The Impact of MERRA-2 and CAMS Aerosol Reanalysis Data on FengYun-4B Geostationary Interferometric Infrared Sounder Simulations
Abstract
:1. Introduction
2. Model and Dataset
2.1. Advanced Radiative Transfer Modeling System (ARMS)
2.2. MERRA-2 Dataset
2.3. CAMS Dataset
2.4. FY-4B GIIRS Data
3. Experiment Design
3.1. Data Pre-Processing
- (a)
- Control (CTRL) experiment: a baseline reference experiment conducted without incorporating aerosol (aerosol-blind configuration);
- (b)
- Aerosol from the CAMS (AER-CAMS) experiment: incorporates aerosol data from the CAMS reanalysis into the ARMS, considering dust, sea salt, sulfate, and carbonaceous aerosols separately, as well as a scenario where all four aerosol types are considered together;
- (c)
- Aerosol from the MERRA-2 (AER-MERRA-2) experiment: incorporates aerosol data from the MERRA-2 reanalysis into the ARMS, considering dust, sea salt, sulfate, and carbonaceous aerosols separately, as well as a combined scenario with all four aerosol types.
3.2. Aerosol Distribution
4. Result Analysis
4.1. Sensitivity of Simulated BT to Total Aerosol
- As shown in Figure 6a, both CTRL_CAMS (black line) and CTRL_MERRA-2 (green line) display negative biases across all long-wave infrared channels of the GIIRS, with the CAMS containing 4209 points and the MERRA-2 containing 7500 points. The average OMB bias for CTRL_CAMS is −0.94 K, while for CTRL_MERRA-2 it is −0.96 K, with the values being very close. The maximum bias occurs in channel 679 (1105 cm⁻1), reaching −2.17 K. The errors in the ERA5 atmospheric and surface data can indeed affect the BT simulation results from ARMS [60,61]. However, in regions affected by dust storms and other areas with high concentrations of coarse aerosol particles, the errors introduced in the BT simulations are relatively small. For example, Niu et al. [62] used ERA5 atmospheric and surface data as input parameters for RTTOV to simulate the BT of FY-4B/the GIIRS under clear-sky conditions. Their results showed that the error range was between 0 and 1 K, which is consistent with the CTRL_CAMS and CTRL_MERRA-2 results presented in Figure 6a of this study;
- After incorporating total aerosols (including dust, sea salt, sulfate, and carbonate) into ARMS, the OMB biases for AER_CAMS and AER_MERRA-2 show improvements compared to the CTRL experiment. Figure 6b presents the simulated BTD, which illustrates the difference in BT simulations between the total aerosols (AER) and no aerosols (CTRL) in ARMS. Negative BTD values indicate a cooling effect, suggesting that aerosols lead to a decrease in the BT in long-wave infrared channels. The improvement is especially pronounced in the window region between channels 750 cm⁻1 and 1130 cm⁻1. AER_MERRA-2 shows an average improvement of 0.56 K compared to AER_CTRL, while AER_CAMS shows a smaller improvement of 0.11 K compared to CAMS_CTRL. These results clearly indicate that incorporating aerosol data from the MERRA-2 into ARMS yields a more significant improvement than using the CAMS data;
- To more clearly illustrate the correlation between regions of OMB improvement and areas with a higher aerosol column mass density, the aerosol activity over ocean grid points is used, as it provides a valuable opportunity for comparison, enabling an in-depth analysis of the differences in OMB bias. This analysis includes 7500 points from the MERRA-2 and data from the CAMS. Figure 7 focuses on the window channel at 990 cm⁻1, which shows significant OMB improvement, thereby helping to more accurately reveal the impact of aerosols on the OMB bias. Figure 7a,b display the spatial distribution of the OMB bias for the 990 cm⁻1 channel from the CTRL experiment, while Figure 7e,f show the bias between OMB_AER and OMB_CTRL. It is evident that