Dense Time Series of Harmonized Landsat Sentinel-2 and Ensemble Machine Learning to Map Coffee Production Stages
Abstract
Highlights
- Coffee plantations in Brazil were mapped with unprecedented sensitivity and specificity (>95%) using a dense Harmonized Landsat Sentinel-2 time series and a hierarchical ensemble of Random Forest and XGBoost models.
- Four phenological stages of coffee production—planting, producing, skeleton pruning, and renovation—were accurately distinguished, with balanced accuracies from 77% to 95%, even in fragmented smallholder landscapes.
- 3.
- Provides a scalable, open-source framework for monitoring climate-resilient coffee management practices and supporting smallholder decision-making.
- 4.
- Enables better access to credit, risk mitigation tools, and operational crop management insights in other coffee-producing regions using globally available EO data.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Strategy and Classification Scheme
2.3. Remote Sensing Data Processing
Feature Space Combinations
Spectral Index | Equation | Reference |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | Rouse et al. [45] | |
Normalized Difference Water Index (NDWI) | Gao [46] | |
Green Normalized Difference Vegetation Index (GNDVI) | Gitelson et al. [47] | |
Soil Adjusted Vegetation Index (SAVI) | Huete [48] |
2.4. Classification Algorithms and Accuracy Assessment
2.5. Spatial Predictions
3. Results
3.1. Accuracy Assessment and Spatial Predictions
3.2. Feature Importance Analysis
4. Discussion
4.1. Advantages of HLS Data for Class Separability
4.2. Performance of Mappings and Impacts of Variables for Levels 1, 2, and 3
4.3. Level 4: Mapping the Stages of Coffee Production, Advances, and Challenges
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CONAB. Monitoring the Brazilian Harvest: 3rd Survey 2024. Coffee Harvest. Available online: https://www.gov.br/conab/pt-br/atuacao/informacoes-agropecuarias/safras/safra-de-cafe/3o-levantamento-de-cafe-safra-2024/boletim-cafe-setembro-2024 (accessed on 25 April 2025).
- MAPA. Ministério de Agricultura e Pecuária. Brasil é o Maior Produtor Mundial e o Segundo Maior Consumidor de Café. Available online: https://www.gov.br/agricultura/pt-br/assuntos/noticias/brasil-e-o-maior-produtor-mundial-e-o-segundo-maior-consumidor-de-cafe (accessed on 25 April 2025).
- CECAFÉ. Brazilian Coffee Exporters Council (Conselho dos Exportadores de Café do Brasil). Montlhy Report: June 2024 (Relatório Mensal: Junho 2024). Available online: http://www.consorciopesquisacafe.com.br/images/stories/noticias/2021/2024/Junho/CECAFE_Relatorio_Mensal_JUNHO_2024.pdf (accessed on 25 April 2025).
- Martins, V.A.; Fredo, C.E.; da Silva Lago Baptistella, C.; de Camargo Bini, D.L.; Pinatti, E.; de Camargo, F.P.; Miura, M.; Coelho, P.J.; Nakama, L.M.; Ferreira, T.T. Previsões e estimativas de safra do Estado de São Paulo, ano agrícola 2023/24. Análises e Indicadores do Agronegócio 2024, 19, 1–12. [Google Scholar]
- Pham, Y.; Reardon-Smith, K.; Mushtaq, S.; Cockfield, G. The impact of climate change and variability on coffee production: A systematic review. Clim. Chang. 2019, 156, 609–630. [Google Scholar] [CrossRef]
- Bilen, C.; El Chami, D.; Mereu, V.; Trabucco, A.; Marras, S.; Spano, D. A systematic review on the impacts of climate change on coffee agrosystems. Plants 2022, 12, 102. [Google Scholar] [CrossRef]
- Byrareddy, V.M.; Kath, J.; Kouadio, L.; Mushtaq, S.; Geethalakshmi, V. Assessing scale-dependency of climate risks in coffee-based agroforestry systems. Sci. Rep. 2024, 14, 8028. [Google Scholar] [CrossRef]
- Jones, K.; Njeru, E.M.; Garnett, K.; Girkin, N. Assessing the impact of voluntary certification schemes on future sustainable coffee production. Sustainability 2024, 16, 5669. [Google Scholar] [CrossRef]
