Added Value of Assimilating FY-4B AGRI Water Vapor Radiances on Analyses and Forecasts for “23 · 7” Heavy Rainfall
Highlights
- The assimilation of FY-4B AGRI clear-sky data produces positive water vapor increments across the lower-to-upper levels in precipitation areas, and the RMSEs of observed and simulated brightness temperatures decrease by 50–60%. This improvement of the analysis field significantly enhances the heavy rainfall forecasts.
- Compared with the two old channels, the addition of the new 7.42 µm channel assimilation can further humidify the air and intensify the ascending motion, thereby improving the accuracy of precipitation location and intensity predictions.
- This study provides an effective framework for the direct assimilation of FY-4B AGRI clear-sky radiance data, which enhances the forecasting of heavy rainfall location and intensity, particularly for extreme weather simulation.
- The FY-4B AGRI water vapor channel demonstrates substantial application potential, highlighting the critical role of China’s independent satellite capabilities in improving the accuracy of numerical weather prediction.
Abstract
1. Introduction
2. Data and Methods
2.1. Data
2.2. FY-4B AGRI Assimilation Module in WRFDA System
3. Experiment Setup
3.1. Overview of Case
3.2. Experiment Design
4. Experimental Results
4.1. Impact on the Analysis
4.2. Impact on the Forecasts
5. Sensitivity Experiments
6. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauer, P.; Thorpe, A.; Brunet, G. The Quiet Revolution of Numerical Weather Prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Brotzge, J.; Berchoff, D.; Carlis, D.; Carr, F.; Carr, R.H.; Gerth, J.; Gross, B.; Hamill, T.; Haupt, S.; Jacobs, N.; et al. Challenges and Opportunities in Numerical Weather Prediction. Bull. Am. Meteorol. Soc. 2023, 104, 698–705. [Google Scholar] [CrossRef]
- Charlton-Perez, C.; Cloke, H.L.; Ghelli, A. Rainfall: High-Resolution Observation and Prediction. Meteorol. Appl. 2015, 22, 1–2. [Google Scholar] [CrossRef]
- Bei, N.; Zhang, F. Impacts of Initial Condition Errors on Mesoscale Predictability of Heavy Precipitation along the Mei-Yu Front of China. Q. J. R. Meteorol. Soc. 2007, 133, 83–99. [Google Scholar] [CrossRef]
- Hwang, J.; Cha, D.; Yoon, D.; Goo, T.; Jung, S. Effects of Initial and Boundary Conditions on Heavy Rainfall Simulation over the Yellow Sea and the Korean Peninsula: Comparison of ECMWF and NCEP Analysis Data Effects and Verification with Dropsonde Observation. Adv. Atmos. Sci. 2024, 41, 1787–1803. [Google Scholar]
- Derber, J.; Wu, W. The Use of TOVS Cloud-Cleared Radiances in the NCEP SSI Analysis System. Mon. Weather Rev. 1998, 126, 2287–2299. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, Q.; Hu, X.; Gu, S.; Yang, L.; Min, M.; Chen, L.; Xu, N.; Sun, L.; Bai, W.; et al. Latest Progress of the Chinese Meteorological Satellite Program and Core Data Processing Technologies. Adv. Atmos. Sci. 2019, 36, 1027–1045. [Google Scholar]
- Li, J.; Li, J.; Otkin, J.; Schmit, T.; Liu, C. Warning Information in a Preconvection Environment from the Geostationary Advanced Infrared Sounding System—A Simulation Study Using the IHOP Case. J. Appl. Meteorol. Climatol. 2011, 50, 776–783. [Google Scholar]
- Qin, Z.; Zou, X.; Weng, F. Evaluating Added Benefits of Assimilating GOES Imager Radiance Data in GSI for Coastal QPFs. Mon. Weather Rev. 2013, 141, 75–92. [Google Scholar]