regions influenced by dust storms, such as the Bohai Sea, Bohai Strait, and Japan Sea, exhibit larger average OMB bias values, reaching −1.11 K. Figure 7c,d show the spatial distribution of OMB biases after incorporating the total aerosols for both the CAMS and MERRA-2. In regions with higher aerosol column mass density, as illustrated in Figure 5, particularly in areas with frequent aerosol activity, the OMB negative values are relatively larger. This suggests that the BT simulations in these areas may be overestimated. In the Bohai Sea, Bohai Strait, and Japan Sea regions, the OMB biases were improved to varying degrees. The regions of improvement correspond exactly to the areas of high aerosol column mass density shown in Figure 5a,b. For AER_CAMS, the average OMB improvement in these areas is 0.2 K, with the largest improvement occurring near the coast of the Bohai Sea, where the OMB bias decreased from −2.51 K to −0.12 K, a maximum improvement of 2.63 K. However, in a small part of the Bohai Sea near the coast, the OMB bias increased from −1 K to 1.2 K after the incorporation of aerosols, showing an increase in bias. This may be due to the overestimation of the total aerosol column mass density by the CAMS in this region, which led to slight errors in the BT simulation in ARMS. Except for the areas affected by dust storms, the improvements in other regions are not as significant. After the incorporation of aerosols, the MERRA-2 shows an average improvement of 0.57 K in the OMB biases, with the largest improvement occurring in the Bohai Strait, where the OMB bias decreases from −3.42 K to −0.4 K, reaching a maximum improvement of 3 K. This improvement corresponds to regions of high aerosol column mass density in the MERRA-2 data, as seen in Figure 5b. Additionally, the areas of improvement for the MERRA-2 data also extend to the South China Sea, Yellow Sea, East China Sea, and southern Bay of Bengal. The above results suggest that there are discrepancies in the regions of high aerosol column mass density between the MERRA-2 and CAMS datasets, leading to differences in the maximum OMB bias improvements that were observed. Overall, the aerosol improvement effect is more significant in the MERRA-2 data compared to those of the CAMS. However, after incorporating the total aerosols, the MERRA-2 data show an increase in OMB bias in some small areas of the South China Sea compared to CTRL, and even a bias as large as 2 K in the northern part of the Bay of Bengal. In contrast, the CAMS does not exhibit such an outcome after the inclusion of aerosol data. The detailed causes of this result will be further investigated in subsequent studies focusing on the column mass densities of different aerosol types and the peak aerosol layers.
4.2. Sensitivity of Simulated BT to Four Aerosol Types
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOD | Aerosol Optical Depth |
AHI | Advanced Himawari Imager |
AERONET | Aerosol Robotic network |
AVHRR | Advanced Very High Resolution Radiometer |
ARMS | Advanced Radiative Transfer Modeling System |
ARIES | Airborne Research Interferometer Evaluation System |
BT | Brightness Temperature |
CAMS | Copernicus Atmosphere Monitoring Service |
ERA5 | the fifth generation ECMWF atmospheric reanalysis |
ECMWF | European Centre for Medium-Range Weather Forecasts |
FOR | Field of Regard |
GSI | Gridpoint Statistical Interpolation |
GEOS-5 | Goddard Earth Observing System, Version 5 |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MISR | Multi-angle Imaging Spectroradiometer |
NWP | Numerical Weather Prediction |
NOAA | National Oceanic and Atmospheric Administration |
OMB | Observation Minus Background |
RTM | Radiative Transfer Model |
VIIRS | Visible Infrared Imaging Radiometer Suite |
References
