Observations of the Microphysics and Type of Wintertime Mixed-Phase Precipitation, and Instrument Comparisons at Sorel, Quebec, Canada
Abstract
:1. Introduction
2. Materials and Methods
Study Area and Data
3. Results
3.1. Meteorological Conditions of the Site During the WINTRE-MIX Project
3.2. PT Manual and Instrument Comparisons
3.3. Case Study of Mixed Precipitation on 6 March 20022
3.4. Case Study of Mixed Precipitation Dominated by IPs on 23 February 2022
3.5. Velocity, Size Relationships, and Precipitation Types
3.6. Solid and Freezing Precipitation as a Function of RH and T
3.7. Precipitation
3.7.1. Comparisons of Solid Precipitation Using the Instruments and Manual Measurements
3.7.2. Comparisons of the Instruments Measuring Precipitation Using the Entire Data
3.7.3. Frequency Distributions of Freezing Precipitation as a Function of and T
3.7.4. 2D Frequency Distributions of Freezing Precipitation as a Function of and T
3.7.5. Relationship Between LWC, , and Freezing Precipitation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Brief Description of the Vaisala FD71P
Appendix A.2. PARSIVEL Data Processing
References
- Cortinas, J.V.; Bernstein, B.C.; Robbins, C.C.; Strapp, J.W. An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–1990. Weather Forecast. 2004, 19, 377–390. [Google Scholar] [CrossRef]
- Adhikari, A.; Liu, C. Remote sensing properties of freezing rain events from space. J. Geophys. Res. Atmos. 2019, 124, 10385–10400. [Google Scholar] [CrossRef]
- Deng, D.; Gao, S.; Du, X.; Wu, W. A diagnostic study of freezing rain over Guizhou, China, in January 2011. Q. J. R. Meteorol. Soc. 2012, 138, 1233–1244. [Google Scholar] [CrossRef]
- Lott, N.; Ross, D.; Graumann, A.; Eastern, U.S. Flooding and Ice Storm January 1998; Tech. Rep.; NOAA/National Climatic Data Center: Asheville, NC, USA, 1998; p. 6. [Google Scholar]
- De Gaetano, A.T. Climatic perspective and impacts of the 1998 northern New York and New England ice storm. Bull. Am. Meteorol. Soc. 2000, 81, 237–254. [Google Scholar] [CrossRef]
- Gyakum, J.R.; Roebber, P.J. The 1998 ice storm—Analysis of a planetary-scale event. Mon. Weather Rev. 2001, 129, 2983–2997. [Google Scholar] [CrossRef]
- Roebber, P.J.; Gyakum, J.R. Orographic influences on the mesoscale structure of the 1998 ice storm. Mon. Weather Rev. 2003, 131, 27–50. [Google Scholar] [CrossRef]
- Strapp, J.W.; Stuart, R.A.; Isaac, G.A. A Canadian climatology of freezing precipitation and a detailed study using data from St. John’s, Newfoundland. In Proceedings of the FAA International Conferrence on Aircraft Inflight Icing, FAA, DOT/FAA/AR-96/81. Springfield, VA, USA, 6–8 May 1996; Volume 2, pp. 45–56. [Google Scholar]
- Stuart, R.A.; Isaac, G.A. Freezing precipitation in Canada. Atmosphere-Ocean 1999, 37, 87–102. [Google Scholar] [CrossRef]
- Boudala, F.S.; Isaac, G.A. Parameterization of visibility in snow: Application in numerical weather prediction models. J. Geophys. Res. 2009, 114, D19202. [Google Scholar] [CrossRef]
- Huffman, G.J.; Norman Jr., G. A. The supercooled warm rain process and the specification of freezing precipitation. Mon. Weather Rev. 1988, 116, 2172–2182. [Google Scholar] [CrossRef]
- Bocchieri, J.R. A new operational system for forecasting precipitation type. Mon. Weather Rev. 1979, 107, 637–649. [Google Scholar] [CrossRef]
- Rauber, R.M.; Olthoff, L.; Ramamurthy, M.; Kunkel, K. The relative importance of warm rain and melting processes in freezing precipitation events. J. Appl. Meteor. 2000, 39, 1185–1195. [Google Scholar] [CrossRef]
- Bernstein, B. Regional and local influences on freezing drizzle freezing rain, and ice pellets. Weather Forecast. 2000, 15, 485–508. [Google Scholar] [CrossRef]