- Smith, W.; Rao, P.; Koffler, R.; Curtis, W. The Determination of Sea-Surface Temperature from Satellite High Resolution Infrared Window Radiation Measurements. Mon. Weather Rev. 1970, 98, 604–611. [Google Scholar]
- Eyre, J.; English, S.; Forsythe, M. Assimilation of Satellite Data in Numerical Weather Prediction. Part I: The Early Years. Q. J. R. Meteorol. Soc. 2020, 146, 49–68. [Google Scholar]
- Eyre, J.; Bell, W.; Cotton, J.; English, S.; Forsythe, M.; Healy, S.; Pavelin, E. Assimilation of Satellite Data in Numerical Weather Prediction. Part II: Recent Years. Q. J. R. Meteorol. Soc. 2022, 148, 521–556. [Google Scholar]
- Montmerle, T.; Rabier, F.; Fischer, C. Relative Impact of Polar-Orbiting and Geostationary Satellite Radiances in the Aladin/France Numerical Weather Prediction System. Q. J. R. Meteorol. Soc. 2007, 133, 655–671. [Google Scholar]
- Zou, X.; Qin, Z.; Weng, F. Improved Coastal Precipitation Forecasts with Direct Assimilation of GOES-11/12 Imager Radiances. Mon. Weather Rev. 2011, 139, 3711–3729. [Google Scholar] [CrossRef]
- Ma, Z.; Maddy, E.; Zhang, B.; Zhu, T.; Boukabara, S. Impact Assessment of Himawari-8 AHI Data Assimilation in NCEP GDAS/GFS with GSI. J. Atmos. Ocean. Technol. 2017, 34, 797–815. [Google Scholar]
- Stengel, M.; Undén, P.; Lindskog, M.; Dahlgren, P.; Gustafsson, N.; Bennartz, R. Assimilation of SEVIRI Infrared Radiances with HIRLAM 4D-Var. Q. J. R. Meteorol. Soc. 2009, 135, 2100–2109. [Google Scholar]
- Qin, Z.; Zou, X.; Weng, F. Impacts of Assimilating All or GOES-like AHI Infrared Channels Radiances on QPFs over Eastern China. Tellus A Dyn. Meteorol. Oceanogr. 2017, 69, 1345265. [Google Scholar]
- Qin, Z. Adding CO2 Channel 16 to AHI Data Assimilation over Land Further Improves Short-Range Rainfall Forecasts. Tellus A Dyn. Meteorol. Oceanogr. 2020, 72, 1840210. [Google Scholar]
- Wang, Y.; Liu, Z.; Sen, Y. Added Value of Assimilating Himawari-8 AHI Water Vapor Radiances on Analyses and Forecasts for “7.19” Severe Storm Over North China. J. Geophys. Res. Atmos. 2018, 123, 3374–3394. [Google Scholar]
- Szyndel, M.; Kelly, G.; Thépaut, J. Evaluation of Potential Benefit of Assimilation of SEVIRI Water Vapour Radiance Data from Meteosat-8 into Global Numerical Weather Prediction Analyses. Atmos. Sci. Lett. 2005, 6, 105–111. [Google Scholar]
- Jones, T.; Wang, X.; Skinner, P.; Johnson, A.; Wang, Y. Assimilation of GOES-13 Imager Clear-Sky Water Vapor (6.5 Mm) Radiances into a Warn-on-Forecast System. Mon. Weather Rev. 2018, 146, 1077–1107. [Google Scholar]
- Hutt, A.; Schraff, C.; Anlauf, H.; Bach, L.; Baldauf, M.; Bauernschubert, E.; Cress, A.; Faulwetter, R.; Fundel, F.; Köpken-Watts, C.; et al. Assimilation of SEVIRI Water Vapor Channels with an Ensemble Kalman Filter on the Convective Scale. Front. Earth Sci. 2020, 8, 70. [Google Scholar] [CrossRef]
- Cintineo, R.; Otkin, J.; Jones, T.; Koch, S.; Stensrud, D. Assimilation of Synthetic GOES-R ABI Infrared Brightness Temperatures and WSR-88D Radar Observations in a High-Resolution OSSE. Mon. Weather Rev. 2016, 144, 3159–3180. [Google Scholar]