- Hong, S.-Y.; Dudhia, J. Next-Generation Numerical Weather Prediction: Bridging Parameterization, Explicit Clouds, and Large Eddies. Bull. Am. Meteorol. Soc. 2012, 93, ES6–ES9. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The Quiet Revolution of Numerical Weather Prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Baklanov, A.; Schlünzen, K.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; et al. Online Coupled Regional Meteorology Chemistry Models in Europe: Current Status and Prospects. Atmos. Chem. Phys. 2014, 14, 317–398. [Google Scholar] [CrossRef]
- Chaohua, D. A Review of Optimal Algorithm for Physical Retrieval of Atmospheric Profiles. Adv. Earth Sci. 2010, 25, 133–139. [Google Scholar]
- Ackerman, A.S.; Toon, O.B.; Stevens, D.E.; Heymsfield, A.J.; Ramanathan, V.; Welton, E.J. Reduction of Tropical Cloudiness by Soot. Science 2000, 288, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Coakley, J.A.; Cess, R.D.; Yurevich, F.B. The Effect of Tropospheric Aerosols on the Earth’s Radiation Budget: A Parameterization for Climate Models. J. Atmos. Sci. 1983, 40, 116–138. [Google Scholar] [CrossRef]
- Albrecht, B.A. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Raga, G.; et al. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Changes in Atmospheric Constituents and in Radiative Forcing; Cambridge University Press: Cambridge, UK, 2007; Chapter 2; pp. 131–234. [Google Scholar]
- Zhang, H.; Liu, L.; Bi, L.; Lin, W.; Liu, C.; Yi, B.; Liu, L.; Chen, Q.; Wei, X.; Letu, H.; et al. Advances in Atmospheric Radiation: Theories, Models, and Their Applications. Part I: Atmospheric Gas Absorption and Particle Scattering. J. Meteorol. Res. 2024, 38, 151–182. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, C.; Chen, L.; Bai, W.; Qi, C.; Qi, J. Current Status of Satellite-Based Dust Aerosol Remote Sensing and Some Issues to Be Concerned. Meteorol. Mon. 2018, 44, 725–736. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A. Aerosol as a Critical Factor Causing Forecast Biases of Air Temperature in Global Numerical Weather Prediction Models. Sci. Bull. 2021, 66, 1917–1924. [Google Scholar] [CrossRef]
- Whitaker, J.S.; Hamill, T.M.; Wei, X.; Song, Y.; Toth, Z. Ensemble Data Assimilation with the NCEP Global Forecast System. Mon. Weather Rev. 2008, 136, 463–482. [Google Scholar] [CrossRef]
- Collard, A.D.; McNally, A.P.; Hilton, F.I.; Healy, S.B.; Atkinson, N.C. The Use of Principal Component Analysis for the Assimilation of High-Resolution Infrared Sounder Observations for Numerical Weather Prediction. Q. J. R. Meteorol. Soc. 2010, 136, 2038–2050. [Google Scholar] [CrossRef]
- Dong, P.; Xue, J.; Huang, B.; Wang, D. Application Status and Development of Satellite Data Assimilation in Numerical Weather Forecast. Meteorol. Sci. Technol. 2008, 36, 1–7. [Google Scholar]
- Shi, G.; Wang, B.; Zhang, H.; Zhao, J.; Tan, S.; Wen, T. The Radiative and Climatic Effects of Atmospheric Aerosols. Chin. J. Atmos. Sci. 2008, 32, 826–840. [Google Scholar] [CrossRef]
- Petty, G. A First Course in Atmospheric Radiation. Available online: https://www.semanticscholar.org/paper/A-First-Course-in-Atmospheric-Radiation-Petty/57d0220e60cc76fd85c0c0a17a5759bceac11e8b (accessed on 26 June 2024).
- Weaver, C.J.; Joiner, J.; Ginoux, P. Mineral Aerosol Contamination of TIROS Operational Vertical Sounder (TOVS) Temperature and Moisture Retrievals. J. Geophys. Res. Atmos. 2003, 108, 4246. [Google Scholar] [CrossRef]
- Matricardi, M. The Inclusion of Aerosols and Clouds in RTIASI, the ECMWF Fast Radiative Transfer Model for the Infrared Atmospheric Sounding Interferometer. Available online: https://www.ecmwf.int/en/elibrary/75596-inclusion-aerosols-and-clouds-rtiasi-ecmwf-fast-radiative-transfer-model-infrared (accessed on 26 June 2024).