- Martinez, H.E.P.; Andrade, S.A.L.; Santos, R.H.S.; Baptistella, J.L.C.; Mazzafera, P. Agronomic practices toward coffee sustainability. A review. Sci. Agric. 2024, 81, e20220277. [Google Scholar] [CrossRef]
- Kittichotsatsawat, Y.; Jangkrajarng, V.; Tippayawong, K.Y. Enhancing coffee supply chain towards sustainable growth with big data and modern agricultural technologies. Sustainability 2021, 13, 4593. [Google Scholar] [CrossRef]
- Escobar-López, A.; Castillo-Santiago, M.Á.; Mas, J.F.; Hernández-Stefanoni, J.L.; López-Martínez, J.O. Identification of coffee agroforestry systems using remote sensing data: A review of methods and sensor data. Geocarto Int. 2024, 39, 1. [Google Scholar] [CrossRef]
- Hunt, D.A.; Tabor, K.; Hewson, J.H.; Wood, M.A.; Reymondin, L.; Koenig, K.; Schmitt-Harsh, M.; Follett, F. Review of remote sensing methods to map coffee production systems. Remote Sens. 2020, 12, 2041. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; de Abelleyra, D.; Ferraz, R.P.D.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote sensing and cropping practices: A review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- Maskell, G.; Chemura, A.; Nguyen, H.; Gornott, C.; Mondal, P. Integration of Sentinel optical and radar data for mapping smallholder coffee production systems in Vietnam. Remote Sens. Environ. 2021, 266, 112709. [Google Scholar] [CrossRef]
- Kelley, L.C.; Pitcher, L.; Bacon, C. Using Google Earth Engine to map complex shade-grown coffee landscapes in Northern Nicaragua. Remote Sens. 2018, 10, 952. [Google Scholar] [CrossRef]
- Manoel, M.C.; Rosa, M.R.; Queiroz, A.P. Analysis of the biennial productivity of arabica coffee with Google Earth Engine in the Northeast region of São Paulo, Brazil. Remote Sens. 2024, 16, 3833. [Google Scholar] [CrossRef]
- Silva, W.F.; Rudorff, B.F.T.; Formaggio, A.R.; Paradella, W.R.; Mura, J.C. Discrimination of agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 458–463. [Google Scholar] [CrossRef]
- Le, Q.T.; Dang, K.B.; Giang, T.L.; Tong, T.H.A.; Nguyen, V.G.; Nguyen, T.D.L. Deep learning model development for detecting coffee tree changes based on Sentinel-2 imagery in Vietnam. IEEE Access 2022, 10, 109097–109107. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Sanches, I.D. Improving crop mapping in Brazil’s Cerrado from a data cubes-derived Sentinel-2 temporal analysis. Remote Sens. Appl. Soc. Environ. 2023, 32, 101014. [Google Scholar] [CrossRef]
- Chies, V. Small Properties Predominate in Caconde, the Largest Coffee Producer in SP. Available online: https://www.embrapa.br/busca-de-noticias/-/noticia/83223396/pequenas-propriedades-predominam-em-caconde-maior-produtor-de-cafe-de-sp (accessed on 25 April 2025).
- ASN. Caconde Coffee Produced by Women Trained by Sebrae-SP Is Delivered to World Leaders at the G20. Available online: https://sp.agenciasebrae.com.br/Cultura-Empreendedora/Cafe-de-Caconde-Produzido-Por-Mulheres-Capacitadas-Pelo-Sebrae-Sp-e-Entregue-a-Liderancas-Mundiais-No-G20 (accessed on 25 April 2025).
- SECOM. Vice President Signs Agreements to Promote Brazilian Coffee in China’s Largest Coffee Shop Chain. Available online: https://www.gov.br/secom/pt-br/assuntos/noticias/2024/06/vice-presidente-assina-acordos-para-promocao-do-cafe-brasileiro-na-maior-rede-de-cafeterias-da-china (accessed on 25 April 2025).
- Ju, J.; Zhou, Q.; Freitag, B.; Roy, D.P.; Zhang, H.K.; Sridhar, M.; Mandel, J.; Arab, S.; Schmidt, G.; Crawford, C.J.; et al. The Harmonized Landsat and Sentinel-2 Version 2.0 surface reflectance dataset. Remote Sens. Environ. 2025, 324, 114723. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- NASA. Harmonized Landsat and Sentinel-2. Available online: https://hls.gsfc.nasa.gov/ (accessed on 25 April 2025).