- Hanesiak, J.; Stewart, R. The mesoscale and microscale structure of a severe ice pellet storm. Mon. Weather Rev. 1999, 123, 3144–3162. [Google Scholar] [CrossRef]
- Zerr, R.J. Freezing rain: An observational and theoretical study. J. Appl. Meteor. 1997, 36, 1647–1661. [Google Scholar] [CrossRef]
- Gascón, E.; Hewson, T.; Haiden, T. Improving predictions of precipitation type at the surface: Description and verification of two new products from the ECMWF ensemble. Weather Forecast. 2018, 33, 89–108. [Google Scholar] [CrossRef]
- Ralph, F.M.; Rauber, R.M.; Jewett, B.F.; Kingsmill, D.E.; Pisano, P.; Pugner, P.; Rasmussen, R.M.; Reynolds, D.W.; Schlatter, T.W.; Stewart, R.E.; et al. Improving short-term (0–48 h) cool-season quantitative precipitation forecasting: Recommendations from a USWRP workshop. Bull. Am. Meteorol. Soc. 2005, 86, 1619–1632. [Google Scholar] [CrossRef]
- Tessendorf, S.A.; Ugg, A.; Korolev, A.; Heckman, I.; Weeks, C.; Thompson, G.; Jacobson, D.; Adriaansen, D.; Hagger, J. Differentiating Freezing Drizzle and Freezing Rain in HRRR Model Forecasts. Weather Forecast. 2021, 36, 1237–1251.4. [Google Scholar] [CrossRef]
- Thériault, J.M.; Stewart, R.E.; Henson, W. On the dependence of winter precipitation types on temperature, precipitation rate, and associated features. J. Appl. Meteor. Climatol. 2010, 49, 1429–1442. [Google Scholar] [CrossRef]
- Ikeda, K.; Steiner, M.; Thompson, G. Examination of mixed-phase precipitation forecasts from the High-Resolution Rapid Refresh model using surface observations and sounding data. Weather Forecast. 2017, 32, 949–967. [Google Scholar] [CrossRef]
- Bourgouin, P. A method to determine precipitation types. Weather Forecast. 2000, 15, 583–592. [Google Scholar] [CrossRef]
- Baldwin, M.; Treadon, R.; Contorno, S. Precipitation type prediction using a decision tree approach with NMC’s Meso- scale Eta Model. In Proceedings of the 10th Conference on Numerical Weather Prediction, Portland, OR, USA, 18–22 July 1994; pp. 30–31. [Google Scholar]
- Isaac, G.A.; Cober, S.G.; Korolev, A.V.; Strapp, J.W.; Tremblay, A.; Marcotte, D.L. Overview of the Canadian freezing drizzle experiment I, II, and III. In Proceedings of the Cloud Physics Conference, Everett, WA, USA, 17–21 August 1998. [Google Scholar]
- Boudala, F.S.; Isaac, G.A.; Filman, P.; Crawford, R.; Hudak, D. Performance of Emerging Technologies for Measuring Solid and Liquid Precipitation in Cold Climate as Compared to the Traditional Manual Gauges. J. Atmos. Oceanic Technol. 2017, 34, 167–184. [Google Scholar] [CrossRef]
- Boudala, F.S.; Isaac, G.A.; Wu, D. Aircraft Icing Study Using Integrated Observations and Model Data. Weather Forecast. 2019, 34, 485–506. [Google Scholar] [CrossRef]
- Lachapelle, M.; Thompson, H.D.; Leroux, N.R.; Thériault, J.M. Measuring Ice Pellets and Refrozen Wet Snow Using a Laser-Optical Disdrometer. J. Appl. Meteorol. Climatol. 2024, 63, 65–84. [Google Scholar] [CrossRef]
- Rahman, K.; Testik, F.Y. Shapes and Fall Speeds of Freezing and Frozen Raindrops. J. Hydrometeorol. 2020, 21, 1311–1331. [Google Scholar] [CrossRef]
- Minder, J.R.; Bassill, N.; Fabry, F.; French, J.; Friedrich, K.; Gultepe, I.; Gyakum, J.D.; Kingsmill, K.; Kosiba; Lachapelle, M.; et al. P-Type Processes and Predictability: The Winter Precipitation Type Research Multiscale Experiment (WINTRE-MIX)-BAMS2023. Bull. Am. Meteorol. Soc. 2023, 104, E1469–E1492. [Google Scholar] [CrossRef]
- METEK, Micro Rain Radar (MRR), MRR-2 and MRR-Pro a Tutorial. 2017. Available online: https://metek.de/wp-content/uploads/2016/12/2018-0206-MRR_tutorial.pdf (accessed on 1 March 2025).
- Klugmann, D.; Kauppinen, L. FD70—A Tool for Supporting Satellite Weather Observations. IGARSS. 2022. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9883220 (accessed on 1 March 2025).
