3DV-Unet: Eddy-Resolving Reconstruction of Three-Dimensional Upper-Ocean Physical Fields from Satellite Observations
Abstract
Highlights
- Developed 3DV-Unet, an end-to-end deep learning framework that reconstructs eddy-resolving three-dimensional (3D) essential ocean variables (temperature, salinity, and zonal/meridional velocities) from multi-source satellite observations.
- Demonstrated high-resolution 3D reconstructions with RMSEs of ~0.30 °C (temperature), 0.11 psu (salinity), and ~0.05 m/s (currents), all with R2 > 0.93. Comprehensive error and spectral analyses reveal good agreement at the 100-km scale, though systematic deviations occur in dynamically complex regions (e.g., Kuroshio Extension) and within the 20–100 km band.
- The reconstructed 3D fields can reproduce mesoscale eddy structures and their life cycle and evolution, enabling detailed investigation of ocean dynamics.
- The high-resolution EOV reconstructions generated by 3DV-Unet provide a valuable resource for physical oceanography and climate studies, supporting analyses of energy transport, mixing processes, and regional variability.
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area
- Ensuring adequate coverage and representativeness of the dataset for training and evaluation;
- An investigation into the coupling between model performance and geographic location, which assesses the feasibility of developing a generalized regional reconstruction model;
- Evaluating the generalization capability of a unified model when it is applied to the distinct oceanographic regimes of each sub-region;
- An analysis of the impact of specific dominant factors (e.g., western boundary currents, coastal processes) on the model’s reconstruction accuracy.
- Sub-region 1 (40–60°N, 140–160°E): the Sea of Okhotsk, a semi-enclosed marginal sea with broad shelves and relatively low eddy kinetic energy (EKE).
- Sub-region 2 (20–40°N, 120–140°E): the upstream Kuroshio and adjacent shelf seas, influenced by monsoon forcing and exhibiting moderate eddy activity.
- Sub-region 3 (20–40°N, 140–160°E): the Kuroshio Extension, an energetic western boundary current system with strong fronts, meanders, and the highest EKE among the four regions.
- Sub-region 4 (0–20°N, 100–120°E): the South China Sea, where complex bathymetry, monsoon forcing, and strait exchanges produce highly variable circulation.
2.2. Data
2.2.1. Remote Sensing Data
2.2.2. Reanalysis Data
2.2.3. In Situ Data
2.2.4. Ancillary Data
2.3. Data Preprocessing
- All datasets were interpolated to a daily temporal resolution and a spatial resolution of 1/12° using bilinear interpolation, consistent with GLORYS12.
- All input and output data are processed using sea–land masking to ensure that model errors are calculated only on valid ocean data, thereby ensuring fair and consistent evaluation.
- All input and label data have undergone min–max normalization, scaling their values to a uniform range of [0, 1] to ensure stability in model training and consistency in result evaluation.
3. Methods
3.1. Overall Architecture
3.1.1. Input Layer
3.1.2. Encoder
3.1.3. Bottleneck
3.1.4. Skip Connections with Coordinate Attention
3.1.5. Decoder
3.1.6. Output Layer
3.2. Core Bottleneck Module
3.2.1. Depth-Aware Positional Encoding and Feature Initialization
3.2.2. Structured Tokenization
3.2.3. Dual-Attention Transformer Block Processing
3.3. Loss Function Design
3.4. Training Strategy
3.5. Model Configuration
4. Results
4.1. Model Performance of 3DV-Unet
4.1.1. Overall Reconstruction Performance
4.1.2. Ablation Study of Model Components
4.1.3. Analysis of the Multi-Stage Training
4.2. Reconstruction Analysis
4.3. Three-Dimensional Eddy Reconstruction
