An Efficient RMA with Chunked Nonlinear Normalized Weights and SNR-Based Multichannel Fusion for MIMO-SAR Imaging
Abstract
Highlights
- The article proposes the chunked nonlinear normalized weights technique to suppress artifacts and noise.
- The article proposes the SNR-based multichannel fusion technique to solve the issue of missing target structures.
- The proposed chunked nonlinear normalized weights technique effectively suppresses artifacts and noise in reconstructed images.
- The proposed SNR-based multichannel fusion technique effectively preserves target structure while efficiently utilizing multichannel signals to enhance system robustness.
Abstract
1. Introduction
- We propose to add chunked nonlinear normalized weights to the echo signals. This technique uses the target scene’s properties to perform targeted enhancement of the received signals to suppress noise and artifacts in the reconstructed images.
- To cope with the possible problem of missing target structures due to chunked nonlinear normalized weights when imaging the weakly scattering and low-contrast targets, signal-to-noise ratio-based (SNR-based) multichannel fusion technique is proposed. This technique assigns weights to the data of each channel based on the SNR and selectively fuses the data of multiple channels. Such an arrangement effectively solves the problem of false attenuation and utilizes the data more efficiently to improve the robustness of the system.
- The proposed techniques are compared with the other methods including the original BP, the original RMA, the AHI-LFM, and the RSA in multiple scenes. The experimental results show that the proposed techniques can effectively suppress noise and artifacts to improve the imaging resolution without significantly increasing the computational complexity.
2. Signal Model and Traditional RMA
2.1. Signal Model
2.2. Traditional RMA
3. Improved Algorithm
3.1. Chunked Nonlinear Normalized Weights
- Target region (T):
- Background region (B):
- Transition region (M):
3.2. SNR-Based Multichannel Fusion
4. Experiments and Results
4.1. Experimental Indicators and Parameters
4.2. Simulation Experiment
4.3. System Configuration
4.4. Rectangular Reference Target
4.5. Multiple-Targets Imaging
4.6. Imaging Hidden Plier
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SAR | Synthetic aperture radar |
BP | Back projection |
CS | Compressed sensing |
RMA | Range migration algorithm |
MIMO-SAR | Multiple-input multiple-output synthetic aperture radar |
3D | Three-dimensional |
FFT | Fast Fourier transform |
RSA | Range scaling algorithm |
RCM | Range cell migration |
RO | Range offset |
SIMO | Single-input multiple-output |
DL | Deep learning |
FMCW | Frequency-modulated continuous wave |
IF | Intermediate frequency |
PSNR | Peak signal-to-noise ratio |
SNR | Signal-to-noise ratio |
IE | Image entropy |
IC | Image contrast |
References
- Sheen, D.M.; McMakin, D.L.; Hall, T.E. Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans. Microw. Theory 2001, 49, 1581–1592. [Google Scholar] [CrossRef]
- Wu, G.; Xiong, Y.; Liu, Z.; Meng, G.; Peng, Z. Fast and Accurate Full-Field Out-of-Plane Displacement Measurement Using MIMO-SAR-Based Microwave Interferometry. IEEE Sens. J. 2024, 24, 31911–31920. [Google Scholar] [CrossRef]
- Helander, J.; Ericsson, A.; Gustafsson, M.; Martin, T.; Sjoberg, D.; Larsson, C. Compressive Sensing Techniques for mm-Wave Nondestructive Testing of Composite Panels. IEEE Trans. Antenn. Propag. 2017, 65, 5523–5531. [Google Scholar] [CrossRef]
- Ghasr, M.T.; Kharkovsky, S.; Bohnert, R.; Hirst, B.; Zoughi, R. 30 GHz Linear High-Resolution and Rapid Millimeter Wave Imaging System for NDE. IEEE Trans. Antenn. Propag. 2013, 61, 4733–4740. [Google Scholar] [CrossRef]