- EMBRAPA. Semear Digital Project. Available online: https://www.semear-digital.cnptia.embrapa.br/ (accessed on 25 April 2025).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- MapBiomas. MapBiomas Project (Projeto MapBiomas). Available online: https://plataforma.brasil.mapbiomas.org/cobertura?activebasemap (accessed on 25 April 2025).
- Ronquim, C.C.; Rodrigues, C.A.G.; Franzin, J.P.; Scarazatti, B.; Alvarez, I.A.; Garçon, E.A.M. Spatial characterization and distribution of coffee and native forest areas in Caconde, SP. In Proceedings of the XX Brazilian Symposium on Remote Sensing, INPE, Florianópolis, Brazil, 2–5 May 2023; pp. 700–703, ISBN 978-65-89159-04-9. [Google Scholar]
- Lopes, V.C.; Parente, L.L.; Baumann, L.R.F.; Miziara, F.; Ferreira, L.G. Land-use dynamics in a Brazilian agricultural frontier region, 1985–2017. Land Use Policy 2020, 97, 104740. [Google Scholar] [CrossRef]
- Nogueira, S.H.M.; Parente, L.L.; Ferreira, L.G. Temporal Visual Inspection: A Tool for the Visual Inspection of Points in Remote Sensing Time Series; Laboratory for Image Processing and Geoprocessing (LAPIG), Federal University of Goiás: Goiânia, Brazil, 2025; Available online: https://www.lapig.iesa.ufg.br/lapig/ (accessed on 25 April 2025).
- Adami, M.; Moreira, M.A.; Barros, M.A.; Martins, V.A.; Friedrich, B.; Rudorff, T. Avaliação da Exatidão do Mapeamento da Cultura do Café No Estado de Minas Gerais. Available online: http://www.dsr.inpe.br/laf/cafesat/artigos/AvaliacaoExatidaoMapeamentoCafe.pdf (accessed on 25 April 2025).
- Arantes, K.R.; de Faria, M.A.; Rezende, F.C. Recuperação do cafeeiro (Coffea arabica L.) após recepa, submetido a diferentes lâminas de água e parcelamentos da adubação. Acta Sci. Agron. 2009, 31, 313–319. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Zhu, X.; Ge, Y.; Tong, X.; Atkinson, P.M. Remote sensing image gap filling based on spatial-spectral random forests. Sci. Remote Sens. 2022, 5, 100048. [Google Scholar] [CrossRef]
- Zhou, Q.; Xian, G.; Shi, H. Gap fill of land surface temperature and reflectance products in Landsat analysis ready data. Remote Sens. 2020, 12, 1192. [Google Scholar] [CrossRef]
- Hijmans, R.; Bivand, R.; Cordano, E.; Dyba, K.; Pebesma, E.; Sumner, M. Package ‘Terra’ (1.8-5). Available online: https://cran.r-project.org/web/packages/terra/index.html (accessed on 25 April 2025).
- Bolfe, É.L.; Parreiras, T.C.; Silva, L.A.P.; Sano, E.E.; Bettiol, G.M.; Victoria, D.C.; Sanches, I.D.; Vicente, L.E. Mapping agricultural intensification in the Brazilian savanna: A machine learning approach using harmonized data from Landsat Sentinel-2. ISPRS Int. J. Geo-Inf. 2023, 12, 263. [Google Scholar] [CrossRef]
- Sano, E.E.; Bolfe, É.L.; Parreiras, T.C.; Bettiol, G.M.; Vicente, L.E.; Sanches, I.D.; Victoria, D.C. Estimating double cropping plantations in the Brazilian Cerrado through PlanetScope monthly mosaics. Land 2023, 12, 581. [Google Scholar] [CrossRef]
- Haralick, R.M.; Dinstein, I.; Shanmugam, K. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Chen, S.; Useya, J.; Mugiyo, H. Decision-level fusion of Sentinel-1 SAR and Landsat 8 OLI texture features for crop discrimination and classification: Case of Masvingo, Zimbabwe. Heliyon 2020, 6, e05358. [Google Scholar] [CrossRef] [PubMed]
- Salas, E.A.L.; Boykin, K.G.; Valdez, R. Multispectral and texture feature application in image-object analysis of summer vegetation in eastern Tajikistan Pamirs. Remote Sens. 2016, 8, 78. [Google Scholar] [CrossRef]
- Tridawati, A.; Wikantika, K.; Susantoro, T.M.; Harto, A.B.; Darmawan, S.; Yayusman, L.F.; Ghazali, M.F. Mapping the distribution of coffee plantations from multi-resolution, multi-temporal, and multi-sensor data using a Random Forest algorithm. Remote Sens. 2020, 12, 3933. [Google Scholar] [CrossRef]
- Duveiller, G.; Hooker, J.; Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 2018, 9, 679. [Google Scholar] [CrossRef] [PubMed]
- Değermenci, A.S.; Zengin, H. Determination of land surface temperatures for some oak stands with Landsat 8 OLI satellite images: A case study from Turkey. Environ. Monit. Assess. 2024, 196, 1107. [Google Scholar] [CrossRef] [PubMed]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Tech. Rep. 1974. Available online: https://ntrs.nasa.gov/citations/19740022614 (accessed on 25 April 2025).
