Contrasting Drydown Time Scales: SMAP L-Band vs. AMSR2 C-Band Brightness Temperatures Against Ground Observations and SMAP Products
Abstract
Highlights
- Soil drydown time scale (τ) follows a depth-dependent pattern: AMSR2 C-band TB (0~3 cm) < SMAP L-band TB (0~5 cm) < NEON in situ observations (4~8 cm); τ is sensitive to NDVI (NDVI < 0.7) and climate types (L-band more sensitive than C-band) but insensitive to soil texture.
- Despite similar sensing depths of SMAP L-band TB and SMAP soil moisture (SM), τ of SMAP SM is smaller, indicating that faster drying of SMAP SM products than in situ observations is not just due to sensing depth.
- This study innovatively employs multi-frequency TB (instead of traditional SM products) to analyze τ, revealing frequency-dependent soil drying characteristics and differences in signal transmission.
- It guides the optimization of the SMAP SM retrieval algorithm—by accounting for factors such as moisture gradients and vegetation-intercepted water—and enhances satellite SM product validation through the increased use of vertical sensors.
Abstract
1. Introduction
2. Datasets
2.1. In Situ SM Networks (NEON)
2.2. Soil Moisture Active Passive (SMAP) Data
2.3. Advanced Microwave Scanning Radiometer 2 (AMSR2) C-Band TB
2.4. Aridity Index
2.5. Normalized Difference Vegetation Index (NDVI)
2.6. Soil Clay Fraction and Land Cover Data
2.7. Precipitation Data
3. Methodology
3.1. Spatial Matching of Satellite Overpasses with Ground Sites
3.2. Temporal Filtering to Isolate Post-Precipitation Events
3.3. Drydown Time Scale
3.4. Statistical Metrics for Comparison
4. Results
4.1. NEON vs. TB
4.2. Spatial Variability of Drying Patterns and Sensitivity Analysis
4.3. Comparison with SMAP SM Products
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weatherl, R.K.; Henao Salgado, M.J.; Ramgraber, M.; Moeck, C.; Schirmer, M. Estimating surface runoff and groundwater recharge in an urban catchment using a water balance approach. Hydrogeol. J. 2021, 29, 2411–2428. [Google Scholar] [CrossRef]
- Zhou, S.; Williams, A.P.; Lintner, B.R.; Berg, A.M.; Zhang, Y.; Keenan, T.F.; Cook, B.I.; Hagemann, S.; Seneviratne, S.I.; Gentine, P. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 2021, 11, 38–44. [Google Scholar] [CrossRef]
- Taylor, C.M.; de Jeu, R.A.; Guichard, F.; Harris, P.P.; Dorigo, W.A. Afternoon rain more likely over drier soils. Nature 2012, 489, 423–426. [Google Scholar] [CrossRef]
- Qiao, L.; Zuo, Z.; Zhang, R.; Piao, S.; Xiao, D.; Zhang, K. Soil moisture-atmosphere coupling accelerates global warming. Nat. Commun. 2023, 14, 4908. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.C.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Liu, L.; Gudmundsson, L.; Hauser, M.; Qin, D.; Li, S.; Seneviratne, S.I. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 2020, 11, 4892. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, V.; Gaur, N.; Mohanty, B.P. Global Flash Drought Monitoring Using Surface Soil Moisture. Water Resour. Res. 2021, 57, e2021WR029901. [Google Scholar] [CrossRef]
- Liu, J.G.; Wang, Q.R.; Zhan, W.W.; Lian, X.; Gentine, P. When and where soil dryness matters to ecosystem photosynthesis. Nat. Plants 2025, 11, 1390–1400. [Google Scholar] [CrossRef]
- Laio, F.; Porporato, A.; Ridolfi, L.; Rodriguez-Iturbe, I. Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress—II. Probabilistic soil moisture dynamics. Adv. Water Resour. 2001, 24, 707–723. [Google Scholar] [CrossRef]
