Multi-Source Feature Selection and Explainable Machine Learning Approach for Mapping Nitrogen Balance Index in Winter Wheat Based on Sentinel-2 Data
Abstract
Highlights
- The Sen2Res super-resolution improved Sentinel-2 features, enhancing NBI correlations in winter wheat.
- The optimized RF model (R2 = 0.77, RMSE = 1.57) outperformed linear models; SHAP highlighted red-edge/NIR dominance (~75%).
- The workflow enables regional, high-accuracy NBI monitoring and supports precision fertilization.
- Combining SHAP interpretation with model outputs improves the transparency and transferability of nutrient monitoring.
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Nitrogen Balance Index Acquisition
2.3. Sentinel-2 Image Processing
2.4. Selection of Vegetation Indices and Texture Parameters
2.5. Methodology and Techniques
2.6. Model Evaluation
Vegetation Index | Full Name | Sentinel-2 Corresponding Formula | References |
---|---|---|---|
NDVI8or8A | Normalized Difference Vegetation Index | [49] | |
SR8or8A | Simple Ratio Index | [50] | |
EVI8or8A | Enhanced Vegetation Index | [51] | |
ARVI8or8A | Atmospherically Resistant Vegetation Index | [52] | |
RENDVI740or783or3 | Red-Edge Normalized Difference Vegetation Index | [53] | |
mSR705or740 | Modified Red-Edge Simple Ratio Index | [54] | |
mNDVI705or740 | Modified Red-Edge Normalized Difference Vegetation Index | [55] | |
VOG705or740or783 | Vogelmann Red-Edge Index 1 | [56] | |
SIPI8or8A | Structure Insensitive Pigment Index | [57] | |
REDRG1 | Red-Edge RG1 | [58] | |
REDRG2 | Red-Edge RG2 | [58] | |
ARI1or1-1or1-2 | Anthocyanin Reflectance Index 1 | [59] | |
ARI2-1or2-2or2-3 | Anthocyanin Reflectance Index 2 | [59] | |
ARI2-4or2-5or2-6 | Anthocyanin Reflectance Index 2 | [59] | |
CI705or740or783-B8 | Red-edge Chlorophyll Index | [60] | |
CI705or740or783-B8A | Red-edge Chlorophyll Index | [60] | |
DVI8or8A | Difference Vegetation Index | [61] | |
NRI | Nitrogen Reflectance Index | [62] | |
SAVI8or8A | Soil Adjusted Vegetation Index | [63] | |
TVI705or740or783 | Triangular Vegetation Index | [64] | |
RVSI | Red-Edge Vegetation Stress Index | [65] | |
MCARI705or740or783 | Modified Chlorophyll Absorption Ratio Index | [66] | |
VARI | Visible Atmospherically Resistant Index | [67] | |
TCARI705or740or783 | Transformed Chlorophyll Absorption Ratio Index | [68] | |
OSARI8or8A | Optimization Of Soil Regulatory Vegetation Index | [69] | |
NPCI | Chlorophyll Normalized Vegetation Index | [70] | |
MTVI8or8A | Modified Triangular Vegetation Index | [71] | |
IDVI8or8A | Inverted Difference Vegetation Index | [72] | |
OSAVI2 | Optimized Soil Adjusted Vegetation Index 2 | [73] | |
MCARI2 | Modified Chlorophyll Absorption Ratio Index 2 | [73] | |
TCARI2 | Transformed Chlorophyll Absorption Ratio Index 2 | [73] | |
MSI8or8A | Moisture Stress Index | [74] | |
NDII8or8A | Normalized Difference Infrared Index | [75] | |
LSWI8or8A | Land Surface Water Index | [76] |
3. Results
3.1. Comparison Between Sen2Res and Original Images
3.2. Analysis of Correlation Results
3.3. Model Results
3.4. SHAP Analysis
3.5. Spatial Distribution of NBI
4. Discussion
4.1. Comparison Between Sen2Res Super-Resolved Images and Original Images
4.2. Response of Spectral, Textural, and Vegetation Indices to NBI
4.3. Feature Selection and Machine Learning Algorithms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shiferaw, B.; Smale, M.; Braun, H.-J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Li, Z.; Li, H.; Li, Z.; Xu, X.; Song, X.; Zhang, Y.; Duan, D.; Zhao, C.; et al. Progress of hyperspectral data processing and modelling for cereal crop nitrogen monitoring. Comput. Electron. Agric. 2020, 172, 105321. [Google Scholar] [CrossRef]