- Qiao, L.; Wang, Y.; Zhao, Z.; Chen, Z. Exact Reconstruction for Near-Field Three-Dimensional Planar Millimeter-Wave Holographic Imaging. J. Infrared Millim. Terahertz Waves 2015, 36, 1221–1236. [Google Scholar] [CrossRef]
- Wang, L. Microwave Imaging and Sensing Techniques for Breast Cancer Detection. Micromachines 2023, 14, 1462. [Google Scholar] [CrossRef]
- Mirbeik-Sabzevari, A.; Li, S.; Garay, E.; Nguyen, H.-T.; Wang, H.; Tavassolian, N. Synthetic Ultra-High-Resolution Millimeter-Wave Imaging for Skin Cancer Detection. IEEE Trans. Biomed. Eng. 2019, 66, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhao, Y.; Wei, Y.; Zhao, Y.; Wei, S. Concealed Object Detection for Activate Millimeter Wave Image. IEEE Trans. Ind. Electron. 2019, 66, 9909–9917. [Google Scholar] [CrossRef]
- Zhang, H.; Ouyang, S.; Wang, G.; Li, J.; Wu, S.; Zhang, F. Back-Projection Algorithm Based on Self-Correlation for GroundPenetrating Radar Imaging. J. Appl. Remote Sens. 2015, 9, 095059. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, L.; Zhang, F.; Li, Y.; Wu, Y. A Novel MIMO-SAR System Based on Simultaneous Digital Beam Forming of Both Transceiver and Receiver. Sensors 2020, 20, 6604. [Google Scholar] [CrossRef] [PubMed]
- Andersson, L.-E. On the Determination of a Function from Spherical Averages. SIAM J. Math. Anal. 1988, 19, 214–232. [Google Scholar] [CrossRef]
- Fawcett, J.A. Inversion of N-Dimensional Spherical Averages. SIAM J. Appl. Math. 1985, 45, 336–341. [Google Scholar] [CrossRef]
- Albuquerque, M.; Prats, P.; Scheiber, R. Applications of Time-Domain Back-Projection SAR Processing in the Airborne Case. In Proceedings of the 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2–5 June 2008; pp. 1–4. [Google Scholar]
- Durand, R.; Ginolhac, G.; Thirion-Lefevre, L.; Forster, P. Back Projection Version of Subspace Detector SAR Processors. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 1489–1497. [Google Scholar] [CrossRef]
- Munson, D.C.; O’Brien, J.D.; Jenkins, W.K. A tomographic formulation of spotlight-mode synthetic aperture radar. Proc. IEEE 1983, 71, 917–925. [Google Scholar] [CrossRef]
- Ren, K.; Wang, Q.; Burkholder, R.J. A Fast Back-Projection Approach to Diffraction Tomography for Near-Field Microwave Imaging. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2170–2174. [Google Scholar] [CrossRef]
- Feng, X.; Gao, L. Improving non-line-of-sight image reconstruction with weighting factors. Opt. Lett. 2020, 45, 3921–3924. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.-H.; Kang, H.-S.; Kim, C.-K.; Park, J.; Park, S.-O. Sparse Scene Recovery for High-Resolution Automobile FMCW SAR via Scaled Compressed Sensing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10136–10146. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Y. A Novel Compressive Sensing Algorithm for SAR Imaging. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 708–720. [Google Scholar] [CrossRef]
- Ge, S.; Feng, D.; Song, S.; Wang, J.; Huang, X. Sparse Logistic Regression-Based One-Bit SAR Imaging. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Song, S.; Dai, Y.; Jin, T.; Wang, X.; Hua, Y.; Zhou, X. An Effective Image Reconstruction Enhancement Method With Convolutional Reweighting for Near-Field SAR. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 2486–2490. [Google Scholar] [CrossRef]
- Cafforio, C.; Prati, C.; Rocca, F. SAR data focusing using seismic migration techniques. IEEE Trans. Aerosp. Electron. Syst. 1991, 27, 194–207. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Liu, Q.H. Interpolation-Free Stolt Mapping for SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2014, 11, 926–929. [Google Scholar] [CrossRef]