- McColl, K.A.; He, Q.; Lu, H.; Entekhabi, D. Short-Term and Long-Term Surface Soil Moisture Memory Time Scales Are Spatially Anticorrelated at Global Scales. J. Hydrometeorol. 2019, 20, 1165–1182. [Google Scholar] [CrossRef]
- Shellito, P.J.; Small, E.E.; Livneh, B. Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model. Hydrol. Earth Syst. Sci. 2018, 22, 1649–1663. [Google Scholar] [CrossRef]
- McColl, K.A.; Wang, W.; Peng, B.; Akbar, R.; Gianotti, D.J.S.; Lu, H.; Pan, M.; Entekhabi, D. Global characterization of surface soil moisture drydowns. Geophys. Res. Lett. 2017, 44, 3682–3690. [Google Scholar] [CrossRef]
- Sehgal, V.; Gaur, N.; Mohanty, B.P. Global Surface Soil Moisture Drydown Patterns. Water Resour. Res. 2021, 57, e2020WR027588. [Google Scholar] [CrossRef]
- Rahmati, M.; Amelung, W.; Brogi, C.; Dari, J.; Flammini, A.; Bogena, H.; Brocca, L.; Chen, H.; Groh, J.; Koster, R.D.; et al. Soil Moisture Memory: State-Of-The-Art and the Way Forward. Rev. Geophys. 2024, 62, e2023RG000828. [Google Scholar] [CrossRef]
- Rondinelli, W.J.; Hornbuckle, B.K.; Patton, J.C.; Cosh, M.H.; Walker, V.A.; Carr, B.D.; Logsdon, S.D. Different Rates of Soil Drying after Rainfall Are Observed by the SMOS Satellite and the South Fork in situ Soil Moisture Network. J. Hydrometeorol. 2015, 16, 889–903. [Google Scholar] [CrossRef]
- Shellito, P.J.; Small, E.E.; Colliander, A.; Bindlish, R.; Cosh, M.H.; Berg, A.A.; Bosch, D.D.; Caldwell, T.G.; Goodrich, D.C.; McNairn, H.; et al. SMAP soil moisture drying more rapid than observed in situ following rainfall events. Geophys. Res. Lett. 2016, 43, 8068–8075. [Google Scholar] [CrossRef]
- Cappelletti, L.; Ruscica, R.; Salvia, M.M.; Sörensson, A.; Jobbágy, E.; Gattinoni, N.; Spennemann, P.; Fernandez-Long, M. First Surface Soil Drying Validation in a Productive Area in Central Argentina. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, IV-3/W2-2020, 89–94. [Google Scholar]
- He, Q.; Lu, H.; Yang, K. Soil Moisture Memory of Land Surface Models Utilized in Major Reanalyses Differ Significantly From SMAP Observation. Earth’s Future 2023, 11, e2022EF003215. [Google Scholar] [CrossRef]
- Lv, S.N.; Wen, J.; Zeng, Y.J.; Tian, H.; Su, Z.B. An improved two-layer algorithm for estimating effective soil temperature in microwave radiometry using in situ temperature and soil moisture measurements. Remote Sens. Environ. 2014, 152, 356–363. [Google Scholar] [CrossRef]
- Njoku, E.G.; Entekhabi, D. Passive microwave remote sensing of soil moisture. J. Hydrol. 1996, 184, 101–129. [Google Scholar] [CrossRef]
- Wang, J.R.; Mcmurtrey, J.E.; Engman, E.T.; Jackson, T.J.; Schmugge, T.J.; Gould, W.I.; Fuchs, J.E.; Glazar, W.S. Radiometric Measurements over Bare and Vegetated Fields at 1.4-Ghz and 5-Ghz Frequencies. Remote Sens. Environ. 1982, 12, 295–311. [Google Scholar] [CrossRef]
- Rao, K.S.; Chandra, G.; Rao, P.V.N. The Relationship between Brightness Temperature and Soil-Moisture—Selection of Frequency-Range for Microwave Remote-Sensing. Int. J. Remote Sens. 1987, 8, 1531–1545. [Google Scholar] [CrossRef]
- Ruscica, R.C.; Polcher, J.; Salvia, M.M.; Sörensson, A.A.; Piles, M.; Jobbágy, E.G.; Karszenbaum, H. Spatio-temporal soil drying in southeastern South America: The importance of effective sampling frequency and observational errors on drydown time scale estimates. Int. J. Remote Sens. 2020, 41, 7958–7992. [Google Scholar] [CrossRef]