- Liu, Q.; Han, Y.; van Delst, P.; Weng, F. Modeling Aerosol Radiance for NCEP Data Assimilation. In Fourier Transform Spectroscopy/Hyperspectral Imaging and Sounding of the Environment; Paper HThA5; Optica Publishing Group: Washington, DC, USA, 2007. [Google Scholar]
- Marquis, J.W.; Oyola, M.I.; Campbell, J.R.; Ruston, B.C.; Córdoba-Jabonero, C.; Cuevas, E.; Lewis, J.R.; Toth, T.D.; Zhang, J. Conceptualizing the Impact of Dust-Contaminated Infrared Radiances on Data Assimilation for Numerical Weather Prediction. J. Atmos. Ocean. Technol. 2021, 38, 209–221. [Google Scholar] [CrossRef]
- Haywood, J.; Francis, P.; Osborne, S.; Glew, M.; Loeb, N.; Highwood, E.; Tanré, D.; Myhre, G.; Formenti, P.; Hirst, E. Radiative Properties and Direct Radiative Effect of Saharan Dust Measured by the C-130 Aircraft During SHADE: 1. Solar Spectrum. J. Geophys. Res. Atmos. 2003, 108, 8577. [Google Scholar] [CrossRef]
- Pierangelo, C.; Chédin, A.; Heilliette, S.; Jacquinet-Husson, N.; Armante, R. Dust Altitude and Infrared Optical Depth from AIRS. Atmos. Chem. Phys. 2004, 4, 1813–1822. [Google Scholar] [CrossRef]
- Peyridieu, S.; Chédin, A.; Tanré, D.; Capelle, V.; Pierangelo, C.; Lamquin, N.; Armante, R. Saharan Dust Infrared Optical Depth and Altitude Retrieved from AIRS: A Focus over North Atlantic—Comparison to MODIS and CALIPSO. Atmos. Chem. Phys. 2010, 10, 1953–1967. [Google Scholar] [CrossRef]
- Merchant, C.J.; Embury, O.; Le Borgne, P.; Bellec, B. Saharan Dust in Nighttime Thermal Imagery: Detection and Reduction of Related Biases in Retrieved Sea Surface Temperature. Remote Sens. Environ. 2006, 104, 15–30. [Google Scholar] [CrossRef]
- Quan, X.; Huang, H.-L.; Zhang, L.; Weisz, E.; Cao, X. Sensitive Detection of Aerosol Effect on Simulated IASI Spectral Radiance. J. Quant. Spectrosc. Radiat. Transf. 2013, 122, 214–232. [Google Scholar] [CrossRef]
- Wei, S.-W.; Lu, C.-H.; Johnson, B.T.; Dang, C.; Stegmann, P.; Grogan, D.; Ge, G.; Hu, M. The Influence of Aerosols on Satellite Infrared Radiance Simulations and Jacobians: Numerical Experiments of CRTM and GSI. Remote Sens. 2022, 14, 683. [Google Scholar] [CrossRef]
- Sun, H.; Wang, D.; Han, W.; Yang, Y. Quantifying the Impact of Aerosols on Geostationary Satellite Infrared Radiance Simulations: A Study with Himawari-8 AHI. Remote Sens. 2024, 16, 2226. [Google Scholar] [CrossRef]
- Hua, J.; Wang, Z.; Duan, J.; Li, L.; Zhang, C.; Wu, X.; Fan, Q.; Chen, R.; Sun, X.; Zhao, L.; et al. Review of Geostationary Interferometric Infrared Sounder. Chin. Opt. Lett. 2018, 16, 111203. [Google Scholar]
- Kim, J.; Akella, S.; da Silva, A.M.; Todling, R.; McCarty, W. Preliminary Evaluation of Influence of Aerosols on the Simulation of Brightness Temperature in the NASA’s Goddard Earth Observing System Atmospheric Data Assimilation System; Goddard Space Flight Center: Greenbelt, MD, USA, 2018. [Google Scholar]
