EDTST: Efficient Dynamic Token Selection Transformer for Hyperspectral Image Classification
Abstract
Highlights
- We propose EDTST, a novel and efficient Vision Transformer architecture that integrates large-kernel 3D convolution with a dynamic token selection mechanism for hyperspectral image classification.
- EDTST achieves state-of-the-art classification accuracy with a 3% improvement in overall accuracy on the WHU-Hi-HanChuan dataset, while requiring the shortest training and inference time among recent models.
- The model significantly enhances computational efficiency by reducing parameters and FLOPs through innovative architectural design, making it suitable for resource-constrained applications.
- It establishes a new benchmark for balancing accuracy and efficiency in hyperspectral image analysis, providing a practical solution for real-world remote sensing tasks.
Abstract
1. Introduction
- To significantly reduce the parameter count and computational cost of 3D convolutions, we introduce a novel and efficient large-kernel 3D convolution block designed specifically for hyperspectral image processing. The architecture employs a spatial 7 × 7 × 7 convolution followed by two pointwise (1 × 1 × 1) convolutions. This design achieves a receptive field equivalent to that of three stacked 3 × 3 × 3 convolutions, while using only 39.8% of the parameters and 40% of the FLOPs. The module maintains strong representational capacity and is highly suitable for processing high-dimensional hyperspectral data due to its efficient parameter allocation and competitive computational efficiency.
- To alleviate the computational redundancy associated with processing a large number of tokens in the Transformer block, we propose a dynamic token selection mechanism that significantly reduces computational complexity. By selectively retaining the 75% most informative tokens and pruning redundant ones, this strategy focuses computational resources on the most critical features, thereby maintaining or even enhancing the model’s classification accuracy while improving efficiency.
- Extensive experimental evaluations on multiple benchmark hyperspectral datasets demonstrate that our proposed model, EDTST, consistently outperforms a range of state-of-the-art methods in classification accuracy while achieving superior computational efficiency. Notably, on the WHU-Hi-HanChuan dataset, EDTST attains a notable 3% improvement in overall accuracy compared to leading models proposed in recent years. Furthermore, EDTST requires the shortest training and inference time across all datasets tested, underscoring its practical utility for resource-constrained scenarios. These results conclusively validate the effectiveness of our architectural choices in balancing high performance with operational efficiency.
2. Related Work
3. Materials and Methods
3.1. Large-Kernel 3D Convolution Block
3.2. Two-Dimensional Convolution Block
3.3. Transformer Block
3.3.1. Input Transformation
3.3.2. Attention Mechanism
3.3.3. Feature Refinement Module
3.3.4. Architectural Advantages
4. Results
- Row sum: (actual samples in class i).
- Column sum: (predicted samples in class j).
- Overall Accuracy (OA) is the proportion of correctly classified samples:
- Average Accuracy (AA) is the mean of class-specific producer’s accuracies:
- Kappa Coefficient measures agreement between predictions and ground truth:
- Matthews Correlation Coefficient (MCC) for multi-class classification is calculated using the standard formula:This formulation corresponds to the multi-class implementation in scikit-learn’s matthews_corrcoef function.
- Geometric Mean (G-Mean) is the geometric mean of class-wise recall:In implementation, we apply smoothing to avoid zero values.
- Training Time and Testing Time are recorded in seconds during model training and inference.
4.1. Data Description
4.2. Experiment Settings
4.2.1. Implementation Details
4.2.2. Baseline Methods
4.3. Classification Results
4.3.1. Classification Results of the QUH-Tangdaowan Dataset
4.3.2. Classification Results of the WHU-Hi-HanChuan Dataset
4.3.3. Classification Results of the Indian Pines Dataset
4.3.4. Classification Results of the Salinas Dataset
4.3.5. Overall Performance
5. Discussion
5.1. Effect of Large-Kernel 3D Convolution Block and Transformer Block
5.2. Influence of Patch Size