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-009-15796-4. [Google Scholar]
- Jing, Z.; Fox-Kemper, B.; Cao, H.; Zheng, R.; Du, Y. Submesoscale Fronts and Their Dynamical Processes Associated with Symmetric Instability in the Northwest Pacific Subtropical Ocean. J. Phys. Oceanogr. 2021, 51, 83–100. [Google Scholar] [CrossRef]
- Stewart, R.H. Introduction to Physical Oceanography; Orange Grove Texts Plus: Tucson, AZ, USA, 2009; ISBN 978-1-61610-045-2. [Google Scholar]
- Guo, X.; Gao, Y.; Zhang, S.; Cai, W.; Chen, D.; Leung, L.R.; Zscheischler, J.; Thompson, L.; Davis, K.; Qu, B.; et al. Intensification of Future Subsurface Marine Heatwaves in an Eddy-Resolving Model. Nat. Commun. 2024, 15, 10777. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Sen Gupta, A.; Hobday, A.J.; et al. Longer and More Frequent Marine Heatwaves over the Past Century. Nat. Commun. 2018, 9, 1324. [Google Scholar] [CrossRef]
- Li, G.; Cheng, L.; Zhu, J.; Trenberth, K.E.; Mann, M.E.; Abraham, J.P. Increasing Ocean Stratification over the Past Half-Century. Nat. Clim. Change 2020, 10, 1116–1123. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, Y.; Liu, Z.; Shen, X.; Chen, X.; Lin, X.; Zhang, R.-H.; Luo, J.-J.; Zhang, W.; Duan, W.; et al. Combined Dynamical-Deep Learning ENSO Forecasts. Nat. Commun. 2025, 16, 3845. [Google Scholar] [CrossRef]
- Kang, N.-Y.; Kim, D.; Elsner, J.B. The Contribution of Super Typhoons to Tropical Cyclone Activity in Response to ENSO. Sci. Rep. 2019, 9, 5046. [Google Scholar] [CrossRef]
- Dong, C.; McWilliams, J.C.; Liu, Y.; Chen, D. Global Heat and Salt Transports by Eddy Movement. Nat. Commun. 2014, 5, 3294. [Google Scholar] [CrossRef]
- Ni, Q.; Zhai, X.; LaCasce, J.H.; Chen, D.; Marshall, D.P. Full-Depth Eddy Kinetic Energy in the Global Ocean Estimated From Altimeter and Argo Observations. Geophys. Res. Lett. 2023, 50, e2023GL103114. [Google Scholar] [CrossRef]
- Wang, A.; Su, H. Spatio-Temporal Neighbors Adaptive Learning with Two-Point Differences for Ocean Subsurface Temperature Reconstruction from 1960 to 2022. Int. J. Digit. Earth 2025, 18, 2500525. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, X.; Wan, X.; Weishuai, X.; Sun, X. Three-Dimensional Thermohaline Reconstruction of Mesoscale Eddies under Remote Sensing Observation: From the Perspective of Deep Learning of Layer Depth Sequences with Fusion of Physical Mechanisms. J. Sea Res. 2025, 205, 102593. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, H.; Ma, C. Intelligent Inversion of Mesoscale Eddy Temperature Anomaly Profiles Based on Multi-Source Remote Sensing Data. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104025. [Google Scholar] [CrossRef]
- Talley, L.D.; Pickard, G.L.; Emery, W.J. (Eds.) Descriptive Physical Oceanography: An Introduction, 6th ed.; Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2011; ISBN 978-0-7506-4552-2. [Google Scholar]
- Zhang, Z.; Wang, G.; Wang, H.; Liu, H. Three-Dimensional Structure of Oceanic Mesoscale Eddies. Ocean.-Land-Atmos. Res. 2024, 3, 51. [Google Scholar] [CrossRef]
- Shan, K.; Lin, Y.; Chu, P.-S.; Yu, X.; Song, F. Seasonal Advance of Intense Tropical Cyclones in a Warming Climate. Nature 2023, 623, 83–89. [Google Scholar] [CrossRef]
- Yan, X.; Okubo, A. Three-dimensional Analytical Model for the Mixed Layer Depth. J. Geophys. Res. Oceans 1992, 97, 20201–20226. [Google Scholar] [CrossRef]
- Nian, R.; Zhang, Z.; Ji, Y.; Wang, Y.; Yang, H.; Fu, Z.; Xu, H.; Shi, K.; He, B. Different Types of Surface Chlorophyll Patterns of Oceanic Mesoscale Eddies Identified by AI Framework. J. Geophys. Res. Oceans 2024, 129, e2024JC021176. [Google Scholar] [CrossRef]