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Kuhn, M. Package “Caret”: Classification and Regression Training. Available online: https://cran.r-project.org/web/packages/caret/index.html (accessed on 25 April 2025).
- Breiman, L.; Cutler, A.; Liaw, A.; Wiener, M. randomForest: Breiman and Cutler’s Random Forests for Classification and Regression. R Package Version 4.7-1.1. Available online: https://cran.r-project.org/package=randomForest (accessed on 13 June 2025).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A Random Forest Guided Tour. TEST 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Saini, R.; Ghosh, S.K. Crop classification in a heterogeneous agricultural environment using ensemble classifiers and single-date Sentinel-2A imagery. Geocarto Int. 2019, 36, 2141–2159. [Google Scholar] [CrossRef]
- Rafif, R.; Kusuma, S.S.; Saringatin, S.; Nanda, G.I.; Wicaksono, P.; Arjasakusuma, S. Crop intensity mapping using dynamic time warping and machine learning from multi-temporal PlanetScope data. Land 2021, 10, 1384. [Google Scholar] [CrossRef]
- Goldberg, K.; Herrmann, I.; Hochberg, U.; Rozenstein, O. Generating up-to-date crop maps optimized for Sentinel-2 imagery in Israel. Remote Sens. 2021, 13, 3488. [Google Scholar] [CrossRef]
- Chen, C.; Liang, J.; Sun, W.; Yang, G.; Meng, X. An automatically recursive feature elimination method based on threshold decision in random forest classification. Geo-Spat. Inf. Sci. 2024, 28, 1494–1519. [Google Scholar] [CrossRef]
- Domingos, P. A few useful things to know about machine learning. Commun. ACM 2012, 55, 78–87. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Henebry, G.M. Characterizing land use/land cover using multi-sensor time series from the perspective of land surface phenology. Remote Sens. 2019, 11, 1677. [Google Scholar] [CrossRef]
- Bendini, H.N.; Fonseca, L.M.G.; Schwieder, M.; Körting, T.S.; Rufin, P.; Sanches, I.D.; Leitão, P.J.; Hostert, P. Detailed agricultural land classification in the Brazilian Cerrado based on phenological information from dense satellite image time series. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101872. [Google Scholar] [CrossRef]
- Joshi, A.; Pradhan, B.; Gite, S.; Chakraborty, S. Remote-sensing data and deep-learning techniques in crop mapping and yield prediction: A systematic review. Remote Sens. 2023, 15, 2014. [Google Scholar] [CrossRef]
- Parreiras, T.C.; Bolfe, E.L.; Sano, E.S.; Victoria, D.C.; Sanches, I.D.; Vicente, L.E. Exploring the Harmonized Landsat Sentinel (HLS) datacube to map an agricultural landscape in the Brazilian savanna. ISPRS Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2022, XLIII-B3-2022, 967–973. [Google Scholar] [CrossRef]
- Parreiras, T.; Bolfe, É.; Chaves, M.; Sanches, I.; Sano, E.; Victoria, D.; Bettiol, G.; Vicente, L. Hierarchical classification of soybean in the Brazilian savanna based on Harmonized Landsat Sentinel data. Remote Sens. 2022, 14, 3736. [Google Scholar] [CrossRef]
- IBGE. Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística). Municipal Agricultural Research (Pesquisa Agrícola Municipal). Available online: https://sidra.ibge.gov.br/pesquisa/pam/tabelas (accessed on 25 April 2025).