5.3. Influence of PCA Dimensionality Reduction
5.4. Overall Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Teke, M.; Deveci, H.S.; Haliloğlu, O.; Gürbüz, S.Z.; Sakarya, U. A short survey of hyperspectral remote sensing applications in agriculture. In Proceedings of the 2013 6th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 12–14 June 2013; pp. 171–176. [Google Scholar] [CrossRef]
- Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [Google Scholar] [CrossRef]
- Delalieux, S.; Somers, B.; Haest, B.; Spanhove, T.; Borre, J.V.; Mücher, C. Heathland conservation status mapping through integration of hyperspectral mixture analysis and decision tree classifiers. Remote Sens. Environ. 2012, 126, 222–231. [Google Scholar] [CrossRef]
- Gualtieri, J.; Chettri, S. Support vector machines for classification of hyperspectral data. In Proceedings of the IGARSS 2000, IEEE 2000 International Geoscience and Remote Sensing Symposium, Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Proceedings (Cat. No. 00CH37120), Honolulu, HI, USA, 24–28 July 2000; Volume 2, pp. 813–815. [Google Scholar]
- Zhang, Y.; Duan, P.; Kang, X.; Mao, J. Edge Guided Structure Extraction for Hyperspectral Image Classification. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5993–5996. [Google Scholar] [CrossRef]
- He, M.; Li, B.; Chen, H. Multi-scale 3D deep convolutional neural network for hyperspectral image classification. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3904–3908. [Google Scholar]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 277–281. [Google Scholar] [CrossRef]
- He, X.; Chen, Y.; Lin, Z. Spatial-Spectral Transformer for Hyperspectral Image Classification. Remote Sens. 2021, 13, 498. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking hyperspectral image classification with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4509416. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, G.; Zheng, Y.; Wu, Z. Spectral–Spatial Feature Tokenization Transformer for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5522214. [Google Scholar] [CrossRef]
- Li, Z.; Xue, Z.; Xu, Q.; Zhang, L.; Zhu, T.; Zhang, M. SPFormer: Self-Pooling Transformer for Few-Shot Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5502019. [Google Scholar] [CrossRef]
- Liang, L.; Zhang, Y.; Zhang, S.; Li, J.; Plaza, A.; Kang, X. Fast Hyperspectral Image Classification Combining Transformers and SimAM-Based CNNs. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5522219. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, L.; Mao, J.; Wang, Y.; Jia, L. From Global to Local: A Dual-Branch Structural Feature Extraction Method for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 1778–1791. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, P.; Liang, L.; Kang, X.; Li, J.; Plaza, A. PFS3F: Probabilistic Fusion of Superpixel-wise and Semantic-aware Structural Features for Hyperspectral Image Classification. IEEE Trans. Circuits Syst. Video Technol. 2025, 35, 8723–8737. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, L.; Li, J.; Plaza, A.; Kang, X.; Mao, J.; Wang, Y. Structural and Textural-Aware Feature Extraction for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2024, 21, 5502305. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, P.; Mao, J.; Kang, X.; Fang, L.; Ghamisi, P. Contour Structural Profiles: An Edge-Aware Feature Extractor for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5545914. [Google Scholar] [CrossRef]
- Xue, X.; Zhang, H.; Jing, H.; Tao, L.; Bai, Z.; Li, Y. Bridging Sensor Gaps via Attention-Gated Tuning for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 10075–10094. [Google Scholar] [CrossRef]
- Huang, W.; Wu, T.; Zhang, X.; Li, L.; Lv, M.; Jia, Z.; Zhao, X.; Ma, H.; Vivone, G. MCFTNet: Multimodal Cross-Layer Fusion Transformer Network for Hyperspectral and LiDAR Data Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 12803–12818. [Google Scholar] [CrossRef]
- Zhu, F.; Shi, C.; Shi, K.; Wang, L. Joint Classification of Hyperspectral and LiDAR Data Using Hierarchical Multimodal Feature Aggregation-Based Multihead Axial Attention Transformer. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5503817. [Google Scholar] [CrossRef]