- Boudala, F.S.; Milbrandt, J.A. Solid Precipitation and Visibility Measurements at the Centre for Atmospheric Research Experiments in Southern Ontario and Bratt’s Lake in Southern Saskatchewan. Remote Sens. 2023, 15, 4079. [Google Scholar] [CrossRef]
- Boudala, F.S.; Isaac, G.A.; Rasmussen, R.; Cober, S.; Scott, B. Comparisons of snowfall measurements in complex terrain made during the 2010 Winter Olympics in Vancouver. Pure Appl. Geophys. 2014, 171, 113. [Google Scholar] [CrossRef]
- Lofflermang, M.; Joss, J. An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol. 2000, 17, 130–139. [Google Scholar] [CrossRef]
- Holroyd, E.W., III. The Meso- and Microscale Structure of Great Lakes Snowstorm Bands: A Synthesis of Ground Measurements, Radar Data, and Satellite Observations. Ph.D. Thesis, University at Albany, State University of New York, Albany, NY, USA, 1971; p. 148. [Google Scholar]
- Bukovcic, P.; Ryzhkov, A.; Zrnic´, D.; Zhang, G. Polarimetric radar relations for quantification of snow based on Disdrometer data. J. Appl. Meteor. Climatol. 2018, 57, 103–120. [Google Scholar] [CrossRef]
- Zhang, G. Weather Radar Polarimetry; CRC Press: Boca Raton, FL, USA, 2016; p. 304. [Google Scholar]
- Zawadzki, I.; Szyrmer, W.; Bell, C.; Fabry, F. Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci. 2005, 62, 3705–3723. [Google Scholar] [CrossRef]
- Han, B.; Minder, J.R.; Winters, A.; Baima, R.; Thériault; Lachapelle, M.; Gyakum, J.; Wray, J. WINTRE-MIX: Manual Hydrometeor Observation Reports; Version 1.0.11 Data Files, 2 Ancillary/Documentation Files, KiB; UCAR/NCAR-Earth Observing Laboratory: Boulder, CO, USA, 2022. [Google Scholar] [CrossRef]
- Gunn, R.; Kinzer, G.D. Terminal velocity of water droplets in stagnant air. J. Atmos. Sci. 1949, 6, 243–248. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Westbrook, C.D. Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci. 2010, 67, 2469–2482. [Google Scholar] [CrossRef]
- Knight, N.C.; Heymsfield, A.J. Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci. 1983, 40, 1510–1516. [Google Scholar] [CrossRef]
- Locatelli, J.D.; Hobbs, P. Fall speeds and masses of solid precipitation particles. J. Geophys. Res. V 1974, 79, 2185–2197. [Google Scholar] [CrossRef]
- Mitchell, D.L. The use of mass- and area-dimensional power laws for determining precipitating particle terminal velocities. J. Atmos. Sci. 1996, 53, 1710–1723. [Google Scholar] [CrossRef]
- Letson, F.; Pryor, S.C. From Hydrometeor Size Distribution Measurements to Projections of Wind Turbine Blade Leading-Edge Erosion. Energies 2023, 16, 3906. [Google Scholar] [CrossRef]
- Jennings, K.S.; Winchell, T.S.; Livneh, B.; Noah, P. Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere. Nat. Commun. 2018, 9, 1148. [Google Scholar] [CrossRef]
- Nagumo, N.; Fujiyoshi, Y. Microphysical properties of slow-falling and fast-falling ice pellets formed by freezing associated with evaporative cooling. Mon. Wea. Rev. 2001, 143, 4376–4392. [Google Scholar] [CrossRef]
- Sun, F.; Chen, Y.; Li, Y.; Li, Z.; Duan, W.; Zhang, Q.; Chuan, W. Incorporating relative humidity improves the accuracy of precipitation. Atmos. Res. 2022, 271, 106094. [Google Scholar] [CrossRef]
- Smith, C.D.; Ross, A.; Kochendorfer, J.; Earle, M.E.; Wolff, M.; Buisán, S.; Roulet, Y.-A.; Laine, T. Evaluation of the WMO Solid Precipitation Intercomparison Experiment (SPICE) transfer functions for adjusting the wind bias in solid precipitation measurements. Hydrol. Earth Syst. Sci. 2020, 24, 4025–4043. [Google Scholar] [CrossRef]
- Jones, K.F. A simple model for freezing rain ice loads. Atmos. Res. 1998, 46, 87–97. [Google Scholar] [CrossRef]
- Jones, K.F. Freezing Fraction in Freezing Rain. Weather Forecast. 2022, 47, 163–178. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, Z.; Xu, Z. Effects of rainfall on aircraft aerodynamics. Prog. Aerosp. Sci. 2014, 71, 85–127. [Google Scholar] [CrossRef]