- Abdel-Rahman, E.M.; Ahmed, F.B.; Van Den Berg, M. Imaging spectroscopy for estimating sugarcane leaf nitrogen concentration. In Proceedings of the SPIE Remote Sensing, Cardiff, UK, 15–18 September 2008; Neale, C.M.U., Owe, M., D’Urso, G., Eds.; SPIE: Bellingham, WA, USA, 2008; Volume 7104, p. 71040V. [Google Scholar] [CrossRef]
- Andrews, M.; Raven, J.A.; Lea, P.J. Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Ann. Appl. Biol. 2013, 163, 174–199. [Google Scholar] [CrossRef]
- Soltanikazemi, M.; Minaei, S.; Shafizadeh-Moghadam, H.; Mahdavian, A. Field-scale estimation of sugarcane leaf nitrogen content using vegetation indices and spectral bands of Sentinel-2: Application of random forest and support vector regression. Comput. Electron. Agric. 2022, 200, 107130. [Google Scholar] [CrossRef]
- Swarbreck, S.M.; Wang, M.; Wang, Y.; Kindred, D.; Sylvester-Bradley, R.; Shi, W.; Varinderpal-Singh; Bentley, A.R.; Griffiths, H. A roadmap for lowering crop nitrogen requirement. Trends Plant Sci. 2019, 24, 892–904. [Google Scholar] [CrossRef] [PubMed]
- Cerovic, Z.G.; Ounis, A.; Cartelat, A.; Latouche, G.; Goulas, Y.; Meyer, S.; Moya, I. The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ. 2002, 25, 1663–1676. [Google Scholar] [CrossRef]
- Shi, P.; Wang, Y.; Yin, C.; Fan, K.; Qian, Y.; Chen, G. Mitigating Saturation Effects in Rice Nitrogen Estimation Using Dualex Measurements and Machine Learning. Front. Plant Sci. 2024, 15, 1518272. [Google Scholar] [CrossRef]
- Li, J.; Zhang, F.; Qian, X.; Zhu, Y.; Shen, G. Quantification of rice canopy nitrogen balance index with digital imagery from unmanned aerial vehicle. Remote Sens. Lett. 2015, 6, 183–189. [Google Scholar] [CrossRef]
- Tremblay, N.; Wang, Z.; Cerovic, Z.G. Sensing crop nitrogen status with fluorescence indicators: A review. Agron. Sustain. Dev. 2012, 32, 451–464. [Google Scholar] [CrossRef]
- Cartelat, A.; Cerovic, Z.G.; Goulas, Y.; Meyer, S.; Lelarge, C.; Prioul, J.L.; Barbottin, A.; Jeuffroy, M.H.; Gate, P.; Agati, G.; et al. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Res. 2005, 91, 35–49. [Google Scholar] [CrossRef]
- Ali, M.M.; Al Ani, A.; Eamus, D.; Tan, D.K.Y. Leaf nitrogen determination using non destructive techniques—A review. J. Plant Nutr. 2017, 40, 928–953. [Google Scholar] [CrossRef]
- Tao, W.; Chen, Q.; Li, W.; Gao, S.; Li, J.; Wang, Y.; Ahmad, S.; Ding, Y.; Li, G. Optimizing rice yield: Evaluating the nitrogen supply characteristics of slow and controlled release fertilizers using the leaf nitrogen balance index. J. Integr. Agric. 2024, 23, S2095311924000820. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Y.; Yuan, F.; Cao, Q.; Ye, H.; Lenz-Wiedemann, V.I.S.; Bareth, G. In-season diagnosis of rice nitrogen status using proximal fluorescence canopy sensor at different growth stages. Remote Sens. 2019, 11, 1847. [Google Scholar] [CrossRef]
- Dong, R.; Miao, Y.; Wang, X.; Chen, Z.; Yuan, F. Improving maize nitrogen nutrition index prediction using leaf fluorescence sensor combined with environmental and management variables. Field Crops Res. 2021, 269, 108180. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, C.; Wang, H.; Fu, Z.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Evaluation of three portable optical sensors for non-destructive diagnosis of nitrogen status in winter wheat. Sensors 2021, 21, 5579. [Google Scholar] [CrossRef]
- Fan, K.; Li, F.; Chen, X.; Li, Z.; Mulla, D. Nitrogen balance index prediction of winter wheat by canopy hyperspectral transformation and machine learning. Remote Sens. 2022, 14, 3504. [Google Scholar] [CrossRef]
- Gabriel, J.L.; Zarco-Tejada, P.J.; López-Herrera, P.J.; Pérez-Martín, E.; Alonso-Ayuso, M.; Quemada, M. Airborne and ground level sensors for monitoring nitrogen status in a maize crop. Biosyst. Eng. 2017, 160, 124–133. [Google Scholar] [CrossRef]
- Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Evaluation of optical sensor measurements of canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon. Eur. J. Agron. 2014, 58, 39–52. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Clevers, J.; Kooistra, L.; Van Den Brande, M. Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef]
- Hassanpour, R.; Majnooni-Heris, A.; Fard, A.F.; Tasumi, M. Spatio-temporal monitoring of plant water status using optical remote sensing data and in situ measurements. Adv. Space Res. 2024, 74, 4688–4704. [Google Scholar] [CrossRef]
- Hunt, M.L.; Blackburn, G.A.; Carrasco, L.; Redhead, J.W.; Rowland, C.S. High resolution wheat yield mapping using Sentinel-2. Remote Sens. Environ. 2019, 233, 111410. [Google Scholar] [CrossRef]
- Rossi, M.; Candiani, G.; Nutini, F.; Gianinetto, M.; Boschetti, M. Sentinel-2 estimation of CNC and LAI in rice cropping system through hybrid approach modelling. Eur. J. Remote Sens. 2023, 56, 2117651. [Google Scholar] [CrossRef]
- Sharifi, A. Using Sentinel-2 data to predict nitrogen uptake in maize crop. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2656–2662. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Belgiu, M.; Marshall, M.; Boschetti, M.; Pepe, M.; Stein, A.; Nelson, A. PRISMA and Sentinel-2 spectral response to the nutrient composition of grains. Remote Sens. Environ. 2023, 292, 113567. [Google Scholar] [CrossRef]
- Delloye, C.; Weiss, M.; Defourny, P. Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote Sens. Environ. 2018, 216, 245–261. [Google Scholar] [CrossRef]
- Jamali, M.; Soufizadeh, S.; Yeganeh, B.; Emam, Y. Wheat leaf traits monitoring based on machine learning algorithms and high-resolution satellite imagery. Ecol. Inform. 2023, 74, 101967. [Google Scholar] [CrossRef]
- Kganyago, M.; Adjorlolo, C.; Mhangara, P.; Tsoeleng, L. Optical remote sensing of crop biophysical and biochemical parameters: An overview of advances in sensor technologies and machine learning algorithms for precision agriculture. Comput. Electron. Agric. 2024, 218, 108730. [Google Scholar] [CrossRef]
- Baret, F.; Houles, V.; Guerif, M. Quantification of plant stress using remote sensing observations and crop models: The case of nitrogen management. J. Exp. Bot. 2006, 58, 869–880. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. A Cubesat enabled Spatio-Temporal Enhancement Method (CESTEM) utilizing Planet, Landsat and MODIS data. Remote Sens. Environ. 2018, 209, 211–226. [Google Scholar] [CrossRef]
- Brenning, A. Interpreting machine-learning models in transformed feature space with an application to remote-sensing classification. Mach. Learn. 2023, 112, 3455–3471. [Google Scholar] [CrossRef]
- Albinet, F.; Peng, Y.; Eguchi, T.; Smolders, E.; Dercon, G. Prediction of exchangeable potassium in soil through mid-infrared spectroscopy and deep learning: From prediction to explainability. Artif. Intell. Agric. 2022, 6, 230–241. [Google Scholar] [CrossRef]
- Neugart, S.; Tobler, M.A.; Barnes, P.W. Rapid Adjustment in Epidermal UV Sunscreen: Comparison of Optical Measurement Techniques and Response to Changing Solar UV Radiation Conditions. Physiol. Plant. 2021, 173, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Shang, J.; Qian, B.; Liu, J.; Ma, B.; Kovacs, J.M.; Walters, D.; Jiao, X.; Geng, X.; Shi, Y. Assessment of Portable Chlorophyll Meters for Measuring Crop Leaf Chlorophyll Concentration. Remote Sens. 2019, 11, 2706. [Google Scholar] [CrossRef]
- European Space Agency (ESA). Sentinel-2 User Handbook; ESA Standard Document; ESA: Paris, France, 2015; pp. 1–64. [Google Scholar]
- Brodu, N. Super-resolving multiresolution images with band-independent geometry of multispectral pixels. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4610–4617. [Google Scholar] [CrossRef]
