Three-Dimensional Heterogeneity of Salinity Extremes Modulated by Mesoscale Eddies Around the Hawaiian Islands
Abstract
Highlights
- Mesoscale eddies modulate salinity extremes with a depth-reversed pattern which is driven by vertical displacement of the subsurface salinity maximum layer.
- High (low) salinity extremes exhibit single-core (dipole) distribution in cyclonic (anticyclonic) eddies, matching the distribution of salinity anomalies.
- These findings may advance understanding of ocean salinity dynamics in eddy-rich regions.
- The results provide an understanding of how mesoscale processes modulate extreme events.
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Satellite Data
2.1.2. Mooring Buoy Data
- Gaps are filled via linear interpolation between adjacent depths;
- Gaps at 155 m, as well as other short-term gaps of two or more consecutive levels (<1 month) that cannot be filled using method 1 are addressed through linear interpolation between the surrounding observations;
- Gaps exceeding one month were filled with the climatological mean for that depth.
2.1.3. Mesoscale Eddy Data
2.2. Methods
2.2.1. Definition of SEs
2.2.2. Categorization of SEs
2.2.3. Assessing Impacts of Eddies on SEs
2.2.4. Normalization of the Observed Data
3. Results
3.1. Statistical Characteristics of SEs
3.2. Vertical Distribution of SEs
3.3. The Co-Occurrence of Eddies and SEs
3.4. Modulations of Eddies on SEs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SEs | Salinity Extremes |
LSEs | Low Salinity Extremes |
HSEs | High Salinity Extremes |
CEs | Cyclonic Eddies |
AEs | Anticyclonic Eddies |
MHWs | Marine Heatwaves |
MCSs | Marine Cold Spells |
EKE | Eddy Kinetic Energy |
SSS | Sea Surface Salinity |
STUW | Subtropical Underwater |
NPTW | North Pacific Tropical Water |
Appendix A
References
- Doherty, M.L.; Johnson, J.V.; Goodbody-Gringley, G. Widespread Coral Bleaching and Mass Mortality during the 2023–2024 Marine Heatwave in Little Cayman. PLoS ONE 2025, 20, e0322636. [Google Scholar] [CrossRef]
- Hughes, T.P.; Kerry, J.T.; Baird, A.H.; Connolly, S.R.; Dietzel, A.; Eakin, C.M.; Heron, S.F.; Hoey, A.S.; Hoogenboom, M.O.; Liu, G.; et al. Global Warming Transforms Coral Reef Assemblages. Nature 2018, 556, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Behrens, E.; Fernandez, D.; Sutton, P. Meridional Oceanic Heat Transport Influences Marine Heatwaves in the Tasman Sea on Interannual to Decadal Timescales. Front. Mar. Sci. 2019, 6, 228. [Google Scholar] [CrossRef]
- Holbrook, N.J.; Sen Gupta, A.; Oliver, E.C.J.; Hobday, A.J.; Benthuysen, J.A.; Scannell, H.A.; Smale, D.A.; Wernberg, T. Keeping Pace with Marine Heatwaves. Nat. Rev. Earth Environ. 2020, 1, 482–493. [Google Scholar] [CrossRef]
- Smith, K.E.; Burrows, M.T.; Hobday, A.J.; Sen Gupta, A.; Moore, P.J.; Thomsen, M.; Wernberg, T.; Smale, D.A. Socioeconomic Impacts of Marine Heatwaves: Global Issues and Opportunities. Science 2021, 374, eabj3593. [Google Scholar] [CrossRef]
- Josey, S.A.; Hirschi, J.J.-M.; Sinha, B.; Duchez, A.; Grist, J.P.; Marsh, R. The Recent Atlantic Cold Anomaly: Causes, Consequences, and Related Phenomena. In Annual Review of Marine Science; Carlson, C.A., Giovannoni, S.J., Eds.; Annual Reviews: Palo Alto, CA, USA, 2018; Volume 10, pp. 475–501. [Google Scholar]
