Reliability of Satellite Data in Capturing Spatiotemporal Changes of Precipitation Extremes in the Middle Reaches of the Yellow River Basin
Abstract
Highlights
- GPM reliably reproduces the frequency, intensity, and cumulative amounts of extreme precipitation in the Middle Reaches of the Yellow River Basin (MRYRB).
- Frequency, intensity, and cumulative amounts of extreme precipitation increased from 2001 to 2022, with the He-Long reach experiencing an accelerating shift toward short-duration, high-intensity precipitation.
- The study demonstrates that GPM reliably provides a continuous, full-coverage extreme precipitation observation in the MRYRB.
- The findings deliver actionable insights for extreme precipitation prevention and disaster risk reduction in the MRYRB, and inform policy under a changing climate.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Precipitation Data
2.3. Extreme Precipitation Indices
2.4. Trend Analysis
3. Results
3.1. Spatiotemporal Variations in Extreme Precipitation Indices in the Middle Reaches of the Yellow River Basin
3.2. Spatial Distributions of Trends in Extreme Precipitation Indices
3.3. Sub-Basin Variations in Extreme Precipitation Indices
4. Discussion
4.1. Applicability of Satellite Data to Capture the Extreme Precipitation Indices
4.2. Spatial and Temporal Changes in Extreme Precipitation Indices in the MRYRB
4.3. Limitations and Future Perspective
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pendergrass, A.G.; Knutti, R.; Lehner, F.; Deser, C.; Sanderson, B.M. Precipitation variability increases in a warmer climate. Sci. Rep. 2017, 7, 17966. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report. In Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar]
- Orlowsky, B.; Seneviratne, S.I. Global changes in extreme events: Regional and seasonal dimension. Clim. Change 2012, 110, 669–696. [Google Scholar] [CrossRef]
- Ivancic, T.J.; Shaw, S.B. Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. Clim. Change 2015, 133, 681–693. [Google Scholar] [CrossRef]
- Wasko, C.; Nathan, R. Influence of changes in rainfall and soil moisture on trends in flooding. J. Hydrol. 2019, 575, 432–441. [Google Scholar] [CrossRef]
- Qin, P.; Xie, Z.; Zou, J.; Liu, S.; Chen, S. Future precipitation extremes in China under climate change and their physical quantification based on a regional climate model and CMIP5 model simulations. Adv. Atmos. Sci. 2021, 38, 460–479. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, Y.; Wei, W.; Fang, G.; Duan, W. The increase in extreme precipitation and its proportion over global land. J. Hydrol. 2024, 628, 130456. [Google Scholar] [CrossRef]
- Li, H.; Shi, C.; Sun, P.; Zhang, Y.; Collins, A.L. Attribution of runoff changes in the main tributaries of the middle Yellow River, China, based on the Budyko model with a time-varying parameter. Catena 2021, 206, 105557. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, T.; Ma, T.; Yang, D. Water-carbon-sediment synergies and trade-offs: Multi-faceted impacts of large-scale ecological restoration in the Middle Yellow River Basin. J. Hydrol. 2024, 634, 131099. [Google Scholar] [CrossRef]