- Wu, X.; Arshad, T.; Peng, B. Spectral Spatial Window Attention Transformer for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5519413. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, Red Hook, NY, USA, 4–9 September 2017; pp. 6000–6010. [Google Scholar]
- He, J.; Zhao, L.; Yang, H.; Zhang, M.; Li, W. HSI-BERT: Hyperspectral Image Classification Using the Bidirectional Encoder Representation From Transformers. IEEE Trans. Geosci. Remote Sens. 2020, 58, 165–178. [Google Scholar] [CrossRef]
- He, X.; Chen, Y.; Li, Q. Two-Branch Pure Transformer for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6015005. [Google Scholar] [CrossRef]
- Yang, H.; Yu, H.; Zheng, K.; Hu, J.; Tao, T.; Zhang, Q. Hyperspectral Image Classification Based on Interactive Transformer and CNN With Multilevel Feature Fusion Network. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5507905. [Google Scholar] [CrossRef]
- Ouyang, E.; Li, B.; Hu, W.; Zhang, G.; Zhao, L.; Wu, J. When Multigranularity Meets Spatial–Spectral Attention: A Hybrid Transformer for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4401118. [Google Scholar] [CrossRef]
- Qi, W.; Huang, C.; Wang, Y.; Zhang, X.; Sun, W.; Zhang, L. Global–Local 3-D Convolutional Transformer Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5510820. [Google Scholar] [CrossRef]
- Zhao, F.; Li, S.; Zhang, J.; Liu, H. Convolution Transformer Fusion Splicing Network for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5501005. [Google Scholar] [CrossRef]
- Zhao, E.; Su, Y.; Qu, N.; Wang, Y.; Gao, C.; Zeng, J. Self- and Cross-Attention Enhanced Transformer for Visible and Thermal Infrared Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 13408–13422. [Google Scholar] [CrossRef]
- Jia, C.; Zhang, X.; Meng, H.; Xia, S.; Jiao, L. CenterFormer: A Center Spatial–Spectral Attention Transformer Network for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 5523–5539. [Google Scholar] [CrossRef]
- Yu, C.; Zhu, Y.; Wang, Y.; Zhao, E.; Zhang, Q.; Lu, X. Concern With Center-Pixel Labeling: Center-Specific Perception Transformer Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5514614. [Google Scholar] [CrossRef]
- Hu, X.; Liu, T.; Guo, Z.; Tang, Y.; Peng, Y.; Zhou, T. BinaryViT: Binary Vision Transformer for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 20469–20486. [Google Scholar] [CrossRef]
- Wang, Y.; Shu, Z.; Yu, Z. Efficient Attention Transformer Network With Self-Similarity Feature Enhancement for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 11469–11486. [Google Scholar] [CrossRef]
- Fu, H.; Sun, G.; Zhang, L.; Zhang, A.; Ren, J.; Jia, X.; Li, F. Three-dimensional singular spectrum analysis for precise land cover classification from UAV-borne hyperspectral benchmark datasets. ISPRS J. Photogramm. Remote Sens. 2023, 203, 115–134. [Google Scholar] [CrossRef]
- Zhong, Y.; Hu, X.; Luo, C.; Wang, X.; Zhao, J.; Zhang, L. WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF. Remote Sens. Environ. 2020, 250, 112012. [Google Scholar] [CrossRef]
- Zhu, T.; Liu, Q.; Zhang, L. 3D atrous spatial pyramid pooling based multi-scale feature fusion network for hyperspectral image classification. In Proceedings of the International Conference on Remote Sensing, Mapping, and Geographic Systems (RSMG 2023), SPIE, Kaifeng, China, 7–9 July 2023; Volume 12815, pp. 225–231. [Google Scholar]
- Zhu, Y.; Yuan, K.; Zhong, W.; Xu, L. Spatial–Spectral ConvNeXt for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5453–5463. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, X.; Yang, X.; Peng, J.; Ban, Y. DCTN: Dual-Branch Convolutional Transformer Network With Efficient Interactive Self-Attention for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5508616. [Google Scholar] [CrossRef]
- Meng, Z.; Yan, Q.; Zhao, F.; Chen, G.; Hua, W.; Liang, M. Global-Local MultiGranularity Transformer for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 112–131. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, Y.; Cao, G.; Yang, D. MHCFormer: Multiscale Hierarchical Conv-Aided Fourierformer for Hyperspectral Image Classification. IEEE Trans. Instrum. Meas. 2024, 73, 5501115. [Google Scholar] [CrossRef]
- Varahagiri, S.; Sinha, A.; Dubey, S.R.; Singh, S.K. 3D-Convolution Guided Spectral-Spatial Transformer for Hyperspectral Image Classification. In Proceedings of the 2024 IEEE Conference on Artificial Intelligence (CAI), Singapore, 25–27 June 2024; pp. 8–14. [Google Scholar]