- Malan, N.; Roughan, M.; Hemming, M.; Ingleton, T. Quantifying Coastal Freshwater Extremes during Unprecedented Rainfall Using Long Timeseries Multi-Platform Salinity Observations. Nat. Commun. 2024, 15, 424. [Google Scholar] [CrossRef]
- Liu, H.; Nie, X.; Cui, C.; Wei, Z. Compound Marine Heatwaves and Low Sea Surface Salinity Extremes over the Tropical Pacific Ocean. Environ. Res. Lett. 2023, 18, 064001. [Google Scholar] [CrossRef]
- Barton, B.I.; Lique, C.; Lenn, Y.-D. Water Mass Properties Derived from Satellite Observations in the Barents Sea. J. Geophys. Res. Ocean. 2020, 125, e2019JC015449. [Google Scholar] [CrossRef]
- Carter, L.; Bostock-Lyman, H.; Bowen, M. Chapter 4—Water Masses, Circulation and Change in the Modern Southern Ocean. In Antarctic Climate Evolution, 2nd ed.; Florindo, F., Siegert, M., Santis, L.D., Naish, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 165–197. ISBN 978-0-12-819109-5. [Google Scholar]
- Li, G.; Cheng, L.; Zhu, J.; Trenberth, K.E.; Mann, M.E.; Abraham, J.P. Increasing Ocean Stratification over the Past Half-Century. Nat. Clim. Change 2020, 10, 1116–1123. [Google Scholar] [CrossRef]
- Wang, T.; Geyer, W.R. The Balance of Salinity Variance in a Partially Stratified Estuary: Implications for Exchange Flow, Mixing, and Stratification. J. Phys. Oceanogr. 2018, 48, 2887–2899. [Google Scholar] [CrossRef]
- Peng, S.; Wang, Q. Fast Enhancement of the Stratification in the Indian Ocean over the Past 20 Years. J. Clim. 2024, 37, 2231–2245. [Google Scholar] [CrossRef]
- Doos, K.; Nilsson, J.; Nycander, J.; Brodeau, L.; Ballarotta, M. The World Ocean Thermohaline Circulation. J. Phys. Oceanogr. 2012, 42, 1445–1460. [Google Scholar] [CrossRef]
- Hátún, H.; Sando, A.B.; Drange, H.; Hansen, B.; Valdimarsson, H. Influence of the Atlantic Subpolar Gyre on the Thermohaline Circulation. Science 2005, 309, 1841–1844. [Google Scholar] [CrossRef] [PubMed]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global Observations of Nonlinear Mesoscale Eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef] [PubMed]
- Ponte, R.M.; Vinogradova, N.T. An Assessment of Basic Processes Controlling Mean Surface Salinity over the Global Ocean. Geophys. Res. Lett. 2016, 43, 7052–7058. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Shi, J. Relationship between Sea Surface Salinity and Ocean Circulation and Climate Change. Sci. China Earth Sci. 2019, 62, 771–782. [Google Scholar] [CrossRef]
- Liu, C.; Liang, X.; Ponte, R.M.; Vinogradova, N.; Wang, O. Vertical Redistribution of Salt and Layered Changes in Global Ocean Salinity. Nat. Commun. 2019, 10, 3445. [Google Scholar] [CrossRef]
- Liu, H.; Xu, T.; Li, D.; Nie, X.; Wei, Z. Sea Surface Salinity Extremes over the Global Ocean. Environ. Res. Lett. 2023, 18, 114020. [Google Scholar] [CrossRef]
- Siddiqui, A.H.; Haine, T.W.N.; Nguyen, A.T.; Buckley, M.W. Controls on Upper Ocean Salinity Variability in the Eastern Subpolar North Atlantic During 1992–2017. J. Geophys. Res. Ocean. 2024, 129, e2024JC020887. [Google Scholar] [CrossRef]