- Lin, C.; Zhong, L.; Song, X.-P.; Dong, J.; Lobell, D.B.; Jin, Z. Early- and in-season crop type mapping without current-year ground truth: Generating labels from historical information via a topology-based approach. Remote Sens. Environ. 2022, 274, 112994. [Google Scholar] [CrossRef]
- Souza, C.G.; Arantes, T.B.; Carvalho, L.M.T.; Aguiar, P. Multitemporal variables for the mapping of coffee cultivation areas. Pesqui. Agropecu. Bras. 2019, 54, e00017. [Google Scholar] [CrossRef]
- Chemura, A.; Mutanga, O.; Dube, T. Integrating age in the detection and mapping of incongruous patches in coffee (coffea arabica) plantations using multi-temporal Landsat 8 NDVI anomalies. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 1–13. [Google Scholar] [CrossRef]
- Kawakubo, F.S.; Machado, R.P.P. Mapping coffee crops in Southeastern Brazil using spectral mixture analysis and data mining classification. Int. J. Remote Sens. 2016, 37, 3414–3436. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Veloso, G.A.; Ferreira, M.E.; Ferreira Júnior, L.G.; da Silva, B.B. Modelling gross primary productivity in tropical savanna pasturelands for livestock intensification in Brazil. Remote Sens. Appl. Soc. Environ. 2020, 17, 100288. [Google Scholar] [CrossRef]
- Akbari, E.; Boloorani, A.D.; Samany, N.N.; Hamzeh, S.; Soufizadeh, S.; Pignatti, S. Crop mapping using Random Forest and particle swarm optimization based on multi-temporal Sentinel-2. Remote Sens. 2020, 12, 1449. [Google Scholar] [CrossRef]
- Gaertner, J. Vegetation classification of coffea on Hawaii island using WorldView-2 satellite imagery. J. Appl. Remote Sens. 2017, 11, 046005. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; Lv, Y.; Xue, X. Classification of high resolution imagery based on fusion of multiscale texture features. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012217. [Google Scholar] [CrossRef]
- Gao, T.; Zhu, J.; Zheng, X.; Shang, G.; Huang, L.; Wu, S. Mapping spatial distribution of larch plantations from multi-seasonal Landsat-8 OLI imagery and multi-scale textures using random forests. Remote Sens. 2015, 7, 1702–1720. [Google Scholar] [CrossRef]
- Perna, C.; Pagliai, A.; Sarri, D.; Lisci, R.; Vieri, M. Can a LiDAR and multispectral sensor discriminate canopy structure changes due to pruning in olive growing? A field experimentation. Sensors 2024, 24, 7894. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Mõttus, M. Sensitivity of common vegetation indices to the canopy structure of field crops. Remote Sens. 2017, 9, 994. [Google Scholar] [CrossRef]
- Psaltakis, G.; Rogdakis, K.; Loizos, M.; Kymakis, E. One-vs-one, one-vs-rest, and a novel outcome-driven one-vs-one binary classifiers enabled by optoelectronic memristors towards overcoming hardware limitations in multiclass classification. Discov. Mater. 2024, 4, 7. [Google Scholar] [CrossRef]
- Garcia, A.S.; Vilela, V.M.F.N.; Rizzo, R.; West, P.; Gerber, J.S.; Engstrom, P.M.; Ballester, M.V.R. Assessing land use/cover dynamics and exploring drivers in the Amazon’s arc of deforestation through a hierarchical, multi-scale and multi-temporal classification approach. Remote Sens. Appl. Soc. Environ. 2019, 15, 100233. [Google Scholar] [CrossRef]