- Xu, Y.; Wang, D.; Zhang, L.; Zhang, L. Dual selective fusion transformer network for hyperspectral image classification. Neural Netw. 2025, 187, 107311. [Google Scholar] [CrossRef]
Aspect | CNN-Based Models | Transformer-Based Models |
---|---|---|
Local Feature Extraction | ✓Strong; inductive bias favors local patterns | × Weak; requires large data to learn locality |
Global Dependency Modeling | × Limited; requires deep stacks or large kernels | ✓Strong; innate self-attention mechanism |
Computational Efficiency | ✓High; linear in image size | × Quadratic in token sequence length |
Data Efficiency | ✓Moderate; benefits from convolutional priors | × Low; requires pre-training or large datasets |
Layer Type | Output Shape | Kernel | Params |
---|---|---|---|
Input | - | - | |
Conv3D | |||
GroupNorm | - | 2 | |
Conv3D | |||
GELU | - | 0 | |
Conv3D | |||
BatchNorm3d | - | 16 | |
GELU | - | 0 | |
Total Parameters | 1030→ 410 100%→ 39.8% | ||
FLOPs | 4,990,040 →1,989,240 100% → 40% |
Operation | FLOPs | Parameters |
---|---|---|
BatchNorm2d | ||
GELU | 0 | |
Total |
Component | FLOPs |
---|---|
Standard Self-Attention | |
Proposed Attention | |
Total Saving | 6% |
QUH-Tangdaowan | WHU-Hi-HanChuan | |||||
NO. | Class | Train | Test | Class | Train | Test |
C1 | Rubber track | 25 | 25,824 | Strawberry | 25 | 44,710 |
C2 | Flaggingv | 25 | 55,528 | Cowpea | 25 | 22,728 |
C3 | Sandy | 25 | 34,012 | Soybean | 25 | 10,262 |
C4 | Asphalt | 25 | 60,665 | Sorghum | 25 | 5328 |
C5 | Boardwalk | 25 | 1837 | Water spinach | 25 | 1175 |
C6 | Rocky shallows | 25 | 37,100 | Watermelon | 25 | 4508 |
C7 | Grassland | 25 | 14,102 | Greens | 25 | 5878 |
C8 | Bulrush | 25 | 64,062 | Trees | 25 | 17,953 |
C9 | Gravel road | 25 | 30,670 | Grass | 25 | 9444 |
C10 | Ligustrum vicaryi | 25 | 1758 | Red roof | 25 | 10,491 |
C11 | Coniferous pine | 25 | 21,211 | Gray roof | 25 | 16,886 |
C12 | Spiraea | 25 | 724 | Plastic | 25 | 3654 |
C13 | Bare soil | 25 | 1661 | Bare soil | 25 | 9091 |
C14 | Buxus sinica | 25 | 861 | Road | 25 | 18,535 |
C15 | Photinia serrulata | 25 | 13,995 | Bright object | 25 | 1111 |
C16 | Populus | 25 | 140,879 | Water | 25 | 75,376 |
C17 | Ulmus pumila L | 25 | 9777 | |||
C18 | Seawater | 25 | 42,250 | |||
Total | 450 | 556,916 | Total | 400 | 257,530 | |
Indian Pines | Salinas | |||||
NO. | Class | Train | Test | Class | Train | Test |
C1 | Alfalfa | 10 | 36 | Brocoli_green_weeds_1 | 25 | 1984 |
C2 | Corn-notill | 10 | 1418 | Brocoli_green_weeds_2 | 25 | 3701 |
C3 | Corn-mintill | 10 | 820 | Fallow | 25 | 1951 |
C4 | Corn | 10 | 227 | Fallow_rough_plow | 25 | 1369 |
C5 | Grass-pasture | 10 | 473 | Fallow_smooth | 25 | 2653 |
C6 | Grass-trees | 10 | 720 | Stubble | 25 | 3934 |
C7 | Grass-pasture-mowed | 10 | 18 | Celery | 25 | 3554 |
C8 | Hay-windrowed | 10 | 468 | Grapes_untrained | 25 | 11,246 |
C9 | Oats | 10 | 10 | Soil_vinyard_develop | 25 | 6178 |
C10 | Soybean-notill | 10 | 962 | Corn_senesced_green_weeds | 25 | 3253 |
C11 | Soybean-mintill | 10 | 2445 | Lettuce_romaine_4wk | 25 | 1043 |
C12 | Soybean-clean | 10 | 583 | Lettuce_romaine_5wk | 25 | 1902 |
C13 | Wheat | 10 | 195 | Lettuce_romaine_6wk | 25 | 891 |
C14 | Woods | 10 | 1255 | Lettuce_romaine_7wk | 25 | 1045 |
C15 | Buildings-Grass-Trees-Drives | 10 | 376 | Vinyard_untrained | 25 | 7243 |
C16 | Stone-Steel-Towers | 10 | 83 | Vinyard_vertical_trellis | 25 | 1782 |
Total | 160 | 10,089 | Total | 400 | 54,429 |
Class (Test Samples) | 3A-MFFN [37] | SS-ConvNeXt [38] | DCTN [39] | GLMGT [40] | MHCFormer [41] | 3D-ConvSST [42] | DSFormer [43] | EDTST (Proposed) |
---|---|---|---|---|---|---|---|---|
C1 (25,824) | 97.31 ± 0.90 | 99.18 ± 0.31 | 99.54 ± 0.43 | 99.58 ± 0.40 | 99.39 ± 0.36 | 99.49 ± 0.38 | 99.33 ± 0.23 | 98.82 ± 0.46 |
C2 (55,528) | 63.81 ± 3.24 | 77.21 ± 5.44 | 79.87 ± 13.34 | 10.38 ± 9.70 | 79.15 ± 5.24 | 65.16 ± 5.84 | 79.32 ± 6.40 | 79.33 ± 7.58 |
C3 (34,012) | 75.48 ± 4.24 | 87.07 ± 11.92 | 89.23 ± 9.84 | 47.36 ± 22.23 | 94.31 ± 2.80 | 76.62 ± 17.12 | 92.67 ± 2.58 | 91.33 ± 4.45 |
C4 (60,665) | 81.11 ± 7.67 | 86.65 ± 5.18 | 87.47 ± 7.89 | 76.69 ± 10.40 | 95.48 ± 3.26 | 88.41 ± 5.50 | 89.08 ± 2.46 | 91.67 ± 4.23 |
C5 (1837) | 95.32 ± 1.08 | 95.95 ± 0.58 | 90.23 ± 9.58 | 46.67 ± 35.47 | 97.69 ± 1.79 | 97.04 ± 2.79 | 96.83 ± 1.23 | 98.16 ± 1.16 |