- Ding, X.; He, X.; Bai, Y.; Ma, W.; Li, J.; Ye, F.; Yu, S.; Hu, Q.; Gong, F.; Wang, D.; et al. Geostationary Ocean Color Satellite Observations Reveal the Fine Structure of Mesoscale Eddy Dynamics. Remote Sens. Environ. 2025, 320, 114652. [Google Scholar] [CrossRef]
- Meijers, A.J.S.; Bindoff, N.L.; Rintoul, S.R. Estimating the Four-Dimensional Structure of the Southern Ocean Using Satellite Altimetry. J. Atmos. Ocean. Technol. 2011, 28, 548–568. [Google Scholar] [CrossRef]
- Guinehut, S.; Dhomps, A.-L.; Larnicol, G.; Le Traon, P.-Y. High Resolution 3-D Temperature and Salinity Fields Derived from in Situ and Satellite Observations. Ocean Sci. 2012, 8, 845–857. [Google Scholar] [CrossRef]
- Liu, L.; Peng, S.; Wang, J.; Huang, R.X. Retrieving Density and Velocity Fields of the Ocean’s Interior from Surface Data. J. Geophys. Res. Oceans 2014, 119, 8512–8529. [Google Scholar] [CrossRef]
- Wang, J.; Flierl, G.R.; LaCasce, J.H.; McClean, J.L.; Mahadevan, A. Reconstructing the Ocean’s Interior from Surface Data. J. Phys. Oceanogr. 2013, 43, 1611–1626. [Google Scholar] [CrossRef]
- Akbari, E.; Alavipanah, S.; Jeihouni, M.; Hajeb, M.; Haase, D.; Alavipanah, S. A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods. Water 2017, 9, 936. [Google Scholar] [CrossRef]
- Holloway, J.; Mengersen, K. Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review. Remote Sens. 2018, 10, 1365. [Google Scholar] [CrossRef]
- Jeong, Y.; Hwang, J.; Park, J.; Jang, C.J.; Jo, Y.-H. Reconstructed 3-D Ocean Temperature Derived from Remotely Sensed Sea Surface Measurements for Mixed Layer Depth Analysis. Remote Sens. 2019, 11, 3018. [Google Scholar] [CrossRef]
- Maes, C.; Behringer, D.; Reynolds, R.W.; Ji, M. Retrospective Analysis of the Salinity Variability in the Western Tropical Pacific Ocean Using an Indirect Minimization Approach. J. Atmos. Ocean. Technol. 2000, 17, 512–524. [Google Scholar] [CrossRef]
- Chapman, C.; Charantonis, A.A. Reconstruction of Subsurface Velocities from Satellite Observations Using Iterative Self-Organizing Maps. IEEE Geosci. Remote Sens. Lett. 2017, 14, 617–620. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Zhang, S.; Deng, Y.; Niu, Q.; Zhang, Z.; Che, Z.; Jia, S.; Mu, L. Multivariate Temporal Self-Attention Network for Subsurface Thermohaline Structure Reconstruction. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4507116. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 6000–6010. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 9992–10002. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar]
- Dong, D.; Brandt, P.; Chang, P.; Schütte, F.; Yang, X.; Yan, J.; Zeng, J. Mesoscale Eddies in the Northwestern Pacific Ocean: Three-Dimensional Eddy Structures and Heat/Salt Transports. J. Geophys. Res. Oceans 2017, 122, 9795–9813. [Google Scholar] [CrossRef]
- Xie, H.; Xu, Q.; Cheng, Y.; Yin, X.; Jia, Y. Reconstruction of Subsurface Temperature Field in the South China Sea from Satellite Observations Based on an Attention U-Net Model. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4209319. [Google Scholar] [CrossRef]
- Su, H.; Jiang, J.; Wang, A.; Zhuang, W.; Yan, X.-H. Subsurface Temperature Reconstruction for the Global Ocean from 1993 to 2020 Using Satellite Observations and Deep Learning. Remote Sens. 2022, 14, 3198. [Google Scholar] [CrossRef]
- Mao, K.; Liu, C.; Zhang, S.; Gao, F. Reconstructing Ocean Subsurface Temperature and Salinity from Sea Surface Information Based on Dual Path Convolutional Neural Networks. J. Mar. Sci. Eng. 2023, 11, 1030. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Jiang, F.; Zhou, Y.; Li, X. Reconstructing 3-D Thermohaline Structures for Mesoscale Eddies Using Satellite Observations and Deep Learning. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4203916. [Google Scholar] [CrossRef]