- Wei, S.-W.; Lu, C.-H.; Liu, Q.; Collard, A.; Zhu, T.; Grogan, D.; Li, X.; Wang, J.; Grumbine, R.; Bhattacharjee, P.S. The Impact of Aerosols on Satellite Radiance Data Assimilation Using NCEP Global Data Assimilation System. Atmosphere 2021, 12, 432. [Google Scholar] [CrossRef]
- Eresmaa, R.; Letertre-Danczak, J.; Lupu, C.; Bormann, N.; McNally, A.P. The Assimilation of Cross-Track Infrared Sounder Radiances at ECMWF. Q. J. R. Meteorol. Soc. 2017, 143, 3177–3188. [Google Scholar] [CrossRef]
- Geer, A.J.; Migliorini, S.; Matricardi, M. All-Sky Assimilation of Infrared Radiances Sensitive to Mid- and Upper-Tropospheric Moisture and Cloud. Atmos. Meas. Tech. 2019, 12, 4903–4929. [Google Scholar] [CrossRef]
- Letertre-Danczak, J. The Use of Geostationary Radiance Observations at ECMWF and Aerosol Detection for Hyper-Spectral Infrared Sounders: 1st and 2nd Years Report. Available online: https://www.ecmwf.int/en/elibrary/79241-use-geostationary-radiance-observations-ecmwf-and-aerosol-detection-hyper (accessed on 1 July 2024).
- Ma, X.; Yan, P.; Zhao, T.; Jia, X.; Jiao, J.; Ma, Q.; Wu, D.; Shu, Z.; Sun, X.; Habtemicheal, B.A. Evaluations of Surface PM10 Concentration and Chemical Compositions in MERRA-2 Aerosol Reanalysis over Central and Eastern China. Remote Sens. 2021, 13, 1317. [Google Scholar] [CrossRef]
- Weng, F.; Yu, X.; Duan, Y.; Yang, J.; Wang, J. Advanced Radiative Transfer Modeling System (ARMS): A New-Generation Satellite Observation Operator Developed for Numerical Weather Prediction and Remote Sensing Applications. Adv. Atmos. Sci. 2020, 37, 131–136. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Bi, L.; Yang, P. Accurate Simulation of the Optical Properties of Atmospheric Ice Crystals with the Invariant Imbedding T-Matrix Method. J. Quant. Spectrosc. Radiat. Transf. 2014, 138, 17–35. [Google Scholar] [CrossRef]
- Tang, X.; Bi, L.; Lin, W.; Liu, D.; Zhang, K.; Li, W. Backscattering Ratios of Soot-Contaminated Dusts at Triple LiDAR Wavelengths: T-Matrix Results. Opt. Express 2019, 27, A92–A116. [Google Scholar] [CrossRef]
- Yang, P.; Liou, K.N. Geometric-Optics—Integral-Equation Method for Light Scattering by Nonspherical Ice Crystals. Appl. Opt. 1996, 35, 6568–6584. [Google Scholar] [CrossRef] [PubMed]
- Bi, L.; Lin, W.; Wang, Z.; Tang, X.; Zhang, X.; Yi, B. Optical Modeling of Sea Salt Aerosols: The Effects of Nonsphericity and Inhomogeneity. J. Geophys. Res. Atmos. 2018, 123, 543–558. [Google Scholar] [CrossRef]
- Lin, W.; Bi, L.; Dubovik, O. Assessing Superspheroids in Modeling the Scattering Matrices of Dust Aerosols. J. Geophys. Res. Atmos. 2018, 123, 13917–13943. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Kleist, D.T.; Parrish, D.F.; Derber, J.C.; Treadon, R.; Wu, W.-S.; Lord, S. Introduction of the GSI into the NCEP Global Data Assimilation System. Weather Forecast. 2009, 24, 1691–1705. [Google Scholar] [CrossRef]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 Atmospheric General Circulation Model: Evolution from MERRA to MERRA2. Geosci. Model Dev. 2015, 8, 1339–1356. [Google Scholar] [CrossRef]