C6 (37,100) | 68.31 ± 4.87 | 64.84 ± 6.36 | 75.62 ± 2.79 | 71.48 ± 9.56 | 77.36 ± 1.46 | 66.92 ± 8.67 | 81.39 ± 3.70 | 80.89 ± 4.52 |
C7 (14,102) | 75.55 ± 1.90 | 68.29 ± 5.10 | 82.26 ± 8.15 | 16.16 ± 13.30 | 79.44 ± 4.50 | 66.00 ± 12.18 | 80.92 ± 5.86 | 83.25 ± 3.25 |
C8 (64,062) | 94.75 ± 3.07 | 97.96 ± 1.39 | 97.99 ± 1.51 | 98.96 ± 0.30 | 98.09 ± 1.75 | 96.65 ± 1.24 | 98.35 ± 1.06 | 98.65 ± 1.26 |
C9 (30,670) | 87.51 ± 4.67 | 82.81 ± 14.49 | 94.29 ± 2.74 | 95.28 ± 4.49 | 95.01 ± 3.65 | 69.93 ± 17.03 | 93.31 ± 4.33 | 94.47 ± 3.77 |
C10 (1758) | 88.07 ± 6.29 | 97.69 ± 2.15 | 98.69 ± 1.12 | 56.05 ± 33.27 | 98.03 ± 2.76 | 87.97 ± 7.95 | 99.53 ± 0.40 | 99.92 ± 0.05 |
C11 (21,211) | 58.56 ± 10.81 | 55.31 ± 12.60 | 55.50 ± 12.20 | 64.88 ± 32.47 | 87.44 ± 2.55 | 52.07 ± 23.47 | 81.30 ± 3.45 | 85.20 ± 3.29 |
C12 (724) | 95.83 ± 1.50 | 99.48 ± 0.45 | 97.93 ± 1.63 | 96.74 ± 2.43 | 99.70 ± 0.43 | 96.49 ± 6.74 | 98.98 ± 1.52 | 99.64 ± 0.35 |
C13 (1661) | 97.86 ± 1.02 | 100.00 ± 0.00 | 99.98 ± 0.05 | 100.00 ± 0.00 | 100.00 ± 0.00 | 99.88 ± 0.24 | 99.98 ± 0.05 | 100.00 ± 0.00 |
C14 (861) | 91.50 ± 5.68 | 97.58 ± 1.57 | 99.86 ± 0.23 | 96.35 ± 2.22 | 99.91 ± 0.14 | 95.35 ± 3.63 | 99.44 ± 0.70 | 100.00 ± 0.00 |
C15 (13,995) | 77.92 ± 1.52 | 87.77 ± 1.27 | 82.25 ± 3.88 | 89.90 ± 3.98 | 87.30 ± 2.27 | 86.56 ± 1.17 | 90.27 ± 1.57 | 89.85 ± 2.52 |
C16 (140,879) | 28.51 ± 8.77 | 49.21 ± 11.66 | 46.82 ± 20.93 | 11.92 ± 23.52 | 55.43 ± 6.14 | 45.34 ± 24.71 | 68.21 ± 1.90 | 70.56 ± 4.99 |
C17 (9777) | 68.46 ± 5.43 | 85.41 ± 4.02 | 58.77 ± 30.84 | 73.47 ± 20.15 | 87.75 ± 2.91 | 84.14 ± 4.90 | 91.25 ± 1.99 | 91.24 ± 3.10 |
C18 (42,250) | 96.69 ± 1.22 | 99.18 ± 0.40 | 99.84 ± 0.25 | 99.94 ± 0.08 | 99.75 ± 0.43 | 99.90 ± 0.16 | 99.55 ± 0.76 | 98.54 ± 1.97 |
OA (%) | 67.59 ± 1.35 | 75.92 ± 1.55 | 76.96 ± 4.93 | 56.22 ± 4.97 | 82.21 ± 1.93 | 72.37 ± 5.23 | 84.79 ± 0.71 | 85.75 ± 1.62 |
AA (%) | 80.14 ± 0.60 | 85.09 ± 1.43 | 85.34 ± 2.39 | 69.55 ± 3.83 | 90.62 ± 0.53 | 81.89 ± 2.38 | 91.09 ± 0.41 | 91.75 ± 0.58 |
64.76 ± 1.32 | 73.42 ± 1.50 | 74.66 ± 5.06 | 53.10 ± 4.71 | 80.32 ± 2.05 | 69.64 ± 5.17 | 83.01 ± 0.77 | 84.07 ± 1.76 | |
MCC (%) | 66.18 ± 1.13 | 74.18 ± 1.14 | 75.77 ± 4.29 | 56.04 ± 3.75 | 81.03 ± 1.86 | 70.75 ± 4.11 | 83.32 ± 0.73 | 84.38 ± 1.67 |
G-Mean (%) | 77.09 ± 1.00 | 82.97 ± 1.37 | 81.90 ± 3.79 | 29.55 ± 15.42 | 89.70 ± 0.69 | 77.14 ± 5.30 | 90.56 ± 0.47 | 91.26 ± 0.69 |
Training Time (s) | 29.65 ± 0.02 | 46.03 ± 0.06 | 137.77 ± 0.36 | 14.20 ± 0.03 | 18.03 ± 0.07 | 18.89 ± 0.04 | 24.03 ± 0.02 | 12.15 ± 0.02 |
Testing Time (s) | 106.87 ± 0.03 | 181.95 ± 0.37 | 471.99 ± 0.44 | 60.71 ± 0.88 | 64.40 ± 0.42 | 77.70 ± 0.40 | 162.58 ± 0.18 | 59.92 ± 0.13 |
Class (Test Samples) | 3A-MFFN [37] | SS-ConvNeXt [38] | DCTN [39] | GLMGT [40] | MHCFormer [41] | 3D-ConvSST [42] | DSFormer [43] | EDTST (Proposed) |
---|---|---|---|---|---|---|---|---|
C1 (44,710) | 73.74 ± 5.95 | 91.03 ± 2.69 | 85.59 ± 12.20 | 85.48 ± 5.93 | 85.52 ± 7.96 | 87.07 ± 7.87 | 85.79 ± 3.24 | 88.83 ± 3.58 |
C2 (22,728) | 48.09 ± 6.36 | 58.56 ± 12.00 | 77.80 ± 5.20 | 46.31 ± 14.42 | 77.65 ± 2.67 | 79.39 ± 6.35 | 74.42 ± 2.20 | 82.62 ± 5.78 |
C3 (10,262) | 65.93 ± 5.27 | 83.17 ± 3.10 | 89.95 ± 5.36 | 88.63 ± 5.09 | 91.43 ± 4.88 | 86.05 ± 8.31 | 73.56 ± 6.89 | 88.73 ± 3.86 |
C4 (5328) | 88.19 ± 2.94 | 97.48 ± 0.95 | 98.45 ± 1.37 | 98.96 ± 0.66 | 98.16 ± 0.74 | 95.77 ± 3.51 | 97.58 ± 1.09 | 97.83 ± 1.75 |
C5 (1175) | 88.82 ± 2.76 | 99.83 ± 0.16 | 99.76 ± 0.48 | 100.00 ± 0.00 | 100.00 ± 0.00 | 99.93 ± 0.08 | 85.29 ± 4.47 | 99.85 ± 0.20 |
C6 (4508) | 39.05 ± 2.23 | 71.85 ± 5.05 | 70.25 ± 9.99 | 23.10 ± 11.01 | 68.46 ± 6.55 | 78.39 ± 5.07 | 60.01 ± 5.51 | 78.17 ± 8.36 |
C7 (5878) | 89.00 ± 2.55 | 91.42 ± 2.66 | 86.43 ± 18.25 | 96.61 ± 1.90 | 93.56 ± 1.70 | 90.79 ± 5.76 | 88.49 ± 3.74 | 95.07 ± 0.97 |
C8 (17,953) | 53.90 ± 5.85 | 57.38 ± 9.27 | 65.56 ± 2.30 | 27.83 ± 19.97 | 62.99 ± 5.26 | 69.87 ± 6.30 | 60.41 ± 5.43 | 77.81 ± 5.80 |
C9 (9444) | 48.24 ± 10.30 | 67.99 ± 8.87 | 73.81 ± 8.55 | 4.67 ± 3.55 | 70.09 ± 2.66 | 77.52 ± 13.89 | 71.10 ± 7.15 | 81.88 ± 7.37 |
C10 (10,491) | 84.17 ± 7.57 | 94.04 ± 3.41 | 93.25 ± 6.21 | 97.39 ± 1.98 | 96.45 ± 1.55 | 83.85 ± 8.82 | 96.20 ± 0.54 | 96.31 ± 2.56 |
C11 (16,886) | 82.18 ± 11.07 | 88.82 ± 5.10 | 83.61 ± 8.17 | 77.22 ± 29.24 | 93.79 ± 1.54 | 81.23 ± 10.31 | 87.79 ± 4.24 | 95.07 ± 1.66 |