- Araus, J.L.; Kefauver, S.C.; Vergara-Díaz, O.; Gracia-Romero, A.; Rezzouk, F.Z.; Segarra, J.; Buchaillot, M.L.; Chang-Espino, M.; Vatter, T.; Sanchez-Bragado, R.; et al. Crop phenotyping in a context of global change: What to measure and how to do it. J. Integr. Plant Biol. 2022, 64, 592–618. [Google Scholar] [CrossRef]
- Hlatshwayo, S.T.; Mutanga, O.; Lottering, R.T.; Kiala, Z.; Ismail, R. Mapping forest above-ground biomass in the reforested Buffelsdraai landfill site using texture combinations computed from SPOT-6 pan-sharpened imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 65–77. [Google Scholar] [CrossRef]
- Vigneau, E.; Devaux, M.F.; Qannari, E.M.; Robert, P. Principal component regression, ridge regression and ridge principal component regression in spectroscopy calibration. J. Chemom. 1997, 11, 239–249. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R. Support vector regression. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Apress: Berkeley, CA, USA, 2015; pp. 67–80. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16), San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Schonlau, M.; Zou, R.Y. The random forest algorithm for statistical learning. Stata J. 2020, 20, 3–29. [Google Scholar] [CrossRef]
- Aas, K.; Jullum, M.; Løland, A. Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. Artif. Intell. 2021, 298, 103502. [Google Scholar] [CrossRef]
- Štrumbelj, E.; Kononenko, I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 2014, 41, 647–665. [Google Scholar] [CrossRef]
- Darst, B.F.; Malecki, K.C.; Engelman, C.D. Using recursive feature elimination in random forest to account for correlated variables in high dimensional data. BMC Genet. 2018, 19, 65. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Miura, T.; Huete, A.R.; Yoshioka, H. Evaluation of sensor calibration uncertainties on vegetation indices for MODIS. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1399–1409. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Peñuelas, J.; Baret, F.; Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, 2005GL022688. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Bausch, W.C.; Duke, H. Remote sensing of plant nitrogen status in corn. Trans. ASAE 1996, 39, 1869–1875. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Merton, R.; Huntington, J. Early simulation results of the ARIES-1 satellite sensor for multi-temporal vegetation research derived from AVIRIS. In Proceedings of the Eighth Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 9–11 February 1999; Jet Propulsion Laboratory: Pasadena, CA, USA, 1999; pp. 9–11. [Google Scholar]
- Daughtry, C. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Clay, D.E.; Kim, K.; Chang, J.; Clay, S.A.; Dalsted, K. Characterizing water and nitrogen stress in corn using remote sensing. Agron. J. 2006, 98, 579–587. [Google Scholar] [CrossRef]
- Haboudane, D. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Sun, Y.; Ren, H.; Zhang, T.; Zhang, C.; Qin, Q. Crop leaf area index retrieval based on inverted difference vegetation index and NDVI. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1662–1666. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.-M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 2001, 77, 22–33. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B.K.; Rover, J. On the terminology of the spectral vegetation index (NIR − SWIR)/(NIR + SWIR). Int. J. Remote Sens. 2011, 32, 6901–6909. [Google Scholar] [CrossRef]
- Chandrasekar, K.; Sesha Sai, M.; Roy, P.; Dwevedi, R. Land surface water index (LSWI) response to rainfall and NDVI using the MODIS vegetation index product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Proximal optical sensing of cucumber crop N status using chlorophyll fluorescence indices. Eur. J. Agron. 2016, 73, 83–97. [Google Scholar] [CrossRef]