- Buchard, V.; da Silva, A.M.; Randles, C.A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D. Evaluation of the Surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States. Atmos. Environ. 2016, 125, 100–111. [Google Scholar] [CrossRef]
- Qian, Z.; Zengxin, P.; Feiyue, M.; Ruixing, S.; Lin, Z.; Xin, L. Comparison and Verification of 3D Parameters of Aerosols Between CALIPSO and MERRA-2 in China. Infrared Laser Eng. 2020, 49, 20200350. [Google Scholar]
- Su, X.; Huang, Y.; Wang, L.; Cao, M.; Feng, L. Validation and Diurnal Variation Evaluation of MERRA-2 Multiple Aerosol Properties on a Global Scale. Atmos. Environ. 2023, 311, 120019. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.-M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS Reanalysis of Atmospheric Composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Ansari, K.; Ramachandran, S. Optical and Physical Characteristics of Aerosols over Asia: AERONET, MERRA-2 and CAMS. Atmos. Environ. 2024, 326, 120470. [Google Scholar] [CrossRef]
- Liu, H.; Yan, R.; Yang, J. Credibility and Statistical Characteristics of CAMSRA and MERRA-2 AOD Reanalysis Products over the Sichuan Basin During 2003–2018. Atmos. Environ. 2021, 244, 117980. [Google Scholar] [CrossRef]
- Morcrette, J.-J.; Boucher, O.; Jones, L.; Salmond, D.; Bechtold, P.; Beljaars, A.; Benedetti, A.; Bonet, A.; Kaiser, J.W.; Razinger, M.; et al. Aerosol Analysis and Forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: Forward Modeling. J. Geophys. Res. Atmos. 2009, 114, D06206. [Google Scholar] [CrossRef]
- Mangold, A.; De Backer, H.; Delcloo, A.; De Paepe, B.; Dewitte, S.; Chiapello, I.; Derimian, Y.; Kacenelenbogen, M.; Léon, J.-F.; Huneeus, N.; et al. Aerosol Analysis and Forecast in the ECMWF Integrated Forecast System: Evaluation by Means of Case Studies. In Air Pollution Modeling and Its Application XXI; Steyn, D.G., Trini Castelli, S., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 525–528. [Google Scholar]
- Schmit, T.J.; Li, J.; Ackerman, S.A.; Gurka, J.J. High-Spectral- and High-Temporal-Resolution Infrared Measurements from Geostationary Orbit. J. Atmos. Ocean. Technol. 2009, 26, 2273–2292. [Google Scholar] [CrossRef]
- Ukhov, A.; Mostamandi, S.; da Silva, A.; Flemming, J.; Alshehri, Y.; Shevchenko, I.; Stenchikov, G. Assessment of Natural and Anthropogenic Aerosol Air Pollution in the Middle East Using MERRA-2, CAMS Data Assimilation Products, and High-Resolution WRF-Chem Model Simulations. Atmos. Chem. Phys. 2020, 20, 9281–9310. [Google Scholar] [CrossRef]
- Ou, Y.; Li, Z.; Chen, C.; Zhang, Y.; Li, K.; Shi, Z.; Dong, J.; Xu, H.; Peng, Z.; Xie, Y.; et al. Evaluation of MERRA-2 Aerosol Optical and Component Properties over China Using SONET and PARASOL/GRASP Data. Remote Sens. 2022, 14, 821. [Google Scholar] [CrossRef]
- Errera, Q.; Bennouna, Y.; Schulz, M.; Eskes, H.J.; Basart, S.; Benedictow, A.; Blechschmidt, A.-M.; Chabrillat, S.; Clark, H.; Cuevas, E.; et al. Validation Report of the CAMS Global Reanalysis of Aerosols and Reactive Gases, Years 2003–2020; Copernicus: Göttingen, Germany, 2021. [Google Scholar] [CrossRef]