- Huang, Z.; Tang, Z.; Tian, J.; Zhang, X.; Ma, N.; Bai, X.; Zhang, Y. Climate change dominates recent increase in streamflow in the Yellow River Basin. J. Hydrol. 2025, 661, 133737. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, L.; Wang, Z.; Hong, Y.; Zheng, H. Quantitative assessment of climate and human impacts on surface water resources in a typical semi-arid watershed in the middle reaches of the Yellow River from 1985 to 2006. Int. J. Climatol. 2015, 35, 97–113. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, W.; Hu, C.; Wang, Y.; Wang, Z.; Zhang, X.; Zhu, B.; Cheng, C.; Yin, X.; Liu, B.; et al. Analysis of changes in characteristics of flood and sediment yield in typical basins of the Yellow River under extreme rainfall events. Catena 2019, 177, 31–40. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, J.; She, D. Spatiotemporal variation and statistical characteristic of extreme precipitation in the middle reaches of the Yellow River Basin during 1960–2013. Theor. Appl. Climatol. 2019, 135, 391–408. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, X.; Huang, W.; Wang, Y.; Xu, Y.; Chen, H.; Kang, Z. Trends in observed mean and extreme precipitation within the Yellow River Basin, China. Theor. Appl. Climatol. 2019, 136, 1387–1396. [Google Scholar] [CrossRef]
- Yang, L.; Shi, Z.; Liu, R.; Xing, M. Evaluating the performance of global precipitation products for precipitation and extreme precipitation in arid and semiarid China. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103888. [Google Scholar] [CrossRef]
- Wang, T.; Li, Z.; Ma, Z.; Gao, Z.; Tang, G. Diverging identifications of extreme precipitation events from satellite observations and reanalysis products: A global perspective based on an object-tracking method. Remote Sens. Environ. 2023, 288, 113490. [Google Scholar] [CrossRef]
- Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmos. Res. 2019, 223, 24–38. [Google Scholar] [CrossRef]
- Yu, L.; Leng, G.; Python, A. A comprehensive validation for GPM IMERG precipitation products to detect extremes and drought over mainland China. Weather Clim. Extrem. 2022, 36, 100458. [Google Scholar] [CrossRef]
- Liu, J.; Xia, J.; She, D.; Li, L.; Wang, Q.; Zou, L. Evaluation of six satellite-based precipitation products and their ability for capturing characteristics of extreme precipitation events over a climate transition area in China. Remote Sens. 2019, 11, 1477. [Google Scholar] [CrossRef]
- Zhao, G.; Tian, P.; Mu, X.; Jiao, J.; Wang, F.; Gao, P. Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. J. Hydrol. 2014, 519, 387–398. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, W.; Tian, L.; Zhao, X. Climatic and different human influences on annual and seasonal streamflow with considering the soil water storage change in the middle reaches of the Yellow River basin, China. J. Hydrol. 2023, 619, 129298. [Google Scholar] [CrossRef]
- Zheng, H.; Miao, C.; Wu, J.; Lei, X.; Liao, W.; Li, H. Temporal and spatial variations in water discharge and sediment load on the Loess Plateau, China: A high-density study. Sci. Total Environ. 2019, 666, 875–886. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, X.; Sun, H.; Xu, H.; Zhong, X.; Liu, B.; Li, L. Driving forces of nature and human activities on water and sediment changes in the middle reaches of the Yellow River in the past 100 years. J. Soils Sediments 2021, 21, 2450–2464. [Google Scholar] [CrossRef]
- Yin, S.; Gao, G.; Ran, L.; Li, D.; Lu, X.; Fu, B. Extreme streamflow and sediment load changes in the Yellow River Basin: Impacts of climate change and human activities. J. Hydrol. 2023, 619, 129372. [Google Scholar] [CrossRef]
- Gao, P.; Deng, J.; Chai, X.; Mu, X.; Zhao, G.; Shao, H.; Sun, W. Dynamic sediment discharge in the Hekou–Longmen region of Yellow River and soil and water conservation implications. Sci. Total Environ. 2017, 578, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, S.; Huang, Q.; Xie, Y.; Leng, G.; Luan, J.; Song, X.; Wei, X.; Li, X. Identification of the non-stationarity of extreme precipitation events and correlations with large-scale ocean-atmospheric circulation patterns: A case study in the Wei River Basin, China. J. Hydrol. 2017, 548, 184–195. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. Integrated Multi-satellite Retrievals for GPM (IMERG) technical documentation. NASA GSFC Code 2015, 612, 2019. [Google Scholar]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) mission for science and society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef]