- Best, A.C. The size distribution of raindrops. Quart. J. Roy. Meteor. Soc. 1949, 76, 16–36. [Google Scholar] [CrossRef]
- Marshall, J.S.; Palmer, W.M. The distribution of raindrops with size. J. Meteorol. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Testud, J.; Oury, S.; Amayenc, P.; Black, R.A. The concept of ‘‘normalized’’ distributions to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor. 2001, 40, 1118–1140. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.L.; Schoenhuber, M. Raindrop size distribution in different climatic regimes from disdrometer and dualpolarized radar analysis. J. Atmos. Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
- Brandes, E.A.; Ikeda, K.; Zhang, G.; Schonhuber, M.; Rasmussen, R.M. A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol. 2007, 46, 634–650. [Google Scholar] [CrossRef]
Instruments | Measured Quantities | Range | Resolution | Accuracy | Recorded |
---|---|---|---|---|---|
FD71P Present weather and disdrometer | Precipitation intensity and type | 0.01–999.99 mm h−1 | 0.01 mm h−1 | ±02.2% | 5 s |
T-HMP155 | −40 °C to 60 °C | 0.1 °C | ±0.4 °C | 5 s | |
RH-HMP155 | 0–100% | 0.1% | ±1%(0–90%) ±1.7%(90–100%) | 5 s | |
PARSIVEL Present weather and optical disdrometer | Precipitation intensity and type | 0–9999.9 mm h−1 | - | - | 1 m |
Fall velocity | 0.05–20.8 m s−1 | - | - | 1 | |
size | 0.06–24.5 mm | - | - | ||
Pluvio2 200 1500 mm capacity Automatic weighting gauge | Precipitation amount | 0.02 mm | ±0.2 mm | 1 m | |
WXT520 | Wind speed | 0–60 m s−1 | 0.1 m s−1 | ±0.3 °C m s−1 (0–35 m s−1) 5% (36–60 m s−1) | 10 s |
PT | FD71P | PARSIVEL | Manual |
---|---|---|---|
C | 15.8 | 16.3 | 14.1 |
S | 42.2 | 43.7 | 45.9 |
SP | NA | 4 | 1 |
IP | 2 | NA | 12.6 |
SG | 0 | 0 | 0.7 |
IC | 0 | 0 | 0 |
R | 13 | 7 | 9 |
ZR | 18 | 12.4 | 6.1 |
ZL | 4 | 2 | 4.3 |
RLS | 3.3 | 9.1 | NA |
L | 1.3 | 3.3 | 6.3 |
RL | 0.22 | 2.8 | 0.22 |
A | b | Type |
---|---|---|
1.3 | 0.66 | Lump graupel |
2.364 | 0.553 | Fresh hailstone |
3.74 | 0.5 | Hailstone |
Dates | Manual (SWE) | FD71P (mm) | Pluvio2 (mm) | (mm) | (mm) | T (°C) (PT) | (m s−1) |
---|---|---|---|---|---|---|---|
20220301 | 5 | 12 | 3.5 | 6 | 6 | <−7 (S) | <0.6 |
20220312 | 7 | 4 | 4 | 6 | 6 | <0.5 (S) | <0.5 |
20220223 | 10 | 10 | 10 | 18.5 | 18 | <−4.5 (IP) | <1 |
20220218 | 20 | 21 | 12 | 40 | 30 | <2 (S) | <1.5 |
Total (mm) | 52 | 57 | 39.5 | 70.5 | 60 | ||
Inst/Man | - | 1.1 | 0.76 | 1.36 | 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boudala, F.S.; Lachapelle, M.; Isaac, G.A.; Milbrandt, J.A.; Michelson, D.; Reed, R.; Holden, S. Observations of the Microphysics and Type of Wintertime Mixed-Phase Precipitation, and Instrument Comparisons at Sorel, Quebec, Canada. Remote Sens. 2025, 17, 945. https://doi.org/10.3390/rs17060945
Boudala FS, Lachapelle M, Isaac GA, Milbrandt JA, Michelson D, Reed R, Holden S. Observations of the Microphysics and Type of Wintertime Mixed-Phase Precipitation, and Instrument Comparisons at Sorel, Quebec, Canada. Remote Sensing. 2025; 17(6):945. https://doi.org/10.3390/rs17060945
Chicago/Turabian StyleBoudala, Faisal S., Mathieu Lachapelle, George A. Isaac, Jason A. Milbrandt, Daniel Michelson, Robert Reed, and Stephen Holden. 2025. "Observations of the Microphysics and Type of Wintertime Mixed-Phase Precipitation, and Instrument Comparisons at Sorel, Quebec, Canada" Remote Sensing 17, no. 6: 945. https://doi.org/10.3390/rs17060945
APA StyleBoudala, F. S., Lachapelle, M., Isaac, G. A., Milbrandt, J. A., Michelson, D., Reed, R., & Holden, S. (2025). Observations of the Microphysics and Type of Wintertime Mixed-Phase Precipitation, and Instrument Comparisons at Sorel, Quebec, Canada. Remote Sensing, 17(6), 945. https://doi.org/10.3390/rs17060945