- Subiza, B.; Gimeno-Nieves, E.; Lopez-Sanchez, J.M.; Fortuny-Guasch, J. An approach to SAR imaging by means of non-uniform FFTs. In Proceedings of the IGARSS 2003—2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 4086, pp. 4089–4091. [Google Scholar]
- Zhu, R.; Zhou, J.; Jiang, G.; Fu, Q. Range Migration Algorithm for Near-Field MIMO-SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2280–2284. [Google Scholar] [CrossRef]
- Lin, B.; Li, C.; Ji, Y.; Zhang, W.; Yuan, Y.; Liu, X.; Fang, G. An Efficient Range Scaling Algorithm for MIMO-SAR 3-D Imaging. IEEE T Microw. Theory 2024, 72, 4945–4959. [Google Scholar] [CrossRef]
- Tan, K.; Wu, S.; Liu, X.; Fang, G. Omega-K Algorithm for Near-Field 3-D Image Reconstruction Based on Planar SIMO/MIMO Array. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2381–2394. [Google Scholar] [CrossRef]
- Rostami, P.; Zamani, H.; Fakharzadeh, M.; Amini, A.; Marvasti, F. A Deep Learning Approach for Reconstruction in Millimeter-Wave Imaging Systems. IEEE Trans. Antenn. Propag. 2023, 71, 1180–1184. [Google Scholar] [CrossRef]
- Wang, M.; Wei, S.; Liang, J.; Zeng, X.; Wang, C.; Shi, J.; Zhang, X. RMIST-Net: Joint Range Migration and Sparse Reconstruction Network for 3-D mmW Imaging. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Zhu, R.; Zhou, J.; Tang, L.; Kan, Y.; Fu, Q. Frequency-Domain Imaging Algorithm for Single-Input–Multiple-Output Array. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1747–1751. [Google Scholar] [CrossRef]
- Yanik, M.E.; Torlak, M. Near-Field MIMO-SAR Millimeter-Wave Imaging With Sparsely Sampled Aperture Data. IEEE Access 2019, 7, 31801–31819. [Google Scholar] [CrossRef]
- Wei, S.; Zhou, Z.; Wang, M.; Wei, J.; Liu, S.; Shi, J.; Zhang, X.; Fan, F. 3DRIED: A High-Resolution 3-D Millimeter-Wave Radar Dataset Dedicated to Imaging and Evaluation. Remote Sens. 2021, 13, 3366. [Google Scholar] [CrossRef]
- Chen, X.; Luo, C.; Yang, Q.; Yang, L.; Wang, H. Efficient MMW Image Reconstruction Algorithm Based on ADMM Framework for Near-Field MIMO-SAR. IEEE Trans. Microw. Theory 2024, 72, 1326–1338. [Google Scholar] [CrossRef]
- Peng, Y.; Sheng, Z.; He, G. Near-Field Low-Storage SAR Imaging With Spatio-Temporal Sub-Nyquist Samples. IEEE Sens. J. 2024, 24, 19442–19453. [Google Scholar] [CrossRef]
- Song, S.; Dai, Y.; Sun, S.; Jin, T. Efficient Image Reconstruction Methods Based on Structured Sparsity for Short-Range Radar. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, D.; Su, T.; Pang, G.; Zhong, J. Efficient 3-D Near-Field MIMO-SAR Imaging Based on Scanning MIMO Array. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 1244–1256. [Google Scholar] [CrossRef]
- Yanik, M.E.; Wang, D.; Torlak, M. Development and Demonstration of MIMO-SAR mmWave Imaging Testbeds. IEEE Access 2020, 8, 126019–126038. [Google Scholar] [CrossRef]
- Zhuge, X.; Yarovoy, A.G. Three-Dimensional Near-Field MIMO Array Imaging Using Range Migration Techniques. IEEE Trans. Image Process 2012, 21, 3026–3033. [Google Scholar] [CrossRef]
- Wang, G.; Munoz-Ferreras, J.-M.; Gu, C.; Li, C.; Gomez-Garcia, R. Application of Linear-Frequency-Modulated Continuous-Wave (LFMCW) Radars for Tracking of Vital Signs. IEEE Trans. Microw. Theory 2014, 62, 1387–1399. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, L.; Bai, X.; Chen, J. Near-Field High-Resolution SAR Imaging with Sparse Sampling Interval. Sensors 2022, 22, 5548. [Google Scholar] [CrossRef]
- Weyl, H. Ausbreitung elektromagnetischer Wellen über einem ebenen Leiter. Ann. Der Phys. 1919, 365, 481–500. [Google Scholar] [CrossRef]
- Brekhovskikh, L.M.; Godin, O.A. Acoustics of Layered Media II: Point Sources and Bounded Beams; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 10. [Google Scholar]
- Tu, H.; Yu, L.; Wang, Z.; Huang, W.; Sang, L. 3-D Millimeter-Wave Imaging for Sparse MIMO Array With Range Migration and l2-Norm-Reinforced Sparse Bayesian Learning. IEEE Trans. Instrum. Meas. 2025, 74, 1–12. [Google Scholar] [CrossRef]