- Gunjan, V.K.; Senatore, S.; Kumar, A.; Gao, X.-Z.; Merugu, S. (Eds.) Advances in Cybernetics, Cognition, and Machine Learning for Communication Technologies; Lecture Notes in Electrical Engineering; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, X.; Gao, Y.; Zhang, Y.; Lin, G. Tree species classification in UAV remote sensing images based on super-resolution reconstruction and deep learning. Remote Sens. 2023, 15, 2942. [Google Scholar] [CrossRef]
- Rohith, G.; Kumar, L.S. Paradigm shifts in super-resolution techniques for remote sensing applications. Vis. Comput. 2021, 37, 1965–2008. [Google Scholar] [CrossRef]
- Wang, P.; Bayram, B.; Sertel, E. A comprehensive review on deep learning based remote sensing image super-resolution methods. Earth Sci. Rev. 2022, 232, 104110. [Google Scholar] [CrossRef]
- Zhang, B.; Ma, M.; Wang, M.; Hong, D.; Yu, L.; Wang, J.; Gong, P.; Huang, X. Enhanced resolution of FY4 remote sensing visible spectrum images utilizing super-resolution and transfer learning techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7391–7399. [Google Scholar] [CrossRef]
- Chen, H.; He, X.; Qing, L.; Wu, Y.; Ren, C.; Sheriff, R.E.; Zhu, C. Real-world single image super-resolution: A brief review. Inf. Fusion 2022, 79, 124–145. [Google Scholar] [CrossRef]
- Zhang, M.; Su, W.; Fu, Y.; Zhu, D.; Xue, J.-H.; Huang, J.; Wang, W.; Wu, J.; Yao, C. Super-resolution enhancement of Sentinel-2 image for retrieving LAI and chlorophyll content of summer corn. Eur. J. Agron. 2019, 111, 125938. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Chang, Q.; Miao, Y.; Yu, K. Improving winter wheat plant nitrogen concentration prediction by combining proximal hyperspectral sensing and weather information with machine learning. Comput. Electron. Agric. 2025, 232, 110072. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, S.; Miao, H.; Song, Z.; Yu, J.; Guo, S.; Chang, Q. Ground-based hyperspectral estimation of maize leaf chlorophyll content considering phenological characteristics. Remote Sens. 2024, 16, 2133. [Google Scholar] [CrossRef]
- Zhang, Y.; Ta, N.; Guo, S.; Chen, Q.; Zhao, L.; Li, F.; Chang, Q. Combining spectral and textural information from UAV RGB images for leaf area index monitoring in kiwifruit orchard. Remote Sens. 2022, 14, 1063. [Google Scholar] [CrossRef]
- Iqbal, N.; Mumtaz, R.; Shafi, U.; Zaidi, S.M.H. Gray Level Co-Occurrence Matrix (GLCM) Texture Based Crop Classification Using Low Altitude Remote Sensing Platforms. PeerJ Comput. Sci. 2021, 7, e536. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Abdullah, H.; Cherenet, E.; Ali, A.; Wang, T.; Nieuwenhuis, W.; Heurich, M.; Vrieling, A.; O’Connor, B.; et al. Mapping Leaf Chlorophyll Content from Sentinel-2 and RapidEye Data in Spruce Stands Using the Invertible Forest Reflectance Model. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 58–70. [Google Scholar] [CrossRef]
- Humeau-Heurtier, A. Texture feature extraction methods: A survey. IEEE Access 2019, 7, 8975–9000. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Gao, S.; Zhong, R.; He, Q.; Yan, K.; Ma, X.; Chen, X.; Pu, J.; Gao, S.; Qi, J.; Yin, G.; et al. Evaluating the Saturation Effect of Vegetation Indices in Forests Using 3D Radiative Transfer Simulations and Satellite Observations. Remote Sens. Environ. 2023, 295, 113665. [Google Scholar] [CrossRef]
- Tesfaye, A.A.; Awoke, B.G. Evaluation of the Saturation Property of Vegetation Indices Derived from Sentinel-2 in Mixed Crop–Forest Ecosystem. Spatial Inf. Res. 2021, 29, 109–121. [Google Scholar] [CrossRef]