- Li, J.; Zhang, B.; Huang, X. A hierarchical category structure based convolutional recurrent neural network (HCS-ConvRNN) for land-cover classification using dense MODIS time-series data. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102744. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Picoli, M.C.A.; Sanches, I.D. Recent applications of landsat 8/oli and sentinel-2/msi for land use and land cover mapping: A systematic review. Remote Sens. 2020, 12, 3062. [Google Scholar] [CrossRef]
- Fang, P.; Zhang, X.; Wei, P.; Wang, Y.; Zhang, H.; Liu, F.; Zhao, J. The classification performance and mechanism of machine learning algorithms in winter wheat mapping using Sentinel-2 10 m resolution imagery. Appl. Sci. 2020, 10, 5075. [Google Scholar] [CrossRef]
- Li, R.; Gao, X.; Shi, F. A framework for subregion ensemble learning mapping of land use/land cover at the watershed scale. Remote Sens. 2024, 16, 3855. [Google Scholar] [CrossRef]
- da Silva Júnior, C.A.; Santi, A.L.; Uribe-Opazo, M.A.; da Silva, A.P.; Bazzi, C.L.; Bazzi, H. Coffee-Yield Estimation Using High-Resolution Time-Series Satellite Images and Machine Learning. Agriengineering 2022, 4, 888–902. [Google Scholar] [CrossRef]
- Martello, M.; Ferreira, M.P.; Ruhoff, A.L.; Zanon, J.A.; Dalmolin, A.C. Integrated approach for modeling soybean yield using remote sensing data and machine learning algorithms. PLoS ONE 2020, 15, e0230013. [Google Scholar] [CrossRef]
- Liu, Z.; Li, N.; Wang, L.; Zhu, J.; Qin, F. A multi-angle comprehensive solution based on deep learning to extract cultivated land information from high-resolution remote sensing images. Ecol. Indic. 2022, 141, 108961. [Google Scholar] [CrossRef]
- Kou, W.; Shen, Z.; Zhang, Y.; Wang, H.; Ji, P.; Huang, L.; Zhang, C.; Ma, Y. Spatio-temporal analysis of agroforestry systems in Hotan using multi-source remote sensing and deep learning. Smart Agric. Technol. 2024, 9, 100641. [Google Scholar] [CrossRef]
Datasets | Split | Accuracy | Significance | ||
---|---|---|---|---|---|
All-Year | Dry-Season | All-Year | Dry-Season | ||
MS + SIs | 0.4 | 0.956 | 0.930 | *** | *** |
MS + SIs | 0.5 | 0.933 | 0.926 | *** | *** |
MS + SIs | 0.6 | 0.920 | 0.942 | *** | *** |
MS + SIs | 0.7 | 0.947 | 0.929 | *** | *** |
Average | 0.939 | 0.932 | |||
MS | 0.4 | 0.938 | 0.921 | *** | *** |
MS | 0.5 | 0.951 | 0.905 | *** | *** |
MS | 0.6 | 0.929 | 0.938 | *** | *** |
MS | 0.7 | 0.924 | 0.912 | *** | *** |
Average | 0.935 | 0.919 | |||
SIs | 0.4 | 0.933 | 0.918 | *** | *** |
SIs | 0.5 | 0.923 | 0.930 | *** | *** |
SIs | 0.6 | 0.938 | 0.903 | *** | *** |
SIs | 0.7 | 0.947 | 0.924 | *** | *** |
Average | 0.935 | 0.918 |
Datasets | Split | Sensitivity | Specificity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Perennial Crops | Pasture | Annual Crops | Perennial Crops | Pasture | Annual Crops | ||||||||
AY | DS | AY | DS | AY | DS | AY | DS | AY | DS | AY | DS | ||