- Liu, J.; Wang, D.; Zu, T.; Huang, K.; Zhang, O.Y.W. Either IOD Leading or ENSO Leading Triggers Extreme Thermohaline Events in the Central Tropical Indian Ocean. Clim. Dyn. 2023, 60, 2113–2129. [Google Scholar] [CrossRef]
- Sun, Q.; Du, Y.; Zhang, Y.; Feng, M.; Chowdary, J.S.; Chi, J.; Qiu, S.; Yu, W. Evolution of Sea Surface Salinity Anomalies in the Southwestern Tropical Indian Ocean During 2010–2011 Influenced by a Negative IOD Event. J. Geophys. Res. Ocean. 2019, 124, 3428–3445. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.J.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A Hierarchical Approach to Defining Marine Heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Qiu, B. Oceanic Mass Transport by Mesoscale Eddies. Science 2014, 345, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; McWilliams, J.C.; Liu, Y.; Chen, D. Global Heat and Salt Transports by Eddy Movement. Nat. Commun. 2014, 5, 3294. [Google Scholar] [CrossRef]
- Della Penna, A.; Llort, J.; Moreau, S.; Patel, R.; Kloser, R.; Gaube, P.; Strutton, P.; Boyd, P.W. The Impact of a Southern Ocean Cyclonic Eddy on Mesopelagic Micronekton. J. Geophys. Res. Ocean. 2022, 127, e2022JC018893. [Google Scholar] [CrossRef]
- Frenger, I.; Muennich, M.; Gruber, N.; Knutti, R. Southern Ocean Eddy Phenomenology. J. Geophys. Res. Ocean. 2015, 120, 7413–7449. [Google Scholar] [CrossRef]
- Sun, W.; An, M.; Liu, J.; Liu, J.; Yang, J.; Tan, W.; Dong, C.; Liu, Y. Comparative Analysis of Four Types of Mesoscale Eddies in the Kuroshio-Oyashio Extension Region. Front. Mar. Sci. 2022, 9, 984244. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Lin, X.; Qiu, B.; Yu, L. Characteristics of 3-Dimensional Structure and Heat Budget of Mesoscale Eddies in the South Atlantic Ocean. J. Geophys. Res. Ocean. 2021, 126, e2020JC016922. [Google Scholar] [CrossRef]
- Mo, D.; He, Q.; Zhan, W.; He, Y.; Zhan, H. A Global Assessment of Eddy-Induced Salinity Anomalies and Salt Transport by Eddy Movement. J. Geophys. Res. Ocean. 2024, 129, e2023JC020382. [Google Scholar] [CrossRef]
- Lee, M.-M.; Nurser, A.J.G.; Coward, A.C.; de Cuevas, B.A. Eddy Advective and Diffusive Transports of Heat and Salt in the Southern Ocean. J. Phys. Oceanogr. 2007, 37, 1376–1393. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, D.; Wang, Q.; Zeng, L.; Xing, T.; He, Y.; Shu, Y.; Chen, J.; Wang, Y. Eddy-Induced Transport of Saline Kuroshio Water Into the Northern South China Sea. J. Geophys. Res. Ocean. 2019, 124, 6673–6687. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, K.; Song, H.; Ruddick, B.; Liu, M.; Meng, L. Disruptions in Thermohaline Staircases Caused by Subsurface Mesoscale Eddies in the Eastern Caribbean Sea. Commun. Earth Environ. 2024, 5, 408. [Google Scholar] [CrossRef]
- Zhi, H.; Ma, T.; Zhang, R.-H.; Wang, X.; Wu, M. Surface Flux–Induced Salinity Change and Its Effects on Ocean Stratification in Response to Global Warming. Atmos. Ocean. Sci. Lett. 2025, 100635. [Google Scholar] [CrossRef]
- Röthig, T.; Trevathan-Tackett, S.M.; Voolstra, C.R.; Ross, C.; Chaffron, S.; Durack, P.J.; Warmuth, L.M.; Sweet, M. Human-Induced Salinity Changes Impact Marine Organisms and Ecosystems. Glob. Change Biol. 2023, 29, 4731–4749. [Google Scholar] [CrossRef]
