Observations of the Microphysics and Type of Wintertime Mixed-Phase Precipitation, and Instrument Comparisons at Sorel, Quebec, Canada
Abstract
1. Introduction
2. Materials and Methods
Study Area and Data
3. Results
3.1. Meteorological Conditions of the Site During the WINTRE-MIX Project
3.2. PT Manual and Instrument Comparisons
3.3. Case Study of Mixed Precipitation on 6 March 20022
3.4. Case Study of Mixed Precipitation Dominated by IPs on 23 February 2022
3.5. Velocity, Size Relationships, and Precipitation Types
3.6. Solid and Freezing Precipitation as a Function of RH and T
3.7. Precipitation
3.7.1. Comparisons of Solid Precipitation Using the Instruments and Manual Measurements
3.7.2. Comparisons of the Instruments Measuring Precipitation Using the Entire Data
3.7.3. Frequency Distributions of Freezing Precipitation as a Function of and T
3.7.4. 2D Frequency Distributions of Freezing Precipitation as a Function of and T
3.7.5. Relationship Between LWC, , and Freezing Precipitation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Brief Description of the Vaisala FD71P
Appendix A.2. PARSIVEL Data Processing
References
- Cortinas, J.V.; Bernstein, B.C.; Robbins, C.C.; Strapp, J.W. An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–1990. Weather Forecast. 2004, 19, 377–390. [Google Scholar] [CrossRef]
- Adhikari, A.; Liu, C. Remote sensing properties of freezing rain events from space. J. Geophys. Res. Atmos. 2019, 124, 10385–10400. [Google Scholar] [CrossRef]
- Deng, D.; Gao, S.; Du, X.; Wu, W. A diagnostic study of freezing rain over Guizhou, China, in January 2011. Q. J. R. Meteorol. Soc. 2012, 138, 1233–1244. [Google Scholar] [CrossRef]
- Lott, N.; Ross, D.; Graumann, A.; Eastern, U.S. Flooding and Ice Storm January 1998; Tech. Rep.; NOAA/National Climatic Data Center: Asheville, NC, USA, 1998; p. 6. [Google Scholar]
- De Gaetano, A.T. Climatic perspective and impacts of the 1998 northern New York and New England ice storm. Bull. Am. Meteorol. Soc. 2000, 81, 237–254. [Google Scholar] [CrossRef]
- Gyakum, J.R.; Roebber, P.J. The 1998 ice storm—Analysis of a planetary-scale event. Mon. Weather Rev. 2001, 129, 2983–2997. [Google Scholar] [CrossRef]
- Roebber, P.J.; Gyakum, J.R. Orographic influences on the mesoscale structure of the 1998 ice storm. Mon. Weather Rev. 2003, 131, 27–50. [Google Scholar] [CrossRef]
- Strapp, J.W.; Stuart, R.A.; Isaac, G.A. A Canadian climatology of freezing precipitation and a detailed study using data from St. John’s, Newfoundland. In Proceedings of the FAA International Conferrence on Aircraft Inflight Icing, FAA, DOT/FAA/AR-96/81. Springfield, VA, USA, 6–8 May 1996; Volume 2, pp. 45–56. [Google Scholar]
- Stuart, R.A.; Isaac, G.A. Freezing precipitation in Canada. Atmosphere-Ocean 1999, 37, 87–102. [Google Scholar] [CrossRef]
- Boudala, F.S.; Isaac, G.A. Parameterization of visibility in snow: Application in numerical weather prediction models. J. Geophys. Res. 2009, 114, D19202. [Google Scholar] [CrossRef]
- Huffman, G.J.; Norman Jr., G. A. The supercooled warm rain process and the specification of freezing precipitation. Mon. Weather Rev. 1988, 116, 2172–2182. [Google Scholar] [CrossRef]
- Bocchieri, J.R. A new operational system for forecasting precipitation type. Mon. Weather Rev. 1979, 107, 637–649. [Google Scholar] [CrossRef]
- Rauber, R.M.; Olthoff, L.; Ramamurthy, M.; Kunkel, K. The relative importance of warm rain and melting processes in freezing precipitation events. J. Appl. Meteor. 2000, 39, 1185–1195. [Google Scholar] [CrossRef]
- Bernstein, B. Regional and local influences on freezing drizzle freezing rain, and ice pellets. Weather Forecast. 2000, 15, 485–508. [Google Scholar] [CrossRef]