- Hosseini-Moghari, S.M.; Tang, Q. Can IMERG data capture the scaling of precipitation extremes with temperature at different time scales? Geophys. Res. Lett. 2022, 49, e2021GL096392. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, X.; Tang, Q.; Jia, G. The spatiotemporal variations of global rainfall erosivity and erosive rainfall event based on half-hourly satellite rainfall data. Catena 2025, 252, 108831. [Google Scholar] [CrossRef]
- Hosseini-Moghari, S.M.; Tang, Q. Validation of GPM IMERG V05 and V06 precipitation products over Iran. J. Hydrometeorol. 2020, 21, 1011–1037. [Google Scholar] [CrossRef]
- Xiong, J.; Tang, G.; Yang, Y. Continental evaluation of GPM IMERG V07B precipitation on a sub-daily scale. Remote Sens. Environ. 2025, 321, 114690. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar]
- Huang, D.; Gao, S. Impact of different reanalysis data on WRF dynamical downscaling over China. Atmos. Res. 2018, 200, 25–35. [Google Scholar] [CrossRef]
- Jiang, M.; Weng, B.; Chen, J.; Huang, T.; Ye, F.; You, L. Transformer-enhanced spatiotemporal neural network for post-processing of precipitation forecasts. J. Hydrol. 2024, 630, 130720. [Google Scholar] [CrossRef]
- Ning, Z.; Wu, N.; Zhang, J.; Ruan, Y.; Tang, Z.; Sun, J.; Shi, J.; Liu, C.; Wang, G. Wetter trend in source region of Yangtze River by runoff simulating based on Grid-RCCC-WBM. J. Hydrol. 2024, 631, 130702. [Google Scholar] [CrossRef]
- Zhao, J.; Gan, T.Y.; Zhang, G.; Zhang, S. Projected changes of precipitation extremes in North America using CMIP6 multi-climate model ensembles. J. Hydrol. 2023, 621, 129598. [Google Scholar] [CrossRef]
- Fernandes, R.; Leblanc, S.G. Parametric (modified least squares) and non-parametric (Theil–Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors. Remote Sens. Environ. 2005, 95, 303–316. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Su, J.; Lü, H.; Wang, J.; Sadeghi, A.M.; Zhu, Y. Evaluating the applicability of four latest satellite–gauge combined precipitation estimates for extreme precipitation and streamflow predictions over the upper Yellow River basins in China. Remote Sens. 2017, 9, 1176. [Google Scholar] [CrossRef]
- Aksu, H.; Taflan, G.Y.; Yaldiz, S.G.; Akgül, M.A. Evaluation of IMERG for GPM satellite-based precipitation products for extreme precipitation indices over Turkiye. Atmos. Res. 2023, 291, 106826. [Google Scholar] [CrossRef]
- Keikhosravi-Kiany, M.S.; Balling, R.C. Evaluation of GPM IMERG early, late, and final run in representing extreme rainfall indices in Southwestern Iran. Remote Sens. 2024, 16, 2779. [Google Scholar] [CrossRef]
- Vergni, L.; Parisi, A.; Todisco, F. Evaluation of the GPM IMERG half-hourly final precipitation product in the quantification of rainfall erosivity in central Italy. In Proceedings of the 2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Perugia, Italy, 3–5 November 2022; pp. 282–286. [Google Scholar]
- Ramadhan, R.; Marzuki, M.; Yusnaini, H.; Muharsyah, R.; Suryanto, W.; Sholihun, S.; Vonnisa, M.; Battaglia, A.; Hashiguchi, H. Capability of GPM IMERG products for extreme precipitation analysis over the Indonesian Maritime Continent. Remote Sens. 2022, 14, 412. [Google Scholar] [CrossRef]