- Kong, Y.-W.; Sheng, L.-F.; Liu, Q.; Li, X.-Z. Impact of Marine-Atmospheric Process on Aerosol Number Size Distribution in the South China Sea. Environ. Sci. 2016, 37, 2443–2452. [Google Scholar]
- Shukla, G.; Ojha, N.; Kumar, A.; Harithasree, S.; Girach, I.; Sahu, L.K. Chemical Composition of Aerosols over the Arabian Sea Based on Global Reanalyses Data and On-Board Ship Measurements. Atmos. Environ. 2025, 347, 121085. [Google Scholar] [CrossRef]
- Gueymard, C.A.; Yang, D. Worldwide Validation of CAMS and MERRA-2 Reanalysis Aerosol Optical Depth Products Using 15 Years of AERONET Observations. Atmos. Environ. 2020, 225, 117216. [Google Scholar] [CrossRef]
- Chen, J.; Shi, X.; Wen, M. Applicability of ERA5 Surface Wind Speed Data in the Region of “Two Oceans and One Sea”. Meteormon 2023, 49, 39–51. [Google Scholar] [CrossRef]
- Alkhalidi, M.; Al-Dabbous, A.; Al-Dabbous, S.; Alzaid, D. Evaluating the Accuracy of the ERA5 Model in Predicting Wind Speeds Across Coastal and Offshore Regions. J. Mar. Sci. Eng. 2025, 13, 149. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, L.; Han, Y.; Dong, P.; Huang, W. Performances Between the FY-4A/GIIRS and FY-4B/GIIRS Long-Wave InfraRed (LWIR) Channels Under Clear-Sky and All-Sky Conditions. Q. J. R. Meteorol. Soc. 2023, 149, 1612–1628. [Google Scholar] [CrossRef]
- Cuevas, E.; Camino, C.; Benedetti, A.; Basart, S.; Terradellas, E.; Baldasano, J.M.; Morcrette, J.J.; Marticorena, B.; Goloub, P.; Mortier, A.; et al. The MACC-II 2007–2008 Reanalysis: Atmospheric Dust Evaluation and Characterization over Northern Africa and the Middle East. Atmos. Chem. Phys. 2015, 15, 3991–4024. [Google Scholar] [CrossRef]
- Huang, W.-S.; Griffith, S.M.; Lin, Y.-C.; Chen, Y.-C.; Lee, C.-T.; Chou, C.C.-K.; Chuang, M.-T.; Wang, S.-H.; Lin, N.-H. Satellite-Based Emission Inventory Adjustments Improve Simulations of Long-Range Transport Events. Aerosol Air Qual. Res. 2021, 21, 210121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, W.; Weng, F.; Ye, C. The Impact of MERRA-2 and CAMS Aerosol Reanalysis Data on FengYun-4B Geostationary Interferometric Infrared Sounder Simulations. Remote Sens. 2025, 17, 761. https://doi.org/10.3390/rs17050761
Peng W, Weng F, Ye C. The Impact of MERRA-2 and CAMS Aerosol Reanalysis Data on FengYun-4B Geostationary Interferometric Infrared Sounder Simulations. Remote Sensing. 2025; 17(5):761. https://doi.org/10.3390/rs17050761
Chicago/Turabian StylePeng, Weiyi, Fuzhong Weng, and Chengzhi Ye. 2025. "The Impact of MERRA-2 and CAMS Aerosol Reanalysis Data on FengYun-4B Geostationary Interferometric Infrared Sounder Simulations" Remote Sensing 17, no. 5: 761. https://doi.org/10.3390/rs17050761
APA StylePeng, W., Weng, F., & Ye, C. (2025). The Impact of MERRA-2 and CAMS Aerosol Reanalysis Data on FengYun-4B Geostationary Interferometric Infrared Sounder Simulations. Remote Sensing, 17(5), 761. https://doi.org/10.3390/rs17050761