- Hanesiak, J.; Stewart, R. The mesoscale and microscale structure of a severe ice pellet storm. Mon. Weather Rev. 1999, 123, 3144–3162. [Google Scholar] [CrossRef]
- Zerr, R.J. Freezing rain: An observational and theoretical study. J. Appl. Meteor. 1997, 36, 1647–1661. [Google Scholar] [CrossRef]
- Gascón, E.; Hewson, T.; Haiden, T. Improving predictions of precipitation type at the surface: Description and verification of two new products from the ECMWF ensemble. Weather Forecast. 2018, 33, 89–108. [Google Scholar] [CrossRef]
- Ralph, F.M.; Rauber, R.M.; Jewett, B.F.; Kingsmill, D.E.; Pisano, P.; Pugner, P.; Rasmussen, R.M.; Reynolds, D.W.; Schlatter, T.W.; Stewart, R.E.; et al. Improving short-term (0–48 h) cool-season quantitative precipitation forecasting: Recommendations from a USWRP workshop. Bull. Am. Meteorol. Soc. 2005, 86, 1619–1632. [Google Scholar] [CrossRef]
- Tessendorf, S.A.; Ugg, A.; Korolev, A.; Heckman, I.; Weeks, C.; Thompson, G.; Jacobson, D.; Adriaansen, D.; Hagger, J. Differentiating Freezing Drizzle and Freezing Rain in HRRR Model Forecasts. Weather Forecast. 2021, 36, 1237–1251.4. [Google Scholar] [CrossRef]
- Thériault, J.M.; Stewart, R.E.; Henson, W. On the dependence of winter precipitation types on temperature, precipitation rate, and associated features. J. Appl. Meteor. Climatol. 2010, 49, 1429–1442. [Google Scholar] [CrossRef]
- Ikeda, K.; Steiner, M.; Thompson, G. Examination of mixed-phase precipitation forecasts from the High-Resolution Rapid Refresh model using surface observations and sounding data. Weather Forecast. 2017, 32, 949–967. [Google Scholar] [CrossRef]
- Bourgouin, P. A method to determine precipitation types. Weather Forecast. 2000, 15, 583–592. [Google Scholar] [CrossRef]
- Baldwin, M.; Treadon, R.; Contorno, S. Precipitation type prediction using a decision tree approach with NMC’s Meso- scale Eta Model. In Proceedings of the 10th Conference on Numerical Weather Prediction, Portland, OR, USA, 18–22 July 1994; pp. 30–31. [Google Scholar]
- Isaac, G.A.; Cober, S.G.; Korolev, A.V.; Strapp, J.W.; Tremblay, A.; Marcotte, D.L. Overview of the Canadian freezing drizzle experiment I, II, and III. In Proceedings of the Cloud Physics Conference, Everett, WA, USA, 17–21 August 1998. [Google Scholar]
- Boudala, F.S.; Isaac, G.A.; Filman, P.; Crawford, R.; Hudak, D. Performance of Emerging Technologies for Measuring Solid and Liquid Precipitation in Cold Climate as Compared to the Traditional Manual Gauges. J. Atmos. Oceanic Technol. 2017, 34, 167–184. [Google Scholar] [CrossRef]
- Boudala, F.S.; Isaac, G.A.; Wu, D. Aircraft Icing Study Using Integrated Observations and Model Data. Weather Forecast. 2019, 34, 485–506. [Google Scholar] [CrossRef]
- Lachapelle, M.; Thompson, H.D.; Leroux, N.R.; Thériault, J.M. Measuring Ice Pellets and Refrozen Wet Snow Using a Laser-Optical Disdrometer. J. Appl. Meteorol. Climatol. 2024, 63, 65–84. [Google Scholar] [CrossRef]
- Rahman, K.; Testik, F.Y. Shapes and Fall Speeds of Freezing and Frozen Raindrops. J. Hydrometeorol. 2020, 21, 1311–1331. [Google Scholar] [CrossRef]
- Minder, J.R.; Bassill, N.; Fabry, F.; French, J.; Friedrich, K.; Gultepe, I.; Gyakum, J.D.; Kingsmill, K.; Kosiba; Lachapelle, M.; et al. P-Type Processes and Predictability: The Winter Precipitation Type Research Multiscale Experiment (WINTRE-MIX)-BAMS2023. Bull. Am. Meteorol. Soc. 2023, 104, E1469–E1492. [Google Scholar] [CrossRef]
- METEK, Micro Rain Radar (MRR), MRR-2 and MRR-Pro a Tutorial. 2017. Available online: https://metek.de/wp-content/uploads/2016/12/2018-0206-MRR_tutorial.pdf (accessed on 1 March 2025).
- Klugmann, D.; Kauppinen, L. FD70—A Tool for Supporting Satellite Weather Observations. IGARSS. 2022. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9883220 (accessed on 1 March 2025).