- He, S.; Chen, C.; Li, Z.; Feng, A.; Yan, J.; Wu, S. Characteristics of extreme precipitation and its sensitivity to regional climate change in the upper and middle reaches of the Yellow River Basin. Resour. Sci. 2024, 46, 524–537. [Google Scholar]
- Ren, Z.; Ma, X.; Wang, K.; Li, Z. Effects of extreme precipitation on runoff and sediment yield in the middle reaches of the Yellow River. Atmosphere 2023, 14, 1415. [Google Scholar] [CrossRef]
- Dou, J.; Xia, R.; Xia, X.; Jiang, X.; Zhang, K.; Chen, Y.; Li, L.; Yan, C. Extreme rainfall drives the shift in dominant water quality “sink” from forest land to grassland in the Yellow River Basin. J. Hydrol. 2025, 658, 133218. [Google Scholar] [CrossRef]
- Feng, A.; Zhang, Q.; Song, J.; Wang, G.; Wu, W. Spatiotemporal characteristics of extreme precipitation in the Yellow River Basin based on CMIP6. J. Beijing Norm. Univ. (Nat. Sci.) 2024, 60, 270–284. [Google Scholar]
- Wang, Y.; Zhou, L. Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys. Res. Lett. 2005, 32, L09707. [Google Scholar]
- Torsah, G.A.; Osei, M.A.; Aryee, J.N.A.; Oti, J.A.A.; Amekudzi, L.K. Triggers of inland heavy rainfall inducing convective storms in West Africa: Case study of June 2021. Weather Clim. Extrem. 2025, 47, 100740. [Google Scholar] [CrossRef]
- Keil, C.; Craig, G.C. A displacement and amplitude score employing an optical flow technique. Weather Forecast. 2009, 24, 1297–1308. [Google Scholar] [CrossRef]
- Li, R.; Wang, K.; Qi, D. Event-based evaluation of the GPM multisatellite merged precipitation product from 2014 to 2018 over China: Methods and results. J. Geophys. Res. Atmos. 2021, 126, e2020JD033692. [Google Scholar] [CrossRef]
- Sánchez-García, C.; Francos, M. Human-environmental interaction with extreme hydrological events and climate change scenarios as background. Geogr. Sustain. 2022, 3, 232–236. [Google Scholar] [CrossRef]
No. | Definition | Index Name | Unit |
---|---|---|---|
1 | Maximum number of consecutive wet days when precipitation ≥1 mm | CWD | days |
2 | Annual number of days when daily precipitation ≥10 mm | R10 | days |
3 | Annual number of days when daily precipitation ≥20 mm | R20 | days |
4 | Annual total precipitation from days ≥1 mm | PRCPTOT | mm |
5 | Annual total precipitation when precipitation >95th percentile | R95p | mm |
6 | Annual total precipitation when precipitation >99th percentile | R99p | mm |
7 | Annual maximum 1-day precipitation | RX1day | mm |
8 | Annual maximum consecutive 5-day precipitation | RX5day | mm |
9 | The ratio of annual total precipitation to the number of wet days (≥1 mm) | SDII | mm/day |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Xie, Q.; Xu, X. Reliability of Satellite Data in Capturing Spatiotemporal Changes of Precipitation Extremes in the Middle Reaches of the Yellow River Basin. Remote Sens. 2025, 17, 3308. https://doi.org/10.3390/rs17193308
Yang Q, Xie Q, Xu X. Reliability of Satellite Data in Capturing Spatiotemporal Changes of Precipitation Extremes in the Middle Reaches of the Yellow River Basin. Remote Sensing. 2025; 17(19):3308. https://doi.org/10.3390/rs17193308
Chicago/Turabian StyleYang, Qianxi, Qiuyu Xie, and Ximeng Xu. 2025. "Reliability of Satellite Data in Capturing Spatiotemporal Changes of Precipitation Extremes in the Middle Reaches of the Yellow River Basin" Remote Sensing 17, no. 19: 3308. https://doi.org/10.3390/rs17193308
APA StyleYang, Q., Xie, Q., & Xu, X. (2025). Reliability of Satellite Data in Capturing Spatiotemporal Changes of Precipitation Extremes in the Middle Reaches of the Yellow River Basin. Remote Sensing, 17(19), 3308. https://doi.org/10.3390/rs17193308