Exhibiting Glyphosate Tolerance. Processes 2022, 10, 2206. [Google Scholar] [CrossRef]
Parameter | Definition | Formula | Key Applications | References |
---|---|---|---|---|
Maximum quantum yield of PSII photochemistry | Used to screen for metabolic perturbations, detect early stress responses, and identify herbicide-resistant weeds | [19,29,33,35] | ||
Operating efficiency of PSII | Serves as a bioindicator of photosynthetic machinery damage and stress evaluation | [29,33,34,36,37] | ||
NPQ | Reflects heat dissipation of excess energy in PSII antenna complexes | Evaluates photoprotection mechanisms and the degree of thermal energy dissipation under stress conditions | [29,35,36,38] | |
Fraction of maximum fluorescence dissipated under steady-state conditions | Contributes to understanding the balance between photochemical utilization and energy dissipation | [33] | ||
qP | Coefficient of photochemical quenching | Reflects the proportion of open PSII reaction centers and is used to assess the efficiency of the photochemical phase | [29] |
Crop Type | Sensor Type | Herbicide Name | Herbicide Group Number | Herbicide Group Name | Reference |
---|---|---|---|---|---|
Wheat | Hyperspectral | Mesosulfuron-methyl | 2 | ALS inhibitors | [44] |
Corn | Hyperspectral | Nicosulfuron | 2 | [50] | |
Maize | Hyperspectral | Nicosulfuron | 2 | [48] | |
Soybean | Hyperspectral | 2,4-D | 4 | Synthetic auxins | [18] |
Cotton | Hyperspectral | 2,4-D | 4 | [51] | |
Soybean | Hyperspectral, RGB | Dicamba | 4 | [52] | |
Soybean | RGB | Dicamba | 4 | [41] | |
Soybean | Hyperspectral | Dicamba | 4 | [18] | |
Soybean | Hyperspectral | Dicamba | 4 | [36] | |
Wheat | Hyperspectral | MCPA-Na | 4 | [44] | |
Sugar Beet | Chlorophyll Fluorescence Imaging | Desmedipham | 5 | Photosystem II inhibitors | [53] |
Sugar Beet | Chlorophyll Fluorescence Imaging | Phenmedipham | 5 | [53] | |
Wheat | Hyperspectral | Isoproturon | 7 | Photosynthesis inhibitors | [44] |
Sugar Beet | Chlorophyll Fluorescence Imaging | Lenacil | 7 | [53] | |
Soybean | Multispectral | Glyphosate | 9 | EPSP synthase inhibitors | [54] |
Soybean | Hyperspectral | Glyphosate | 9 | [55] | |
Black nightshade | Hyperspectral | Glyphosate | 9 | [30] | |
Corn | Hyperspectral | Glyphosate | 9 | [56] | |
Maize | Hyperspectral | Glyphosate | 9 | [56] | |
Black nightshade | Hyperspectral | Glufosinate | 10 | Glutamine synthetase inhibitor | [30] |
Soybean | Multispectral | Glufosinate | 10 | [57] | |
Sugar Beet | Chlorophyll Fluorescence Imaging | Ethofumesate | 16 | HRAC Group F3 | [53] |
Weed Scientific Name | Sensor Type | Herbicide Group Number | Herbicide Group Name | Reference |
---|---|---|---|---|
Alopecurus myosuroides | Chlorophyll Fluorescence Imaging | 1 | ACCase inhibitors | [61] |
Alopecurus myosuroides | Chlorophyll Fluorescence Imaging | 2 | ALS inhibitors | [16] |
Papaver rhoeas | Chlorophyll Fluorescence Imaging | 2 | ALS inhibitors | [62] |
Stellaria media | Chlorophyll Fluorescence Imaging | 2 | ALS inhibitors | [62] |
Kochia scoparia, marestail, Conyza canadensis, Chenopodium album | Hyperspectral | 4 | Synthetic auxins | [63] |
Kochia scoparia | Hyperspectral | 4 | Synthetic auxins | [15] |
Echinochloa crus-galli | Multispectral, RGB | 5 | Photosystem II inhibitors | [64] |
Abutilon theophrasti | Multispectral, RGB | 5 | Photosystem II inhibitors | [64] |
Amaranthus palmeri | Hyperspectral | 9 | Glyphosate (EPSP synthase inhibitors) | [8] |
Kochia, Conyza canadensis, Chenopodium album | Hyperspectral | 9 | Glyphosate (EPSP synthase inhibitors) | [63] |
Kochia scoparia | Hyperspectral | 9 | Glyphosate (EPSP synthase inhibitors) | [15] |
Amaranthus rudis | Thermal | 9 | Glyphosate (EPSP synthase inhibitors) | [40] |
Conyza canadensis | Thermal | 9 | Glyphosate (EPSP synthase inhibitors) | [40] |