- Sawada, Y.; Okamoto, K.; Kunii, M.; Miyoshi, T. Assimilating Every-10-minute Himawari-8 Infrared Radiances to Improve Convective Predictability. J. Geophys. Res. Atmos. 2019, 124, 2546–2561. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, L.; Dong, P.; Weng, F.; Huang, W.; Zhu, J. Effects of Direct Assimilation of FY-4A AGRI Water Vapor Channels on the Meiyu Heavy-Rainfall Quantitative Precipitation Forecasts. Remote Sens. 2022, 14, 3484. [Google Scholar]
- Zhang, X.; Xu, D.; Liu, R.; Shen, F. Impacts of FY-4A AGRI Radiance Data Assimilation on the Forecast of the Super Typhoon “In-Fa” (2021). Remote Sens. 2022, 14, 4718. [Google Scholar]
- Xu, L.; Cheng, W.; Deng, Z.; Liu, J.; Wang, B.; Lu, B.; Wang, S.; Dong, L. Assimilation of the FY-4A AGRI Clear-Sky Radiance Data in a Regional Numerical Model and Its Impact on the Forecast of the “21·7” Henan Extremely Persistent Heavy Rainfall. Adv. Atmos. Sci. 2023, 40, 920–936. [Google Scholar]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Zhu, Z.; Shi, C.; Gu, J. Characterization of Bias in Fengyun-4B/AGRI Infrared Observations Using RTTOV. Remote Sens. 2023, 15, 1224. [Google Scholar]
- He, Q.; Cui, P.; Chen, Y. Quality Assessment of Operational Sea Surface Temperature Product from FY-4B/AGRI with In Situ and OSTIA Data. Remote Sens. 2024, 16, 2769. [Google Scholar]
- Huang, Y.; Bao, Y.; Petropoulos, G.; Lu, Q.; Huo, Y.; Wang, F. Precipitation Estimation Using FY-4B/AGRI Satellite Data Based on Random Forest. Remote Sens. 2024, 16, 1267. [Google Scholar]
- Wang, W.; Wang, N.; Chen, B. Retrieving Hourly Aerosol Optical Depth for Geostationary Satellite FY-4B/AGRI by Surface-Related Dynamic Spectral Reflectance Ratio Method. Adv. Space Res. 2025, 75, 2484–2505. [Google Scholar] [CrossRef]
- Xia, D.; Zhao, D.; Li, K.; Qiu, Z.; Liu, J.; Luan, J.; Chen, S.; Song, B.; Wang, Y.; Yang, J. Retrieval of Cloud Optical Thickness During Nighttime from FY-4B AGRI Using a Convolutional Neural Network. Remote Sens. 2025, 17, 737. [Google Scholar]
- Zhang, M.; Lai, X.; Zhao, D.; Chen, L.; Cao, G.; Xu, N. Reconstruction of Hourly Sea Surface Temperature Based on FY-4B AGRI. Int. J. Remote Sens. 2025, 46, 6695–6710. [Google Scholar] [CrossRef]
- Lei, L.; Weng, F.; Duan, W.; Chen, Y.; Zhang, L.; Wang, R.; Yang, J.; Qin, X.; Han, W.; Li, J.; et al. Overview and Prospect of Data Assimilation in Numerical Weather Prediction. J. Geophys. Res. 2025, 39, 559–592. [Google Scholar]
- Xie, Y.; Weng, F.; Ye, C.; Liu, R.; Han, X. All-Sky Assimilation of FY-4B AGRI Reflectance in the CMA-MESO Model with ARMS as a Forward Operator. J. Geophys. Res. Atmos. 2025, 130, e2025JD043600. [Google Scholar]
- Niu, Z.; Zhang, L.; Yang, Y.; Han, Y.; Li, H.; Wang, D.; Huang, W.; Weng, F. Assimilating FY-4B AGRI Three Water Vapor Channels in Operational Shanghai Typhoon Model (SHTM) Using GSI-Based 3-DVar Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 3599–3610. [Google Scholar]
- Yang, C.; Zhong, T.; Min, J. A Preliminary Study of FY-4B AGRI All-Sky Assimilation by WRFDA for Tropical Cyclones. Atmos. Res. 2025, 327, 108377. [Google Scholar]
- Barker, D.; Huang, X.; Liu, Z.; Auligné, T.; Zhang, X.; Rugg, S.; Ajjaji, R.; Bourgeois, A.; Bray, J.; Chen, Y.; et al. The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Am. Meteorol. Soc. 2012, 93, 831–843. [Google Scholar]
- National Satellite Meteorological Center (National Center for Space Weather). Available online: https://www.nsmc.org.cn/nsmc/en/instrument/AGRI.html (accessed on 1 June 2025).