MS + SI | 0.4 | 0.977 | 0.924 | 0.966 | 0.972 | 0.813 | 0.719 | 0.986 | 0.986 | 0.969 | 0.926 | 0.977 | 0.971 |
MS + SI | 0.5 | 0.972 | 0.972 | 0.939 | 0.959 | 0.741 | 0.556 | 0.977 | 0.954 | 0.949 | 0.934 | 0.969 | 0.984 |
MS + SI | 0.6 | 0.920 | 0.989 | 0.966 | 0.966 | 0.667 | 0.619 | 0.978 | 0.986 | 0.889 | 0.935 | 0.985 | 0.980 |
MS + SI | 0.7 | 0.938 | 0.969 | 0.955 | 0.989 | 0.938 | 0.438 | 0.990 | 0.990 | 0.951 | 0.901 | 0.974 | 0.981 |
Average | 0.952 | 0.964 | 0.957 | 0.972 | 0.790 | 0.583 | 0.983 | 0.979 | 0.940 | 0.924 | 0.976 | 0.979 | |
MS | 0.4 | 0.962 | 0.927 | 0.983 | 0.966 | 0.594 | 0.481 | 0.976 | 0.966 | 0.908 | 0.882 | 0.997 | 0.981 |
MS | 0.5 | 0.991 | 0.989 | 0.980 | 0.949 | 0.630 | 0.667 | 0.971 | 0.957 | 0.941 | 0.944 | 0.996 | 0.990 |
MS | 0.6 | 0.977 | 0.985 | 0.966 | 0.944 | 0.524 | 0.438 | 0.978 | 0.962 | 0.917 | 0.889 | 0.980 | 0.987 |
MS | 0.7 | 0.969 | 0.924 | 0.966 | 0.989 | 0.500 | 0.500 | 0.971 | 0.967 | 0.889 | 0.896 | 0.994 | 0.987 |
Average | 0.975 | 0.956 | 0.974 | 0.962 | 0.562 | 0.522 | 0.974 | 0.963 | 0.914 | 0.903 | 0.992 | 0.986 | |
SIs | 0.4 | 0.924 | 0.874 | 0.972 | 0.958 | 0.750 | 0.714 | 0.976 | 0.971 | 0.920 | 0.889 | 0.984 | 0.971 |
SIs | 0.5 | 0.991 | 0.938 | 0.939 | 0.978 | 0.556 | 0.563 | 0.931 | 0.962 | 0.971 | 0.914 | 0.977 | 0.987 |
SIs | 0.6 | 0.954 | 0.924 | 0.975 | 0.972 | 0.667 | 0.719 | 0.978 | 0.986 | 0.917 | 0.926 | 0.990 | 0.971 |
SIs | 0.7 | 0.923 | 0.972 | 0.989 | 0.959 | 0.813 | 0.556 | 0.990 | 0.954 | 0.938 | 0.934 | 0.981 | 0.984 |
Average | 0.948 | 0.927 | 0.969 | 0.967 | 0.697 | 0.638 | 0.969 | 0.968 | 0.937 | 0.916 | 0.983 | 0.978 |
Model | Split | Accuracy | p |
---|---|---|---|
RF | 0.4 | 0.863 | *** |
RF | 0.5 | 0.839 | *** |
RF | 0.6 | 0.878 | *** |
RF | 0.7 | 0.861 | *** |
Average | - | 0.835 | |
XGBoost | 0.4 | 0.84 | *** |
XGBoost | 0.5 | 0.871 | *** |
XGBoost | 0.6 | 0.857 | *** |
XGBoost | 0.7 | 0.917 | *** |
Average | - | 0.838 |
Sensitivity | Specificity | ||||||||
---|---|---|---|---|---|---|---|---|---|
Model | Split | PL | PR | SK | ST | PL | PR | SK | ST |
RF | 0.4 | 0.75 | 0.917 | 1 | 0.667 | 1 | 0.98 | 0.902 | 0.931 |
RF | 0.5 | 0.9 | 0.95 | 0.895 | 0.538 | 0.962 | 0.976 | 0.907 | 0.939 |
RF | 0.6 | 0.875 | 1 | 1 | 0.5 | 0.976 | 0.97 | 0.912 | 0.974 |
RF | 0.7 | 0.833 | 0.917 | 0.909 | 0.714 | 1 | 0.875 | 0.96 | 0.966 |
Average | 0.840 | 0.946 | 0.951 | 0.605 | 0.985 | 0.950 | 0.920 | 0.953 | |
XGBoost | 0.4 | 0.917 | 0.833 | 0.955 | 0.667 | 1 | 0.98 | 0.882 | 0.931 |
XGBoost | 0.5 | 0.9 | 0.95 | 1 | 0.538 | 1 | 0.929 | 0.884 | 1 |
XGBoost | 0.6 | 0.875 | 1 | 1 | 0.4 | 1 | 0.939 | 0.853 | 1 |
XGBoost | 0.7 | 0.833 | 1 | 1 | 0.714 | 1 | 0.917 | 1 | 0.966 |
Average | 0.881 | 0.946 | 0.989 | 0.580 | 1.000 | 0.941 | 0.905 | 0.974 |
Classes | Satellite | Resolution | Scale; n Images | Methods; Variables | Classification | Main Results | Reference |
---|---|---|---|---|---|---|---|
Coffee (sun-grown) | Landsat 8 OLI Landsat 8 TIRS | 30 m | Regional; 429 (reduced to 3 medians) | Bands, LST, Tasseled Cap, SRTM | Supervised, RF, pixel-based | μCE: 35%, μOE: 31% | Manoel et. al. [16] |