C12 (3654) | 62.47 ± 7.41 | 68.68 ± 10.57 | 81.66 ± 11.89 | 56.23 ± 24.17 | 88.32 ± 3.28 | 85.99 ± 20.89 | 59.14 ± 1.27 | 94.71 ± 3.82 |
C13 (9091) | 58.20 ± 3.95 | 59.50 ± 3.00 | 69.01 ± 5.81 | 29.66 ± 10.50 | 70.41 ± 6.93 | 59.78 ± 8.70 | 52.66 ± 6.74 | 72.68 ± 5.72 |
C14 (18,535) | 70.60 ± 4.78 | 60.12 ± 8.97 | 83.39 ± 2.40 | 58.19 ± 15.60 | 78.74 ± 7.17 | 77.33 ± 8.40 | 66.68 ± 3.77 | 81.99 ± 3.01 |
C15 (1111) | 76.71 ± 3.49 | 91.54 ± 3.70 | 94.01 ± 3.29 | 96.15 ± 1.00 | 96.31 ± 1.85 | 95.59 ± 2.89 | 90.98 ± 3.03 | 92.58 ± 5.10 |
C16 (75,376) | 91.30 ± 6.17 | 97.82 ± 1.71 | 98.49 ± 0.59 | 94.00 ± 3.08 | 97.44 ± 1.75 | 94.74 ± 3.06 | 95.69 ± 2.48 | 97.63 ± 2.37 |
OA(%) | 74.15 ± 1.84 | 82.81 ± 2.07 | 86.52 ± 3.86 | 72.79 ± 0.94 | 86.68 ± 1.46 | 85.06 ± 2.34 | 82.39 ± 1.17 | 89.78 ± 0.53 |
AA(%) | 70.04 ± 1.44 | 79.95 ± 2.12 | 84.44 ± 3.58 | 67.53 ± 2.53 | 85.58 ± 0.73 | 83.96 ± 2.07 | 77.86 ± 0.85 | 88.86 ± 0.53 |
70.22 ± 2.02 | 80.02 ± 2.35 | 84.25 ± 4.53 | 68.61 ± 1.06 | 84.52 ± 1.65 | 82.68 ± 2.63 | 79.55 ± 1.32 | 88.10 ± 0.61 | |
MCC (%) | 70.50 ± 1.92 | 80.16 ± 2.33 | 84.41 ± 4.42 | 69.28 ± 1.08 | 84.63 ± 1.62 | 82.84 ± 2.58 | 79.64 ± 1.29 | 88.16 ± 0.61 |
G-Mean(%) | 67.63 ± 1.94 | 78.05 ± 2.53 | 83.39 ± 3.81 | 49.81 ± 4.06 | 84.56 ± 0.83 | 82.76 ± 2.25 | 76.29 ± 0.86 | 88.33 ± 0.64 |
Training Time (s) | 42.17 ± 0.06 | 42.36 ± 0.07 | 163.91 ± 0.46 | 15.34 ± 0.11 | 15.81 ± 0.03 | 24.31 ± 0.02 | 21.15 ± 0.01 | 10.71 ± 0.01 |
Testing Time (s) | 76.07 ± 0.14 | 92.03 ± 0.11 | 303.26 ± 0.92 | 36.43 ± 0.45 | 30.24 ± 0.07 | 49.97 ± 0.17 | 75.53 ± 0.06 | 27.81 ± 0.07 |
Class (Test Samples) | 3A-MFFN [37] | SS-ConvNeXt [38] | DCTN [39] | GLMGT [40] | MHCFormer [41] | 3D-ConvSST [42] | DSFormer [43] | EDTST (Proposed) |
---|---|---|---|---|---|---|---|---|
C1 (36) | 89.44 ± 7.74 | 99.44 ± 1.11 | 100.00 ± 0.00 | 71.67 ± 39.30 | 99.44 ± 1.11 | 100.00 ± 0.00 | 97.78 ± 2.72 | 100.00 ± 0.00 |
C2 (1418) | 30.47 ± 7.33 | 47.46 ± 6.32 | 60.48 ± 4.03 | 24.33 ± 19.90 | 67.45 ± 13.39 | 69.48 ± 4.84 | 50.06 ± 5.51 | 76.78 ± 5.34 |
C3 (820) | 33.90 ± 6.65 | 43.71 ± 7.88 | 68.76 ± 6.80 | 11.85 ± 12.21 | 69.15 ± 4.58 | 82.76 ± 2.41 | 67.17 ± 7.41 | 76.37 ± 7.20 |
C4 (227) | 40.18 ± 7.88 | 93.57 ± 4.50 | 91.37 ± 5.19 | 92.33 ± 5.44 | 91.72 ± 6.45 | 96.56 ± 2.39 | 89.78 ± 4.46 | 96.12 ± 4.06 |
C5 (473) | 71.54 ± 7.31 | 74.46 ± 7.01 | 74.63 ± 5.44 | 45.54 ± 25.75 | 79.49 ± 8.54 | 79.37 ± 8.42 | 78.60 ± 8.66 | 79.41 ± 7.89 |
C6 (720) | 79.44 ± 4.75 | 95.22 ± 2.21 | 95.17 ± 0.77 | 97.75 ± 0.59 | 97.58 ± 1.58 | 98.08 ± 1.06 | 98.56 ± 1.26 | 95.94 ± 1.31 |
C7 (18) | 98.89 ± 2.22 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 |
C8 (468) | 89.36 ± 4.37 | 97.31 ± 3.24 | 99.74 ± 0.41 | 90.47 ± 18.64 | 99.57 ± 0.85 | 99.83 ± 0.34 | 93.33 ± 6.86 | 99.87 ± 0.26 |
C9 (10) | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 88.00 ± 24.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 |
C10 (962) | 56.53 ± 10.74 | 68.92 ± 11.86 | 75.82 ± 8.90 | 46.30 ± 34.81 | 82.56 ± 5.24 | 82.06 ± 4.31 | 75.70 ± 6.03 | 82.91 ± 4.80 |
C11 (2445) | 50.82 ± 9.50 | 63.98 ± 7.29 | 66.04 ± 9.44 | 64.33 ± 14.13 | 65.73 ± 7.18 | 67.43 ± 7.33 | 57.59 ± 7.46 | 69.31 ± 4.40 |
C12 (583) | 38.39 ± 8.90 | 57.50 ± 4.27 | 58.83 ± 5.94 | 43.33 ± 16.60 | 61.78 ± 4.88 | 67.96 ± 3.87 | 48.40 ± 8.33 | 73.55 ± 3.64 |
C13 (195) | 97.74 ± 1.82 | 100.00 ± 0.00 | 99.90 ± 0.21 | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 | 99.59 ± 0.82 | 100.00 ± 0.00 |
C14 (1255) | 72.24 ± 6.08 | 93.34 ± 5.44 | 93.40 ± 1.61 | 95.41 ± 3.13 | 89.85 ± 4.13 | 94.17 ± 3.14 | 91.54 ± 4.02 | 95.54 ± 3.26 |
C15 (376) | 50.69 ± 2.86 | 87.07 ± 4.59 | 92.98 ± 1.00 | 80.27 ± 6.92 | 87.87 ± 8.42 | 94.41 ± 3.09 | 89.10 ± 5.21 | 93.03 ± 4.01 |
C16 (83) | 97.83 ± 2.68 | 99.76 ± 0.48 | 100.00 ± 0.00 | 100.00 ± 0.00 | 98.80 ± 1.08 | 100.00 ± 0.00 | 99.28 ± 1.45 | 100.00 ± 0.00 |
OA (%) | 55.20 ± 3.61 | 70.77 ± 3.20 | 76.17 ± 2.52 | 60.41 ± 4.38 | 77.67 ± 2.85 | 80.73 ± 2.99 | 71.61 ± 2.77 | 82.06 ± 0.39 |
AA (%) | 68.59 ± 1.35 | 82.61 ± 1.56 | 86.07 ± 0.75 | 71.97 ± 2.94 | 86.94 ± 1.38 | 89.51 ± 1.55 | 83.53 ± 1.47 | 89.93 ± 0.41 |
49.65 ± 3.75 | 67.08 ± 3.48 | 73.21 ± 2.70 | 55.33 ± 4.57 | 74.87 ± 3.12 | 78.33 ± 3.29 | 68.18 ± 2.95 | 79.80 ± 0.42 | |
MCC (%) | 50.01 ± 3.53 | 67.40 ± 3.37 | 73.58 ± 2.41 | 56.60 ± 4.37 | 75.28 ± 2.87 | 78.64 ± 3.12 | 68.64 ± 2.63 | 80.07 ± 0.36 |