- Lu, F.; Zhang, X.; Chen, B.; Liu, H.; Wu, R.; Han, Q.; Feng, X.; Li, Y.; Zhang, Z. FY-4 Geostationary Meteorological Satellite Imaging Characteristics and Its Application Prospects. J. Mar. Meteorol. 2017, 37, 1–12. (In Chinese) [Google Scholar]
- Pan, Y.; Gu, J.; Yu, J.; Shen, Y.; Shi, C.; Zhou, Z. Test of Merging Methods for Multi-Source Observed Precipitation Products at High Resolution over China. Acta Meteorol. Sin. 2018, 76, 755–766. [Google Scholar]
- Shi, C.; Pan, Y.; Gu, J.; Xu, B.; Han, S.; Zhu, Z.; Zhang, L.; Sun, S.; Jiang, Z. A Review of Multi-Source Meteorological Data Fusion Products. Acta Meteorol. Sin. 2019, 77, 774–783. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- National Centers for Environmental Prediction; National Weather Service; NOAA; U.S. Department of Commerce. NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive; NSF National Center for Atmospheric Research: Boulder, CO, USA, 2015. [Google Scholar]
- NOAA; NCEP. NCEP ADP Global Upper Air and Surface Weather Observations; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.; Duda, M.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4; UCAR/NCAR: Boulder, CO, USA, 2019. [Google Scholar]
- Lorenc, A. Analysis Methods for Numerical Weather Prediction. Q. J. R. Meteorol. Soc. 1986, 112, 1177–1194. [Google Scholar] [CrossRef]
- Barker, D.; Huang, W.; Guo, Y.; Bourgeois, A.; Xiao, Q. A Three-Dimensional Variational Data Assimilation System for MM5: Implementation and Initial Results. Mon. Weather Rev. 2004, 132, 897–914. [Google Scholar]
- Quan, M.; Liu, H.; Zhu, Y.; Cheng, L. Study of the Dynamic Effects of the Upper-Level Jet Stream on the Beijing Rainstorm of 21 July 2012. Acta Meteorol. Sin. 2013, 71, 1012–1019. [Google Scholar]
- Hong, S.; Lim, J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. [Google Scholar]
- Iacono, M.; Delamere, J.; Mlawer, E.; Shephard, M.; Clough, S.; Collins, W.D. Radiative Forcing by Long-lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R. Implementation and Verification of the Unified NOAH Land Surface Model in the WRF Model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004; pp. 11–15. [Google Scholar]
- Hong, S.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- NCAR. WRFDA Data Assimilation System User’s Guide, Version 3.7; NCAR: Boulder, CO, USA, 2014.
- Xu, D.; Zhang, X.; Min, J.; Shen, F. Impacts of Assimilating All-Sky FY-4A AGRI Satellite Infrared Radiances on the Prediction of Super Typhoon In-Fa During the Period with Abnormal Changes. J. Geophys. Res. Atmos. 2024, 129, e2024JD040784. [Google Scholar] [CrossRef]
- Mason, I. Dependence of the Critical Success Index on Sample Climate and Threshold Probability. Aust. Meteorol. Mag. 1989, 37, 75–81. [Google Scholar]


















| Channel | Center Wavelength (μm) | Spatial Resolution (km) | Main Application |
|---|---|---|---|
| 1 | 0.47 | 1.0 | Aerosol |
| 2 | 0.65 | 0.5 | Fog, cloud |
| 3 | 0.825 | 1.0 | Vegetation |
| 4 | 1.379 | 2.0 | Cirrus |
| 5 | 1.61 | 2.0 | Cloud, snow |
| 6 | 2.25 | 2.0 | Cirrus, aerosol |
| 7 | 3.75 | 2.0 | Fire |
| 8 | 3.75 | 4.0 | Land surface |
| 9 | 6.25 | 4.0 | High-level water vapor |
| 10 | 6.95 | 4.0 | Mid-level water vapor |
| 11 | 7.42 | 4.0 | Low-level water vapor |
| 12 | 8.55 | 4.0 | Cloud |
| 13 | 10.80 | 4.0 | Surface temperature |
| 14 | 12.00 | 4.0 | Surface temperature |
| 15 | 13.30 | 4.0 | Cloud and water vapor |
| Experiment Name | Assimilated Data |
|---|---|
| CTRL | Conventional observations data assimilation for d01 and d02 |
| DA_wv123 | The same as CTRL, but assimilating additionally AGRI clear-sky radiance in d02 |
| DA_2step_wv123 | The same as DA_wv123, but firstly assimilating conventional observations in d02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, T.; Yang, C.; Min, J.; Shi, B.; Sun, Q. Added Value of Assimilating FY-4B AGRI Water Vapor Radiances on Analyses and Forecasts for “23 · 7” Heavy Rainfall. Remote Sens. 2025, 17, 3808. https://doi.org/10.3390/rs17233808
Zhong T, Yang C, Min J, Shi B, Sun Q. Added Value of Assimilating FY-4B AGRI Water Vapor Radiances on Analyses and Forecasts for “23 · 7” Heavy Rainfall. Remote Sensing. 2025; 17(23):3808. https://doi.org/10.3390/rs17233808
Chicago/Turabian StyleZhong, Tingting, Chun Yang, Jinzhong Min, Bingying Shi, and Qiongbo Sun. 2025. "Added Value of Assimilating FY-4B AGRI Water Vapor Radiances on Analyses and Forecasts for “23 · 7” Heavy Rainfall" Remote Sensing 17, no. 23: 3808. https://doi.org/10.3390/rs17233808
APA StyleZhong, T., Yang, C., Min, J., Shi, B., & Sun, Q. (2025). Added Value of Assimilating FY-4B AGRI Water Vapor Radiances on Analyses and Forecasts for “23 · 7” Heavy Rainfall. Remote Sensing, 17(23), 3808. https://doi.org/10.3390/rs17233808