Coffee | Sentinel-2 MSI | 10 m | Regional | 14 spectral indices with 5 and 16-day resolution | Supervised, RF, pixel-based | PA: 100%; UA: 75%; | Chaves & Sanches [19] |
Sun-grown, intercropped (shade), newly planted | Sentinel-1 SAR, Sentinel-2 MSI | 10 m | Regional; 66 (reduced to 2 seasonal medians) | Bands, SIs, SAR metrics, SRTM | Supervised, RF, pixel-based | PA: 56%, 52%, 65%; UA: 65%, 56%, 71% | Maskell et al. [14] |
Coffee (agroforestry/shade) | GeoEye-1; Sentinel-2 | 0.5 m (resampled) | Local; 3 | NDVI, Tasseled Cap, SRTM, GLCM | Supervised, RF, pixel-based | PA: 92%, UA: 91% | Tridawati et al. [42] |
Coffee (sun-grown) | RapidEye, Landsat 5 TM | 5 m, 30 m | Regional; 195 (reduced into metrics) | NDVI and GetStatistic: IAV, stdIAV, AAT, MAC, SSA. | Supervised, SVM, GEOBIA | PA: 94%; UA 90% | Souza et al. [65] |
Coffee (shade) | Landsat 8 OLI, Landsat 8 TIRS | 30 m | Regional; 143 (reduced to 3 seasonal medians) | KT metrics, LST, SRTM | Supervised, RF, pixel-based | PA: 86%; UA: 80% | Kelley et al. [15] |
Coffee (sun-grown) | WorldView-2 | 1.85 m | Regional; 2 | Bands | Supervised; (1) pixel-based + MLC; (2) GEOBIA + SVM | (1) PA: 72%, UA: 69%); (2) PA: 72%, UA: 94% | Gaertner et al. [71] |
Young, mature, old (sun-grown) | Landsat 8 OLI | 30 m | Local; 2 | Bands | Supervised, RF, pixel-based | PA: 70%, 80%, 78%; UA: 81%, 70%, 72% | Chemura et al. [66] |
Producing, old-pruned, mixed (sun-grown) | IRS, Resourcesat 2 LISS-3 | 23.5 m | Local; 1 | SMA; PCA | Supervised, DT, GEOOBIA | PA: 74%, 79%, 71% | Kawakubo & Machado [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parreiras, T.C.; Santos, C.d.O.; Bolfe, É.L.; Sano, E.E.; Leandro, V.B.S.; Bayma, G.; Silva, L.A.P.d.; Furuya, D.E.G.; Romani, L.A.S.; Morton, D. Dense Time Series of Harmonized Landsat Sentinel-2 and Ensemble Machine Learning to Map Coffee Production Stages. Remote Sens. 2025, 17, 3168. https://doi.org/10.3390/rs17183168
Parreiras TC, Santos CdO, Bolfe ÉL, Sano EE, Leandro VBS, Bayma G, Silva LAPd, Furuya DEG, Romani LAS, Morton D. Dense Time Series of Harmonized Landsat Sentinel-2 and Ensemble Machine Learning to Map Coffee Production Stages. Remote Sensing. 2025; 17(18):3168. https://doi.org/10.3390/rs17183168
Chicago/Turabian StyleParreiras, Taya Cristo, Claudinei de Oliveira Santos, Édson Luis Bolfe, Edson Eyji Sano, Victória Beatriz Soares Leandro, Gustavo Bayma, Lucas Augusto Pereira da Silva, Danielle Elis Garcia Furuya, Luciana Alvim Santos Romani, and Douglas Morton. 2025. "Dense Time Series of Harmonized Landsat Sentinel-2 and Ensemble Machine Learning to Map Coffee Production Stages" Remote Sensing 17, no. 18: 3168. https://doi.org/10.3390/rs17183168
APA StyleParreiras, T. C., Santos, C. d. O., Bolfe, É. L., Sano, E. E., Leandro, V. B. S., Bayma, G., Silva, L. A. P. d., Furuya, D. E. G., Romani, L. A. S., & Morton, D. (2025). Dense Time Series of Harmonized Landsat Sentinel-2 and Ensemble Machine Learning to Map Coffee Production Stages. Remote Sensing, 17(18), 3168. https://doi.org/10.3390/rs17183168