- Wang, A.; Su, H.; Huang, Z.; Yan, X.-H. Knowledge-Informed Deep Learning Model for Subsurface Thermohaline Reconstruction from Satellite Observations. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4213416. [Google Scholar] [CrossRef]
- Meng, L.; Yan, C.; Zhuang, W.; Zhang, W.; Geng, X.; Yan, X.-H. Reconstructing High-Resolution Ocean Subsurface and Interior Temperature and Salinity Anomalies from Satellite Observations. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4104114. [Google Scholar] [CrossRef]
- Meng, Y.; Rigall, E.; Chen, X.; Gao, F.; Dong, J.; Chen, S. Physics-Guided Generative Adversarial Networks for Sea Subsurface Temperature Prediction. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 3357–3370. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Wang, X.; Ning, P.; Zhang, A. Reconstructing 3D Ocean Subsurface Salinity (OSS) from T–S Mapping via a Data-Driven Deep Learning Model. Ocean Model. 2023, 184, 102232. [Google Scholar] [CrossRef]
- Xie, H.; Dong, C.; Xu, Q. Dual U–Vision–Transformer for Reconstructing the Three-Dimensional Eddy-Resolving Oceanic Physical Parameters from Satellite Observations. Int. J. Appl. Earth Obs. Geoinf. 2025, 136, 104382. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Wu, X.; Zhang, D.; Qi, J.; Ning, P.; Qiao, X. Deep Learning–Based Eddy-Resolving Reconstruction of Subsurface Temperature and Salinity in the South China Sea. Adv. Atmos. Sci. 2025, 42, 1675–1692. [Google Scholar] [CrossRef]
- Tian, T.; Cheng, L.; Wang, G.; Abraham, J.; Wei, W.; Ren, S.; Zhu, J.; Song, J.; Leng, H. Reconstructing Ocean Subsurface Salinity at High Resolution Using a Machine Learning Approach. Earth Syst. Sci. Data 2022, 14, 5037–5060. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Chen, X.; Wei, Z.; Sun, X.; Yuan, C.; Gao, Z. Data Driven Three-Dimensional Temperature and Salinity Anomaly Reconstruction of the Northwest Pacific Ocean. Front. Mar. Sci. 2023, 10, 1121334. [Google Scholar] [CrossRef]
- Zhuang, Z.; Zhang, Y.; Zhang, L.; Ruan, W.; Lyu, D.; Yu, J. Reconstructing the Three-Dimensional Thermohaline Structure of Mesoscale Eddies in the South China Sea Using in Situ Measurements and Multi-Sensor Satellites. Remote Sens. 2024, 17, 22. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, J.; Liu, Y.; Feng, L.; Jiang, Q.; Huang, C.; Xiang, L.; Zhang, X. SWO: A Lightweight Window Spatiotemporal Attention Network Reconstructs Subsurface Temperature Structure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 19274–19287. [Google Scholar] [CrossRef]
- Su, H.; Zhang, F.; Teng, J.; Wang, A.; Huang, Z. Reconstructing High-Resolution Subsurface Temperature of the Global Ocean Using Deep Forest with Combined Remote Sensing and in Situ Observations. ISPRS J. Photogramm. Remote Sens. 2024, 218, 389–404. [Google Scholar] [CrossRef]
- Song, T.; Xu, G.; Yang, K.; Li, X.; Peng, S. Convformer: A Model for Reconstructing Ocean Subsurface Temperature and Salinity Fields Based on Multi-Source Remote Sensing Observations. Remote Sens. 2024, 16, 2422. [Google Scholar] [CrossRef]
- Su, H.; Qiu, J.; Tang, Z.; Huang, Z.; Yan, X.-H. Retrieving Global Ocean Subsurface Density by Combining Remote Sensing Observations and Multiscale Mixed Residual Transformer. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4201513. [Google Scholar] [CrossRef]
- Sharma, S.; Chaudhari, L. Chapter 9—Vision Transformers and Multi-Sensor Earth Observation. In Deep Learning for Multi-sensor Earth Observation; Saha, S., Ed.; Earth Observation; Elsevier: Amsterdam, The Netherlands, 2025; pp. 201–210. ISBN 978-0-443-26484-9. [Google Scholar]