Amaranthus rudis, Kochia scoparia, Ambrosia artemisiifolia | Multispectral | 9 | Glyphosate (EPSP synthase inhibitors) | [65] |
Kochia scoparia | Thermal, Multispectral | 9 | Glyphosate (EPSP synthase inhibitors) | [20] |
Amaranthus retroflexus | Multispectral | 10 | Glutamine synthetase inhibitors | [57] |
Amaranthus retroflexus | Multispectral | 14 | PPO inhibitors | [66] |
Herbicide Name | Herbicide Group Number | Herbicide Group Name | Sensor Type | Reference |
---|---|---|---|---|
Pinoxaden | 1 | ACCase inhibitors | Chlorophyll Fluorescence Imaging | [67] |
U-46 Combi Fluid | 2 | ALS inhibitors | Chlorophyll Fluorescence Imaging | [13] |
Penoxsulam | RGB, Thermal, Chlorophyll Fluorescence Imaging | [33] | ||
Chlorimuron | Hyperspectral | [21] | ||
Amidosulfuron | Raman spectroscopy, chlorophyll fluorescence imaging | [69] | ||
Cruz | 4 | Synthetic auxins | Chlorophyll Fluorescence Imaging | [13] |
2,4-D | Hyperspectral | [70] | ||
Atrazine | 5 | Photosystem II inhibitors | Hyperspectral | [21] |
Bentazon | 6 | Chlorophyll Fluorescence Imaging | [19] | |
Basagran | Chlorophyll Fluorescence Imaging | [13] | ||
Bromicide | Chlorophyll Fluorescence Imaging | [13] | ||
Dinoseb | Hyperspectral | [21] | ||
Glyphosate | 9 | EPSP synthase inhibitors | RGB, Thermal, Chlorophyll Fluorescence Imaging | [33] |
Glyphosate | Hyperspectral | [30] | ||
Glyphosate | Hyperspectral | [21] | ||
Glufosinate | 10 | Glutamine synthetase inhibitors | RGB, Thermal, Chlorophyll Fluorescence Imaging | [33] |
Glufosinate | Hyperspectral | [30] | ||
Glufosinate | Hyperspectral | [21] | ||
Diflufenican | 12 | Carotenoid biosynthesis inhibitors | Raman spectroscopy, chlorophyll fluorescence imaging | [69] |
Clomazone | 13 | Long-chain fatty acid inhibitors | Raman spectroscopy, chlorophyll fluorescence imaging | [69] |
Tiafenacil | 14 | PPO inhibitors | RGB, Thermal, Chlorophyll Fluorescence Imaging | [33] |
Flumioxazin | Hyperspectral | [21] | ||
Carfentrazone-ethyl | Raman spectroscopy, chlorophyll fluorescence Imaging | [69] | ||
Gramoxone | 22 | Photosystem I electron diverter | Chlorophyll Fluorescence Imaging | [13] |
Paraquat | 22 | RGB, Thermal, Chlorophyll Fluorescence Imaging | [33] | |
Paraquat | 22 | Hyperspectral | [21] | |
Isoxaflutole | 27 | HPPD inhibitors | RGB, Thermal, Chlorophyll Fluorescence Imaging | [33] |
Mesotrione | 27 | HPPD inhibitors | Raman spectroscopy, chlorophyll fluorescence Imaging | [69] |
Indaziflam | 29 | Cellulose biosynthesis inhibitors (CBIs) | Hyperspectral | [21] |
Pyroxsulam + Florasulam | 2 | ALS inhibitors | Chlorophyll Fluorescence Imaging | [67] |
Lumax (S-metolachlor + Mesotrione + Terbuthylazine) | 5 | Photosystem II inhibitors | Chlorophyll Fluorescence Imaging | [13] |
15 | Seedling Growth Inhibitors | Chlorophyll Fluorescence Imaging | [13] | |
27 | HPPD Inhibitors | Chlorophyll Fluorescence Imaging | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Z.; Li, X.; Zhao, T.; Chen, Z.; Jin, J. Advanced Plant Phenotyping Technologies for Enhanced Detection and Mode of Action Analysis of Herbicide Damage Management. Remote Sens. 2025, 17, 1166. https://doi.org/10.3390/rs17071166
Niu Z, Li X, Zhao T, Chen Z, Jin J. Advanced Plant Phenotyping Technologies for Enhanced Detection and Mode of Action Analysis of Herbicide Damage Management. Remote Sensing. 2025; 17(7):1166. https://doi.org/10.3390/rs17071166
Chicago/Turabian StyleNiu, Zhongzhong, Xuan Li, Tianzhang Zhao, Zhiyuan Chen, and Jian Jin. 2025. "Advanced Plant Phenotyping Technologies for Enhanced Detection and Mode of Action Analysis of Herbicide Damage Management" Remote Sensing 17, no. 7: 1166. https://doi.org/10.3390/rs17071166
APA StyleNiu, Z., Li, X., Zhao, T., Chen, Z., & Jin, J. (2025). Advanced Plant Phenotyping Technologies for Enhanced Detection and Mode of Action Analysis of Herbicide Damage Management. Remote Sensing, 17(7), 1166. https://doi.org/10.3390/rs17071166