- Tso, C.-H.M.; Blyth, E.; Tanguy, M.; Levy, P.E.; Robinson, E.L.; Bell, V.; Zha, Y.; Fry, M. Multiproduct Characterization of Surface Soil Moisture Drydowns in the United Kingdom. J. Hydrometeorol. 2023, 24, 2299–2319. [Google Scholar] [CrossRef]
- Xu, Y.; He, Q.; Yao, P.; Lu, H.; Yang, K.; Feldman, A.; Gianotti, D.J.S.; Entekhabi, D. Global Characterizations of Drydown Events from a Long-Term Satellite Soil Moisture Dataset. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 2843–2845. [Google Scholar]
- Jost, T.; Wang, W.; Fiebig, U.C.; Pérez-Fontán, F. Comparison of L- and C-Band Satellite-to-Indoor Broadband Wave Propagation for Navigation Applications. IEEE Trans. Antennas Propag. 2011, 59, 3899–3909. [Google Scholar] [CrossRef]
- Goodman, K.J.; Parker, S.M.; Edmonds, J.W.; Zeglin, L.H. Expanding the scale of aquatic sciences: The role of the National Ecological Observatory Network (NEON). Freshw. Sci. 2015, 34, 377–385. [Google Scholar] [CrossRef]
- Keller, M.; Schimel, D.S.; Hargrove, W.W.; Hoffman, F.M. A continental strategy for the National Ecological Observatory Network. Front. Ecol. Environ. 2008, 6, 282–284. [Google Scholar] [CrossRef]
- Ayres, E.; Colliander, A.; Cosh, M.H.; Roberti, J.A.; Simkin, S.; Genazzio, M.A. Validation of SMAP Soil Moisture at Terrestrial National Ecological Observatory Network (NEON) Sites Show Potential for Soil Moisture Retrieval in Forested Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10903–10918. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. P. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Chaubell, J.; Yueh, S.; Entekhabi, D.; Peng, J. Resolution Enhancement of Smap Radiometer Data Using the Backus Gilbert Optimum Interpolation Technique. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 284–287. [Google Scholar]
- Imaoka, K.; Kachi, M.; Fujii, H.; Murakami, H.; Hori, M.; Ono, A.; Igarashi, T.; Nakagawa, K.; Oki, T.; Honda, Y.; et al. Global Change Observation Mission (GCOM) for Monitoring Carbon, Water Cycles, and Climate Change. P. IEEE 2010, 98, 717–734. [Google Scholar] [CrossRef]
- Ebuchi, N.; Kachi, M.; Fujii, H.; Maeda, T.; Ono, N.; Kasahara, M.; Shimoda, H.; Team, A.S. Long-Term Observations of the Global Water Cycle, Air-Sea Interactions and Polar Environments by Gcom-W/Amsr2. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4674–4676. [Google Scholar]
- Zomer, R.J.; Xu, J.C.; Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 2022, 9, 409. [Google Scholar] [CrossRef]
- O’Neill, P.; Bindlish, R.; Chan, S.; Chaubell, J.; Njoku, E.; Jackson, T. Soil Moisture Active Passive (SMAP) Algorithm Theoretical Basis Document Level 2 & 3 Soil Moisture (Passive) Data Products, Revision F; JPL D-66480; Jet Propulsion Laboratory: Pasadena, CA, USA, 2020; pp. 51–63. [Google Scholar]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (Gpm) Mission for Science and Society. B Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef]
- Martínez-de la Torre, A.; Blyth, E.M.; Robinson, E.L. Evaluation of Drydown Processes in Global Land Surface and Hydrological Models Using Flux Tower Evapotranspiration. Water 2019, 11, 356. [Google Scholar] [CrossRef]
- Salvia, M.; Ruscica, R.; Sörensson, A.; Polcher, J.; Piles, M.; Karszenbaum, H. Seasonal Analysis of Surface Soil Moisture Dry-Downs in a Land-Atmosphere Hotspot as Seen by Lsm and Satellite Products. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 5521–5524. [Google Scholar]