- Shi, W.; Caballero, J.; Huszar, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Amsterdam, The Netherlands, 2016; pp. 1874–1883. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; IEEE: Amsterdam, The Netherlands, 2021; pp. 13708–13717. [Google Scholar]
Data Type | Dataset | Timespan | Resolution (Space/Time) | Source |
---|---|---|---|---|
Remote sensing | SST | 2011–2019 | Daily, 1/12° | https://www.ncei.noaa.gov/ |
data | SLA | 2011–2019 | Daily, 1/4° | https://marine.copernicus.eu/ |
UGOS, VGOS | 2011–2019 | Daily, 1/4° | https://marine.copernicus.eu/ | |
SSS | 2011–2019 | Daily, 1/4° | https://marine.copernicus.eu/ | |
UWND, VWND | 2011–2019 | 6-hourly, 0.25° | https://www.remss.com/ | |
Precipitation | 2011–2019 | Hourly, 0.1° | https://data.tpdc.ac.cn/ | |
Reanalysis data | GLORYS12 | 2011–2019 | Daily, 1/12° | https://marine.copernicus.eu/ |
In situ data | Argo- profile | 2011–2019 | - | https://argo.ucsd.edu/ |
Ancillary Data | ETOPO | - | 15 arc-second | https://www.ncei.noaa.gov/ |
Literature | Depth | Variable | Temporal Resolution | Output Dimension | Spatial Resolution | Model | RMSE | R2 |
---|---|---|---|---|---|---|---|---|
Song et al. (2024) [53] | 0–500 m | T, S | Monthly | 2D | 1° | Convformer | T: 0.625 °C S: 0.104 psu | T: 0.980 S: 0.999 |
Jiang et al. (2024) [51] | 0–250 m | T | Monthly | 2D | 1° | SWO | T: 0.482 °C | T: 0.985 |
Su et al. (2024) [52] | 0–2000 m | T | Monthly | 2D | 0.25° | MS-STGNN | T: 0.29 °C | 0.994 |
Xie et al. (2025) [46] | 0–2000 m | T, S, u, v | Daily | 2D | 0.083° | DUVIT | T: 0.039 °C S: 0.017 psu u/v: 0.012 m/s | >0.9 |
Zhang et al. (2025) [12] | 0–150 m | T, S | Daily | 3D | 0.083° | AIGAN | S: < 0.32 psu T: 0.51 °C | - |
This study | 0–500m | T, S, u, v | Daily | 3D | 0.083° | 3DV-Unet | u: 0.0536 m/s v: 0.0543 m/s T: 0.3028 °C S: 0.1123 psu | u: 0.9360 v: 0.9330 T: 0.9832 S: 0.9698 |
Case | Bottleneck | Skip Connection | Input Shape |
---|---|---|---|
case 1 | 2D-ViT | Cat | B × C × H × W |
case 2 | ViT-3D | Cat | B × C × D × H × W |
case 3 | ViT-3D | CA | B × C × D × H × W |
Region | Source | R2 (Temp) | RMSE (Temp) | R2 (Salinity) | RMSE (Salinity) |
---|---|---|---|---|---|
Global | 3DV-Unet | 0.9335 | 1.1252 | 0.8784 | 0.1378 |
Glorys | 0.931 | 1.1468 | 0.8707 | 0.1421 | |
Sub-region 1 | 3DV-Unet | 0.9024 | 0.8891 | 0.8478 | 0.213 |
Glorys | 0.8988 | 0.9054 | 0.8429 | 0.2164 | |
Sub-region 2 | 3DV-Unet | 0.9321 | 1.0133 | 0.8029 | 0.078 |
Glorys | 0.9301 | 1.0282 | 0.7942 | 0.0797 | |
Sub-region 3 | 3DV-Unet | 0.9164 | 1.0471 | 0.7797 | 0.0854 |
Glorys | 0.9123 | 1.0724 | 0.7458 | 0.0917 | |
Sub-region 4 | 3DV-Unet | 0.9434 | 1.6317 | 0.7754 | 0.2595 |
Glorys | 0.9423 | 1.6467 | 0.7663 | 0.2647 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Li, H.; Sun, H.; Xia, T.; Wang, X.; Han, Z. 3DV-Unet: Eddy-Resolving Reconstruction of Three-Dimensional Upper-Ocean Physical Fields from Satellite Observations. Remote Sens. 2025, 17, 3394. https://doi.org/10.3390/rs17193394
Zhu Q, Li H, Sun H, Xia T, Wang X, Han Z. 3DV-Unet: Eddy-Resolving Reconstruction of Three-Dimensional Upper-Ocean Physical Fields from Satellite Observations. Remote Sensing. 2025; 17(19):3394. https://doi.org/10.3390/rs17193394
Chicago/Turabian StyleZhu, Qiaoshi, Hongping Li, Haochen Sun, Tianyu Xia, Xiaoman Wang, and Zijun Han. 2025. "3DV-Unet: Eddy-Resolving Reconstruction of Three-Dimensional Upper-Ocean Physical Fields from Satellite Observations" Remote Sensing 17, no. 19: 3394. https://doi.org/10.3390/rs17193394
APA StyleZhu, Q., Li, H., Sun, H., Xia, T., Wang, X., & Han, Z. (2025). 3DV-Unet: Eddy-Resolving Reconstruction of Three-Dimensional Upper-Ocean Physical Fields from Satellite Observations. Remote Sensing, 17(19), 3394. https://doi.org/10.3390/rs17193394