G-Mean (%) | 62.99 ± 2.50 | 79.59 ± 2.21 | 84.41 ± 0.97 | 40.55 ± 16.85 | 85.52 ± 1.83 | 88.51 ± 1.87 | 81.04 ± 1.92 | 89.11 ± 0.33 |
Training Time (s) | 11.39 ± 0.18 | 16.47 ± 0.12 | 53.40 ± 0.15 | 4.79 ± 0.02 | 6.67 ± 0.03 | 10.94 ± 0.03 | 8.81 ± 0.02 | 4.24 ± 0.07 |
Testing Time (s) | 2.04 ± 0.03 | 3.22 ± 0.03 | 9.19 ± 0.04 | 1.05 ± 0.01 | 1.17 ± 0.01 | 2.71 ± 0.01 | 2.96 ± 0.00 | 1.05 ± 0.01 |
Class (Test Samples) | 3A-MFFN [37] | SS-ConvNeXt [38] | DCTN [39] | GLMGT [40] | MHCFormer [41] | 3D-ConvSST [42] | DSFormer [43] | EDTST (Proposed) |
---|---|---|---|---|---|---|---|---|
C1 (1984) | 98.40 ± 1.01 | 100.00 ± 0.00 | 99.39 ± 0.98 | 99.99 ± 0.02 | 99.99 ± 0.02 | 99.96 ± 0.08 | 99.79 ± 0.37 | 100.00 ± 0.00 |
C2 (3701) | 99.49 ± 0.41 | 100.00 ± 0.00 | 100.00 ± 0.00 | 98.04 ± 2.22 | 99.97 ± 0.06 | 96.40 ± 7.14 | 100.00 ± 0.00 | 100.00 ± 0.00 |
C3 (1951) | 97.58 ± 1.36 | 99.84 ± 0.33 | 99.77 ± 0.34 | 90.28 ± 14.42 | 100.00 ± 0.00 | 92.33 ± 10.14 | 99.95 ± 0.06 | 100.00 ± 0.00 |
C4 (1369) | 99.24 ± 0.56 | 99.94 ± 0.12 | 99.27 ± 1.28 | 99.52 ± 0.46 | 99.55 ± 0.56 | 99.63 ± 0.34 | 99.33 ± 0.38 | 99.49 ± 0.55 |
C5 (2653) | 98.30 ± 0.39 | 98.90 ± 0.51 | 96.88 ± 3.30 | 96.87 ± 1.39 | 99.29 ± 0.48 | 99.13 ± 0.69 | 99.19 ± 0.34 | 98.90 ± 0.95 |
C6 (3934) | 99.92 ± 0.14 | 100.00 ± 0.00 | 100.00 ± 0.00 | 99.98 ± 0.04 | 99.97 ± 0.06 | 100.00 ± 0.00 | 100.00 ± 0.00 | 99.95 ± 0.09 |
C7 (3554) | 98.93 ± 0.47 | 99.98 ± 0.03 | 99.88 ± 0.22 | 99.97 ± 0.04 | 99.98 ± 0.03 | 99.64 ± 0.36 | 99.99 ± 0.01 | 99.97 ± 0.03 |
C8 (11,246) | 71.78 ± 2.81 | 77.71 ± 6.04 | 75.82 ± 5.06 | 63.10 ± 38.28 | 86.73 ± 5.26 | 79.66 ± 13.14 | 85.27 ± 3.09 | 91.05 ± 3.39 |
C9 (6178) | 97.08 ± 1.37 | 100.00 ± 0.01 | 97.12 ± 5.76 | 99.67 ± 0.65 | 100.00 ± 0.00 | 99.97 ± 0.04 | 99.99 ± 0.01 | 100.00 ± 0.00 |
C10 (3253) | 91.42 ± 1.83 | 95.96 ± 0.57 | 94.85 ± 3.20 | 94.33 ± 1.15 | 97.72 ± 0.91 | 96.71 ± 1.44 | 98.40 ± 0.82 | 98.83 ± 0.73 |
C11 (1043) | 95.59 ± 2.59 | 99.64 ± 0.15 | 99.85 ± 0.17 | 96.16 ± 6.64 | 99.96 ± 0.08 | 99.60 ± 0.46 | 99.90 ± 0.11 | 100.00 ± 0.00 |
C12 (1902) | 99.86 ± 0.22 | 99.99 ± 0.02 | 99.85 ± 0.18 | 96.48 ± 1.77 | 100.00 ± 0.00 | 99.82 ± 0.09 | 99.27 ± 0.72 | 99.79 ± 0.33 |
C13 (891) | 99.96 ± 0.09 | 100.00 ± 0.00 | 99.73 ± 0.34 | 100.00 ± 0.00 | 99.87 ± 0.18 | 99.78 ± 0.35 | 99.66 ± 0.51 | 99.71 ± 0.38 |
C14 (1045) | 97.76 ± 0.60 | 99.48 ± 0.30 | 99.73 ± 0.16 | 99.83 ± 0.14 | 99.62 ± 0.26 | 99.22 ± 0.87 | 99.46 ± 0.30 | 99.79 ± 0.18 |
C15 (7243) | 70.83 ± 9.62 | 88.84 ± 9.37 | 75.06 ± 4.74 | 46.33 ± 43.56 | 89.12 ± 6.40 | 83.95 ± 12.58 | 83.39 ± 6.15 | 95.60 ± 2.53 |
C16 (1782) | 93.11 ± 3.17 | 98.93 ± 0.51 | 99.84 ± 0.24 | 98.99 ± 0.83 | 99.01 ± 0.50 | 99.62 ± 0.68 | 99.55 ± 0.26 | 99.74 ± 0.22 |
OA (%) | 88.58 ± 1.50 | 93.47 ± 0.35 | 90.70 ± 1.07 | 83.77 ± 3.45 | 95.52 ± 0.55 | 92.73 ± 2.11 | 94.45 ± 0.28 | 97.36 ± 0.82 |
AA (%) | 94.33 ± 0.68 | 97.45 ± 0.26 | 96.07 ± 0.84 | 92.47 ± 1.22 | 98.17 ± 0.14 | 96.59 ± 0.99 | 97.70 ± 0.23 | 98.93 ± 0.27 |
87.31 ± 1.67 | 92.75 ± 0.39 | 89.66 ± 1.19 | 81.96 ± 3.65 | 95.02 ± 0.61 | 91.92 ± 2.32 | 93.83 ± 0.31 | 97.07 ± 0.91 | |
MCC (%) | 87.36 ± 1.71 | 92.90 ± 0.39 | 89.72 ± 1.19 | 83.71 ± 2.67 | 95.07 ± 0.57 | 92.13 ± 2.07 | 93.85 ± 0.33 | 97.09 ± 0.89 |
G-Mean (%) | 93.76 ± 0.91 | 97.20 ± 0.30 | 95.65 ± 0.90 | 82.86 ± 8.40 | 98.06 ± 0.16 | 96.17 ± 1.28 | 97.53 ± 0.27 | 98.89 ± 0.29 |
Training Time (s) | 31.19 ± 0.04 | 40.86 ± 0.07 | 132.83 ± 0.25 | 13.10 ± 0.04 | 15.68 ± 0.04 | 18.80 ± 0.08 | 21.27 ± 0.06 | 10.79 ± 0.01 |
Testing Time (s) | 11.70 ± 0.02 | 17.81 ± 0.37 | 50.20 ± 0.16 | 6.11 ± 0.01 | 6.21 ± 0.03 | 8.18 ± 0.03 | 15.74 ± 0.02 | 5.80 ± 0.01 |
Dataset | 3D Conv | Transformer | OA(%) | AA(%) | MCC (%) | G-Mean (%) | |
---|---|---|---|---|---|---|---|
QUH-Tangdaowan | ✓ | 85.28 ± 0.46 | 91.39 ± 0.73 | 83.56 ± 0.52 | 83.89 ± 0.54 | 90.83 ± 0.73 | |
✓ | 84.46 ± 1.80 | 91.52 ± 0.64 | 82.71 ± 1.93 | 83.15 ± 1.79 | 90.88 ± 0.80 | ||
✓ | ✓ | 85.75 ± 1.62 | 91.75 ± 0.58 | 84.07 ± 1.76 | 84.38 ± 1.67 | 91.26 ± 0.69 | |
WHU-Hi-HanChuan | ✓ | 88.32 ± 1.43 | 86.98 ± 0.68 | 86.41 ± 1.63 | 86.48 ± 1.61 | 86.32 ± 0.78 | |
✓ | 89.22 ± 0.99 | 88.11 ± 0.54 | 87.48 ± 1.12 | 87.55 ± 1.09 | 87.44 ± 0.62 | ||
✓ | ✓ | 89.78 ± 0.53 | 88.86 ± 0.53 | 88.10 ± 0.61 | 88.16 ± 0.61 | 88.33 ± 0.64 | |
Indian Pines | ✓ | 79.56 ± 2.40 | 89.02 ± 1.15 | 77.03 ± 2.63 | 77.38 ± 2.46 | 87.97 ± 1.41 | |