- Stępień, I.; Oszust, M. A Brief Survey on No-Reference Image Quality Assessment Methods for Magnetic Resonance Images. J. Imaging 2022, 8, 160. [Google Scholar] [CrossRef] [PubMed]
- Thangjai, W.; Niwitpong, S.-A. Confidence Intervals for the Signal-to-Noise Ratio and Difference of Signal-to-Noise Ratios of Log-Normal Distributions. Stats 2019, 2, 164–173. [Google Scholar] [CrossRef]
- Cherniak, G.; Nemirovsky, J.; Nemirovsky, A.; Nemirovsky, Y. Modeling Signal-to-Noise Ratio of CMOS Image Sensors with a Stochastic Approach under Non-Stationary Conditions. Sensors 2023, 23, 7344. [Google Scholar] [CrossRef]
- Meng, Y.; Lin, C.; Qing, A.; Nikolova, N.K. Accelerated Holographic Imaging With Range Stacking for Linear Frequency Modulation Radar. IEEE T Microw. Theory 2022, 70, 1630–1638. [Google Scholar] [CrossRef]
- Smith, J.W.; Torlak, M. Efficient 3-D Near-Field MIMO-SAR Imaging for Irregular Scanning Geometries. IEEE Access 2022, 10, 10283–10294. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Frequency | 77~81 GHz |
Antenna number | 2T4R |
Sample point | 256 |
Sample rate | 5000 ksps |
Slope | 70.295 MHz/μs |
Horizontal step (Y) | 8 mm |
Vertical step (X) | 1 mm |
Original BP | Original RMA | AHI-LFM | RSA | Chunked Nonlinear Normalization | SNR-Based Multichannel Fusion | |
---|---|---|---|---|---|---|
IE | 1.6748 | 2.2370 | 2.1113 | 1.8723 | 1.5391 | 1.5335 |
IC | 8.7311 | 7.1208 | 7.5966 | 8.3009 | 10.5111 | 9.9105 |
CORR | 0.9414 | 0.8015 | 0.8635 | 0.9244 | 0.9861 | 0.9724 |
PSNR | 35.25 | 27.51 | 29.16 | 32.46 | 34.99 | 35.46 |
Time | 25 s | 1.47 s | 4.61 s | 7.52 s | 2.08 s | 8.12 s |
Original BP | Original RMA | AHI-LFM | RSA | Chunked Nonlinear Normalization | SNR-Based Multichannel Fusion | |
---|---|---|---|---|---|---|
IE | 3.0099 | 3.7596 | 3.8734 | 3.7345 | 2.7722 | 2.7896 |
IC | 8.6510 | 6.1609 | 6.6409 | 6.1850 | 7.7705 | 7.1355 |
Time | 227 s | 3.79 s | 12.64 s | 16.84 s | 4.6 s | 18.11 s |
Original BP | Original RMA | AHI-LFM | RSA | Chunked Nonlinear Normalization | SNR-Based Multichannel Fusion | |
---|---|---|---|---|---|---|
IE | 2.8485 | 3.1032 | 2.6787 | 2.6742 | 1.9265 | 1.9381 |
IC | 7.9059 | 7.4774 | 7.9812 | 7.7341 | 8.8298 | 7.2924 |
Time | 349 s | 6.56 s | 15.99 s | 21.52 s | 6.63 s | 24.69 s |
Original BP | Original RMA | AHI-LFM | RSA | Chunked Nonlinear Normalization | SNR-Based Multichannel Fusion | |
---|---|---|---|---|---|---|
IE | 2.7414 | 1.9983 | 1.0632 | 0.9641 | 0.5777 | 0.6577 |
IC | 7.7878 | 8.2565 | 9.6028 | 10.3034 | 11.108 | 11.3052 |
Time | 264 s | 3.58 s | 11.61 s | 16.27 s | 4.34 s | 18.25 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Chen, H.; Duan, H.; Sun, R.; Yang, K.; Fang, J.; Xu, H.; Song, P. An Efficient RMA with Chunked Nonlinear Normalized Weights and SNR-Based Multichannel Fusion for MIMO-SAR Imaging. Remote Sens. 2025, 17, 3232. https://doi.org/10.3390/rs17183232
Wang J, Chen H, Duan H, Sun R, Yang K, Fang J, Xu H, Song P. An Efficient RMA with Chunked Nonlinear Normalized Weights and SNR-Based Multichannel Fusion for MIMO-SAR Imaging. Remote Sensing. 2025; 17(18):3232. https://doi.org/10.3390/rs17183232
Chicago/Turabian StyleWang, Jingjing, Hao Chen, Haowei Duan, Rongbo Sun, Kehui Yang, Jing Fang, Huaqiang Xu, and Pengbo Song. 2025. "An Efficient RMA with Chunked Nonlinear Normalized Weights and SNR-Based Multichannel Fusion for MIMO-SAR Imaging" Remote Sensing 17, no. 18: 3232. https://doi.org/10.3390/rs17183232
APA StyleWang, J., Chen, H., Duan, H., Sun, R., Yang, K., Fang, J., Xu, H., & Song, P. (2025). An Efficient RMA with Chunked Nonlinear Normalized Weights and SNR-Based Multichannel Fusion for MIMO-SAR Imaging. Remote Sensing, 17(18), 3232. https://doi.org/10.3390/rs17183232