- Zhang, L.H.; He, C.S.; Zhang, M.M.; Zhu, Y. Evaluation of the SMOS and SMAP soil moisture products under different vegetation types against two sparse networks over arid mountainous watersheds, Northwest China. Sci. China Earth Sci. 2019, 62, 703–718. [Google Scholar] [CrossRef]
- Ma, H.L.; Zeng, J.Y.; Chen, N.C.; Zhang, X.; Cosh, M.H.; Wang, W. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sens. Environ. 2019, 231, 111215. [Google Scholar] [CrossRef]
- UNEP. World Atlas of Desertification, 2nd ed.; United Nations Environment Program: Nairobi, Kenya, 1997; pp. 2–8. [Google Scholar]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive; Artech House: Norwood, MA, USA, 1986; pp. 1522–1551. [Google Scholar]
- Walker, V.A.; Wallace, V.; Yildirim, E.; Eichinger, W.E.; Cosh, M.H.; Hornbuckle, B.K. From field observations to temporally dynamic soil surface roughness retrievals in the U.S. Corn Belt. Remote Sens. Environ. 2023, 287, 113458. [Google Scholar] [CrossRef]
- Li, R.; Min, Q.L. Dynamic response of microwave land surface properties to precipitation in Amazon rainforest. Remote Sens. Environ. 2013, 133, 183–192. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Berg, A.; Bosch, D.D.; Caldwell, T.; Chan, S.; Cosh, M.H.; Collins, C.H.; Martínez-Fernández, J.; McNairn, H.; et al. Effect of Rainfall Events on SMAP Radiometer-Based Soil Moisture Accuracy Using Core Validation Sites. J. Hydrometeorol. 2020, 21, 255–264. [Google Scholar] [CrossRef]
- Berg, A.A.; Ambadan, J.T.; Colliander, A.; McNairn, H.; Powers, J.; Tetlock, E. The Impact of Probe Orientation on SMAP Validation Statistics. IEEE Geosci. Remote Sens. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Feldman, A.F.; Gianotti, D.J.S.; Dong, J.Z.; Akbar, R.; Crow, W.T.; McColl, K.A.; Konings, A.G.; Nippert, J.B.; Tumber-Davila, S.J.; Holbrook, N.M.; et al. Remotely Sensed Soil Moisture Can Capture Dynamics Relevant to Plant Water Uptake. Water Resour. Res. 2023, 59, e2022WR033814. [Google Scholar] [CrossRef]
- Shen, X.J.; Walker, J.P.; Ye, N.; Wu, X.L.; Boopathi, N.; Yeo, I.Y.; Zhang, L.L.; Zhu, L.J. Soil Moisture Retrieval Depth of P- and L-Band Radiometry: Predictions and Observations. IEEE T Geosci. Remote 2021, 59, 6814–6822. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Lv, S.; Hu, Y.; Wen, J. Contrasting Drydown Time Scales: SMAP L-Band vs. AMSR2 C-Band Brightness Temperatures Against Ground Observations and SMAP Products. Remote Sens. 2025, 17, 3307. https://doi.org/10.3390/rs17193307
Jiang H, Lv S, Hu Y, Wen J. Contrasting Drydown Time Scales: SMAP L-Band vs. AMSR2 C-Band Brightness Temperatures Against Ground Observations and SMAP Products. Remote Sensing. 2025; 17(19):3307. https://doi.org/10.3390/rs17193307
Chicago/Turabian StyleJiang, Hongxun, Shaoning Lv, Yin Hu, and Jun Wen. 2025. "Contrasting Drydown Time Scales: SMAP L-Band vs. AMSR2 C-Band Brightness Temperatures Against Ground Observations and SMAP Products" Remote Sensing 17, no. 19: 3307. https://doi.org/10.3390/rs17193307
APA StyleJiang, H., Lv, S., Hu, Y., & Wen, J. (2025). Contrasting Drydown Time Scales: SMAP L-Band vs. AMSR2 C-Band Brightness Temperatures Against Ground Observations and SMAP Products. Remote Sensing, 17(19), 3307. https://doi.org/10.3390/rs17193307