✓ | 79.58 ± 2.35 | 88.86 ± 1.22 | 77.06 ± 2.57 | 77.43 ± 2.37 | 87.65 ± 1.57 | ||
✓ | ✓ | 82.06 ± 0.39 | 89.93 ± 0.41 | 79.80 ± 0.42 | 80.07 ± 0.36 | 89.11 ± 0.33 | |
Salinas | ✓ | 95.76 ± 0.30 | 98.26 ± 0.15 | 95.28 ± 0.33 | 95.33 ± 0.31 | 98.16 ± 0.18 | |
✓ | 97.22 ± 0.58 | 98.79 ± 0.23 | 96.90 ± 0.65 | 96.92 ± 0.64 | 98.75 ± 0.25 | ||
✓ | ✓ | 97.36 ± 0.82 | 98.93 ± 0.27 | 97.07 ± 0.91 | 97.09 ± 0.89 | 98.89 ± 0.29 |
Dataset | Patch Size | OA(%) | AA(%) | MCC(%) | G-Mean (%) | |
---|---|---|---|---|---|---|
QUH-Tangdaowan | 5 | 76.46 ± 2.43 | 86.51 ± 0.88 | 74.03 ± 2.55 | 74.80 ± 2.32 | 85.14 ± 1.19 |
7 | 81.12 ± 1.49 | 89.24 ± 0.48 | 79.03 ± 1.60 | 79.57 ± 1.47 | 88.34 ± 0.65 | |
9 | 83.93 ± 2.23 | 90.80 ± 0.65 | 82.09 ± 2.39 | 82.47 ± 2.21 | 90.13 ± 0.76 | |
11 | 85.75 ± 1.62 | 91.75 ± 0.58 | 84.07 ± 1.76 | 84.38 ± 1.67 | 91.26 ± 0.69 | |
WHU-Hi-HanChuan | 5 | 80.50 ± 0.87 | 77.43 ± 1.71 | 77.43 ± 1.00 | 77.62 ± 0.98 | 75.56 ± 2.30 |
7 | 86.24 ± 1.35 | 84.26 ± 0.92 | 84.01 ± 1.54 | 84.10 ± 1.51 | 83.37 ± 1.06 | |
9 | 88.49 ± 1.34 | 86.86 ± 1.03 | 86.60 ± 1.53 | 86.67 ± 1.50 | 86.18 ± 1.24 | |
11 | 89.78 ± 0.53 | 88.86 ± 0.53 | 88.10 ± 0.61 | 88.16 ± 0.61 | 88.33 ± 0.64 | |
Indian Pines | 5 | 70.98 ± 2.97 | 82.13 ± 1.84 | 67.35 ± 3.23 | 67.70 ± 2.97 | 79.89 ± 2.42 |
7 | 76.84 ± 2.47 | 86.60 ± 1.53 | 73.88 ± 2.81 | 74.11 ± 2.79 | 85.21 ± 1.80 | |
9 | 79.72 ± 3.16 | 88.68 ± 1.61 | 77.18 ± 3.52 | 77.48 ± 3.39 | 87.61 ± 1.99 | |
11 | 82.06 ± 0.39 | 89.93 ± 0.41 | 79.80 ± 0.42 | 80.07 ± 0.36 | 89.11 ± 0.33 | |
Salinas | 5 | 93.99 ± 0.30 | 97.42 ± 0.22 | 93.31 ± 0.33 | 93.37 ± 0.32 | 97.24 ± 0.27 |
7 | 95.33 ± 0.49 | 98.14 ± 0.19 | 94.81 ± 0.54 | 94.87 ± 0.52 | 98.04 ± 0.21 | |
9 | 96.42 ± 0.50 | 98.59 ± 0.17 | 96.02 ± 0.56 | 96.07 ± 0.54 | 98.52 ± 0.18 | |
11 | 97.36 ± 0.82 | 98.93 ± 0.27 | 97.07 ± 0.91 | 97.09 ± 0.89 | 98.89 ± 0.29 |
Dataset | PCA Dims | OA (%) | AA (%) | MCC (%) | G-Mean (%) | |
---|---|---|---|---|---|---|
QUH-Tangdaowan | 20 | 85.37 ± 1.94 | 91.43 ± 0.66 | 83.66 ± 2.10 | 83.97 ± 1.98 | 90.88 ± 0.79 |
30 | 83.85 ± 3.75 | 91.28 ± 0.83 | 82.06 ± 3.96 | 82.56 ± 3.54 | 90.47 ± 1.30 | |
40 | 85.75 ± 1.62 | 91.75 ± 0.58 | 84.07 ± 1.76 | 84.38 ± 1.67 | 91.26 ± 0.69 | |
None | 71.95 ± 4.70 | 83.21 ± 1.22 | 69.25 ± 4.77 | 70.43 ± 4.11 | 80.49 ± 2.21 | |
WHU-Hi-HanChuan | 20 | 87.87 ± 1.52 | 86.86 ± 1.01 | 85.90 ± 1.73 | 85.98 ± 1.70 | 86.20 ± 1.21 |
30 | 89.39 ± 1.04 | 87.80 ± 0.71 | 87.64 ± 1.20 | 87.70 ± 1.18 | 87.06 ± 0.76 | |
40 | 89.78 ± 0.53 | 88.86 ± 0.53 | 88.10 ± 0.61 | 88.16 ± 0.61 | 88.33 ± 0.64 | |
None | 84.08 ± 4.60 | 82.62 ± 2.86 | 81.53 ± 5.17 | 81.70 ± 5.07 | 81.37 ± 3.31 | |
Indian Pines | 20 | 76.62 ± 2.38 | 86.98 ± 0.71 | 73.79 ± 2.56 | 74.23 ± 2.37 | 85.55 ± 0.94 |
30 | 79.31 ± 1.57 | 88.85 ± 0.68 | 76.76 ± 1.71 | 77.04 ± 1.64 | 87.78 ± 0.89 | |
40 | 82.06 ± 0.39 | 89.93 ± 0.41 | 79.80 ± 0.42 | 80.07 ± 0.36 | 89.11 ± 0.33 | |
None | 77.67 ± 2.06 | 87.64 ± 0.93 | 74.93 ± 2.22 | 75.38 ± 2.00 | 86.26 ± 1.12 | |
Salinas | 20 | 97.28 ± 0.95 | 98.83 ± 0.31 | 96.97 ± 1.05 | 97.01 ± 1.01 | 98.79 ± 0.33 |
30 | 97.02 ± 1.21 | 98.54 ± 0.59 | 96.68 ± 1.34 | 96.74 ± 1.28 | 98.49 ± 0.63 | |
40 | 97.36 ± 0.82 | 98.93 ± 0.27 | 97.07 ± 0.91 | 97.09 ± 0.89 | 98.89 ± 0.29 | |
None | 93.06 ± 1.76 | 96.89 ± 0.65 | 92.30 ± 1.93 | 92.47 ± 1.70 | 96.61 ± 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Zhang, Z.; Zhai, J.; Zhang, L.; Tang, Y.; Peng, Y.; Zhou, T. EDTST: Efficient Dynamic Token Selection Transformer for Hyperspectral Image Classification. Remote Sens. 2025, 17, 3180. https://doi.org/10.3390/rs17183180
Hu X, Zhang Z, Zhai J, Zhang L, Tang Y, Peng Y, Zhou T. EDTST: Efficient Dynamic Token Selection Transformer for Hyperspectral Image Classification. Remote Sensing. 2025; 17(18):3180. https://doi.org/10.3390/rs17183180
Chicago/Turabian StyleHu, Xiang, Zhiwen Zhang, Jianghe Zhai, Longlong Zhang, Yuxiang Tang, Yuanxi Peng, and Tong Zhou. 2025. "EDTST: Efficient Dynamic Token Selection Transformer for Hyperspectral Image Classification" Remote Sensing 17, no. 18: 3180. https://doi.org/10.3390/rs17183180
APA StyleHu, X., Zhang, Z., Zhai, J., Zhang, L., Tang, Y., Peng, Y., & Zhou, T. (2025). EDTST: Efficient Dynamic Token Selection Transformer for Hyperspectral Image Classification. Remote Sensing, 17(18), 3180. https://doi.org/10.3390/rs17183180