- Boudala, F.S.; Milbrandt, J.A. Solid Precipitation and Visibility Measurements at the Centre for Atmospheric Research Experiments in Southern Ontario and Bratt’s Lake in Southern Saskatchewan. Remote Sens. 2023, 15, 4079. [Google Scholar] [CrossRef]
- Boudala, F.S.; Isaac, G.A.; Rasmussen, R.; Cober, S.; Scott, B. Comparisons of snowfall measurements in complex terrain made during the 2010 Winter Olympics in Vancouver. Pure Appl. Geophys. 2014, 171, 113. [Google Scholar] [CrossRef]
- Lofflermang, M.; Joss, J. An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol. 2000, 17, 130–139. [Google Scholar] [CrossRef]
- Holroyd, E.W., III. The Meso- and Microscale Structure of Great Lakes Snowstorm Bands: A Synthesis of Ground Measurements, Radar Data, and Satellite Observations. Ph.D. Thesis, University at Albany, State University of New York, Albany, NY, USA, 1971; p. 148. [Google Scholar]
- Bukovcic, P.; Ryzhkov, A.; Zrnic´, D.; Zhang, G. Polarimetric radar relations for quantification of snow based on Disdrometer data. J. Appl. Meteor. Climatol. 2018, 57, 103–120. [Google Scholar] [CrossRef]
- Zhang, G. Weather Radar Polarimetry; CRC Press: Boca Raton, FL, USA, 2016; p. 304. [Google Scholar]
- Zawadzki, I.; Szyrmer, W.; Bell, C.; Fabry, F. Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci. 2005, 62, 3705–3723. [Google Scholar] [CrossRef]
- Han, B.; Minder, J.R.; Winters, A.; Baima, R.; Thériault; Lachapelle, M.; Gyakum, J.; Wray, J. WINTRE-MIX: Manual Hydrometeor Observation Reports; Version 1.0.11 Data Files, 2 Ancillary/Documentation Files, KiB; UCAR/NCAR-Earth Observing Laboratory: Boulder, CO, USA, 2022. [Google Scholar] [CrossRef]
- Gunn, R.; Kinzer, G.D. Terminal velocity of water droplets in stagnant air. J. Atmos. Sci. 1949, 6, 243–248. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Westbrook, C.D. Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci. 2010, 67, 2469–2482. [Google Scholar] [CrossRef]
- Knight, N.C.; Heymsfield, A.J. Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci. 1983, 40, 1510–1516. [Google Scholar] [CrossRef]
- Locatelli, J.D.; Hobbs, P. Fall speeds and masses of solid precipitation particles. J. Geophys. Res. V 1974, 79, 2185–2197. [Google Scholar] [CrossRef]
- Mitchell, D.L. The use of mass- and area-dimensional power laws for determining precipitating particle terminal velocities. J. Atmos. Sci. 1996, 53, 1710–1723. [Google Scholar] [CrossRef]
- Letson, F.; Pryor, S.C. From Hydrometeor Size Distribution Measurements to Projections of Wind Turbine Blade Leading-Edge Erosion. Energies 2023, 16, 3906. [Google Scholar] [CrossRef]
- Jennings, K.S.; Winchell, T.S.; Livneh, B.; Noah, P. Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere. Nat. Commun. 2018, 9, 1148. [Google Scholar] [CrossRef]
- Nagumo, N.; Fujiyoshi, Y. Microphysical properties of slow-falling and fast-falling ice pellets formed by freezing associated with evaporative cooling. Mon. Wea. Rev. 2001, 143, 4376–4392. [Google Scholar] [CrossRef]
- Sun, F.; Chen, Y.; Li, Y.; Li, Z.; Duan, W.; Zhang, Q.; Chuan, W. Incorporating relative humidity improves the accuracy of precipitation. Atmos. Res. 2022, 271, 106094. [Google Scholar] [CrossRef]
- Smith, C.D.; Ross, A.; Kochendorfer, J.; Earle, M.E.; Wolff, M.; Buisán, S.; Roulet, Y.-A.; Laine, T. Evaluation of the WMO Solid Precipitation Intercomparison Experiment (SPICE) transfer functions for adjusting the wind bias in solid precipitation measurements. Hydrol. Earth Syst. Sci. 2020, 24, 4025–4043. [Google Scholar] [CrossRef]
- Jones, K.F. A simple model for freezing rain ice loads. Atmos. Res. 1998, 46, 87–97. [Google Scholar] [CrossRef]
- Jones, K.F. Freezing Fraction in Freezing Rain. Weather Forecast. 2022, 47, 163–178. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, Z.; Xu, Z. Effects of rainfall on aircraft aerodynamics. Prog. Aerosp. Sci. 2014, 71, 85–127. [Google Scholar] [CrossRef]