- Singh, H.; Roy, A.; Setia, R.; Pateriya, B. Estimation of nitrogen content in wheat from proximal hyperspectral data using machine learning and explainable artificial intelligence (XAI) approach. Model. Earth Syst. Environ. 2022, 8, 2505–2511. [Google Scholar] [CrossRef]
Band | Center Wavelength (nm) | Bandwidth (nm) | Spatial Resolution (m) |
---|---|---|---|
B1-Coastal aerosol | 443 | 20 | 60 |
B2-Blue | 490 | 65 | 10 |
B3-Green | 560 | 35 | 10 |
B4-Red | 665 | 30 | 10 |
B5-Red edge1 | 705 | 15 | 20 |
B6-Red edge2 | 740 | 15 | 20 |
B7-Red edge3 | 783 | 20 | 20 |
B8-NIR | 842 | 145 | 10 |
B8a-NIR narrow | 865 | 20 | 20 |
B9-Water vapor | 945 | 20 | 60 |
B10-Cirrus | 1375 | 30 | 60 |
B11-SWIR1 | 1610 | 90 | 20 |
B12-SWIR2 | 2190 | 180 | 20 |
Metric | Image Type | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B8A | B11 | B12 |
---|---|---|---|---|---|---|---|---|---|---|---|
Entropy | Sen2Res | 9.923 | 9.906 | 10.281 | 26.845 | 26.845 | 26.845 | 10.416 | 26.845 | 26.845 | 26.845 |
Linearest | 9.923 | 9.906 | 10.281 | 10.697 | 10.999 | 11.562 | 10.416 | 11.585 | 11.014 | 11.194 | |
Mean Gradient | Sen2Res | 0.009 | 0.010 | 0.015 | 0.016 | 0.013 | 0.015 | 0.020 | 0.017 | 0.014 | 0.016 |
Linearest | 0.009 | 0.010 | 0.015 | 0.010 | 0.010 | 0.014 | 0.020 | 0.014 | 0.011 | 0.013 |
Factor Type | Factor Name |
---|---|
Spectral band | B6, B7, B8, B8A |
Texture parameter | B7_M, B8_M, B8A_M |
Vegetation index | SR8A, EVI8, EVI8A, RENDVI783, RENDVI3, mSR740, mNDVI740, VOG740, VOG783, SIPI8A, REDRG2, ARI2-2, ARI2-3, ARI2-5, ARI2-6, CI705-B8, CI740-B8, CI705-B8A, CI740-B8A, DVI8, DVI8A, SAVI8, SAVI8A, TVI740, TVI783, RVSI, MCARI783, TCARI783, OSARI8, OSARI8A, MTVI8, MTVI8A, IDVI8, IDVI8A |
RFE | B7, B8, B8A, B7_M, B8A_M, RENDVI3, ARI2-3, CI740-B8A |
Models | Dataset A | Dataset B | Dataset C | Dataset D |
---|---|---|---|---|
RIDGE | α: 0.001 | α: 0.0001 | α: 0.01 | α: 0.0001 |
PLSR | n_components: 4 | n_components: 6 | n_components: 6 | n_components: 4 |
SVR | C: 4, kernel: rbf | C: 4, kernel: rbf | C: 5, kernel: rbf | C: 5, kernel: rbf |
XGBOOST | max_depth: 2, n_estimators: 530 | max_depth: 3, n_estimators: 90 | max_depth: 2, n_estimators: 95 | max_depth: 3, n_estimators: 570 |
RFR | max_depth: 3, n_estimators: 30 | max_depth: 3, n_estimators: 70 | max_depth: 3, n_estimators: 120 | max_depth: 3, n_estimators: 50 |
NBI Distribution | Max | Min | Mean | SD | CV (%) |
---|---|---|---|---|---|
Sample | 36.79 | 17.10 | 27.14 | 3.68 | 13.56% |
CC-RFE-DRFR | 36.39 | 17.82 | 23.45 | 3.78 | 16.12% |
CC-RFE-DXGBOOST | 36.05 | 17.15 | 22.58 | 4.45 | 19.71% |
CC-RFE-BRFR | 34.42 | 17.39 | 23.87 | 3.88 | 16.25% |
CC-RFE-BXGBOOST | 34.62 | 17.31 | 23.01 | 4.18 | 18.17% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, B.; Chen, X.; Guo, Y.; Liu, L.; Li, P.; Chang, Q. Multi-Source Feature Selection and Explainable Machine Learning Approach for Mapping Nitrogen Balance Index in Winter Wheat Based on Sentinel-2 Data. Remote Sens. 2025, 17, 3196. https://doi.org/10.3390/rs17183196
Shi B, Chen X, Guo Y, Liu L, Li P, Chang Q. Multi-Source Feature Selection and Explainable Machine Learning Approach for Mapping Nitrogen Balance Index in Winter Wheat Based on Sentinel-2 Data. Remote Sensing. 2025; 17(18):3196. https://doi.org/10.3390/rs17183196
Chicago/Turabian StyleShi, Botai, Xiaokai Chen, Yiming Guo, Li Liu, Peng Li, and Qingrui Chang. 2025. "Multi-Source Feature Selection and Explainable Machine Learning Approach for Mapping Nitrogen Balance Index in Winter Wheat Based on Sentinel-2 Data" Remote Sensing 17, no. 18: 3196. https://doi.org/10.3390/rs17183196
APA StyleShi, B., Chen, X., Guo, Y., Liu, L., Li, P., & Chang, Q. (2025). Multi-Source Feature Selection and Explainable Machine Learning Approach for Mapping Nitrogen Balance Index in Winter Wheat Based on Sentinel-2 Data. Remote Sensing, 17(18), 3196. https://doi.org/10.3390/rs17183196