- Best, A.C. The size distribution of raindrops. Quart. J. Roy. Meteor. Soc. 1949, 76, 16–36. [Google Scholar] [CrossRef]
- Marshall, J.S.; Palmer, W.M. The distribution of raindrops with size. J. Meteorol. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Testud, J.; Oury, S.; Amayenc, P.; Black, R.A. The concept of ‘‘normalized’’ distributions to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor. 2001, 40, 1118–1140. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.L.; Schoenhuber, M. Raindrop size distribution in different climatic regimes from disdrometer and dualpolarized radar analysis. J. Atmos. Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
- Brandes, E.A.; Ikeda, K.; Zhang, G.; Schonhuber, M.; Rasmussen, R.M. A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol. 2007, 46, 634–650. [Google Scholar] [CrossRef]
Instruments | Measured Quantities | Range | Resolution | Accuracy | Recorded |
---|---|---|---|---|---|
FD71P Present weather and disdrometer | Precipitation intensity and type | 0.01–999.99 mm h−1 | 0.01 mm h−1 | ±02.2% | 5 s |
T-HMP155 | −40 °C to 60 °C | 0.1 °C | ±0.4 °C | 5 s | |
RH-HMP155 | 0–100% | 0.1% | ±1%(0–90%) ±1.7%(90–100%) | 5 s | |
PARSIVEL Present weather and optical disdrometer | Precipitation intensity and type | 0–9999.9 mm h−1 | - | - | 1 m |
Fall velocity | 0.05–20.8 m s−1 | - | - | 1 | |
size | 0.06–24.5 mm | - | - | ||
Pluvio2 200 1500 mm capacity Automatic weighting gauge | Precipitation amount | 0.02 mm | ±0.2 mm | 1 m | |
WXT520 | Wind speed | 0–60 m s−1 | 0.1 m s−1 | ±0.3 °C m s−1 (0–35 m s−1) 5% (36–60 m s−1) | 10 s |
PT | FD71P | PARSIVEL | Manual |
---|---|---|---|
C | 15.8 | 16.3 | 14.1 |
S | 42.2 | 43.7 | 45.9 |
SP | NA | 4 | 1 |
IP | 2 | NA | 12.6 |
SG | 0 | 0 | 0.7 |
IC | 0 | 0 | 0 |
R | 13 | 7 | 9 |
ZR | 18 | 12.4 | 6.1 |
ZL | 4 | 2 | 4.3 |
RLS | 3.3 | 9.1 | NA |
L | 1.3 | 3.3 | 6.3 |
RL | 0.22 | 2.8 | 0.22 |
A | b | Type |
---|---|---|
1.3 | 0.66 | Lump graupel |
2.364 | 0.553 | Fresh hailstone |
3.74 | 0.5 | Hailstone |
Dates | Manual (SWE) | FD71P (mm) | Pluvio2 (mm) | (mm) | (mm) | T (°C) (PT) | (m s−1) |
---|---|---|---|---|---|---|---|
20220301 | 5 | 12 | 3.5 | 6 | 6 | <−7 (S) | <0.6 |
20220312 | 7 | 4 | 4 | 6 | 6 | <0.5 (S) | <0.5 |
20220223 | 10 | 10 | 10 | 18.5 | 18 | <−4.5 (IP) | <1 |
20220218 | 20 | 21 | 12 | 40 | 30 | <2 (S) | <1.5 |
Total (mm) | 52 | 57 | 39.5 | 70.5 | 60 | ||
Inst/Man | - | 1.1 | 0.76 | 1.36 | 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boudala, F.S.; Lachapelle, M.; Isaac, G.A.; Milbrandt, J.A.; Michelson, D.; Reed, R.; Holden, S. Observations of the Microphysics and Type of Wintertime Mixed-Phase Precipitation, and Instrument Comparisons at Sorel, Quebec, Canada. Remote Sens. 2025, 17, 945. https://doi.org/10.3390/rs17060945
Boudala FS, Lachapelle M, Isaac GA, Milbrandt JA, Michelson D, Reed R, Holden S. Observations of the Microphysics and Type of Wintertime Mixed-Phase Precipitation, and Instrument Comparisons at Sorel, Quebec, Canada. Remote Sensing. 2025; 17(6):945. https://doi.org/10.3390/rs17060945
Chicago/Turabian StyleBoudala, Faisal S., Mathieu Lachapelle, George A. Isaac, Jason A. Milbrandt, Daniel Michelson, Robert Reed, and Stephen Holden. 2025. "Observations of the Microphysics and Type of Wintertime Mixed-Phase Precipitation, and Instrument Comparisons at Sorel, Quebec, Canada" Remote Sensing 17, no. 6: 945. https://doi.org/10.3390/rs17060945
APA StyleBoudala, F. S., Lachapelle, M., Isaac, G. A., Milbrandt, J. A., Michelson, D., Reed, R., & Holden, S. (2025). Observations of the Microphysics and Type of Wintertime Mixed-Phase Precipitation, and Instrument Comparisons at Sorel, Quebec, Canada. Remote Sensing, 17(6), 945. https://doi.org/10.3390/rs17060945