- Lukas, R.; Lindstrom, E. The Mixed Layer of the Western Equatorial Pacific Ocean. J. Geophys. Res. Ocean. 1991, 96, 3343–3357. [Google Scholar] [CrossRef]
- Liu, X.; Ma, X.; Chang, P.; Jia, Y.; Fu, D.; Xu, G.; Wu, L.; Saravanan, R.; Patricola, C.M. Ocean Fronts and Eddies Force Atmospheric Rivers and Heavy Precipitation in Western North America. Nat. Commun. 2021, 12, 1268. [Google Scholar] [CrossRef]
- Calil, P.H.R.; Richards, K.J.; Jia, Y.; Bidigare, R.R. Eddy Activity in the Lee of the Hawaiian Islands. Deep Sea Res. Part II Top. Stud. Oceanogr. 2008, 55, 1179–1194. [Google Scholar] [CrossRef]
- Xie, S.-P.; Liu, W.T.; Liu, Q.; Nonaka, M. Far-Reaching Effects of the Hawaiian Islands on the Pacific Ocean-Atmosphere System. Science 2001, 292, 2057–2060. [Google Scholar] [CrossRef] [PubMed]
- Feloy, K.; Powell, B.S.; Friedrich, T. Remote Impacts of Cyclonic Eddies on Productivity Around the Main Hawaiian Islands. J. Geophys. Res. Ocean. 2024, 129, e2023JC020670. [Google Scholar] [CrossRef]
- Droghei, R.; Nardelli, B.B.; Santoleri, R. Combining In Situ and Satellite Observations to Retrieve Salinity and Density at the Ocean Surface. J. Atmos. Ocean. Technol. 2016, 33, 1211–1223. [Google Scholar] [CrossRef]
- Martínez-Moreno, J.; Hogg, A.M.; England, M.H.; Constantinou, N.C.; Kiss, A.E.; Morrison, A.K. Global Changes in Oceanic Mesoscale Currents over the Satellite Altimetry Record. Nat. Clim. Change 2021, 11, 397–403. [Google Scholar] [CrossRef]
- Pegliasco, C.; Delepoulle, A.; Mason, E.; Morrow, R.; Faugère, Y.; Dibarboure, G. META3.1exp: A New Global Mesoscale Eddy Trajectory Atlas Derived from Altimetry. Earth Syst. Sci. Data 2022, 14, 1087–1107. [Google Scholar] [CrossRef]
- Hobday, A.J.; Oliver, E.C.J.; Sen Gupta, A.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Holbrook, N.J.; Moore, P.J.; Thomsen, M.S.; Wernberg, T.; et al. Categorizing and Naming Marine Heatwaves. Oceanography 2018, 31, 162–173. [Google Scholar] [CrossRef]
- Chelton, D.B.; Gaube, P.; Schlax, M.G.; Early, J.J.; Samelson, R.M. The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll. Science 2011, 334, 328–332. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Zhan, W.; Feng, M.; Gong, Y.; Cai, S.; Zhan, H. Common Occurrences of Subsurface Heatwaves and Cold Spells in Ocean Eddies. Nature 2024, 634, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Oliver, E.C.J.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Sen Gupta, A.; Hobday, A.J.; et al. Longer and More Frequent Marine Heatwaves over the Past Century. Nat. Commun. 2018, 9, 1324. [Google Scholar] [CrossRef]
- Kahru, M.; Mitchell, B.G.; Gille, S.T.; Hewes, C.D.; Holm-Hansen, O. Eddies Enhance Biological Production in the Weddell-Scotia Confluence of the Southern Ocean. Geophys. Res. Lett. 2007, 34, L14603. [Google Scholar] [CrossRef]
- Lévy, M.; Klein, P. Does the Low Frequency Variability of Mesoscale Dynamics Explain a Part of the Phytoplankton and Zooplankton Spectral Variability? Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 2004, 460, 1673–1687. [Google Scholar] [CrossRef]
- O’Connor, B.M.; Fine, R.A.; Maillet, K.A.; Olson, D.B. Formation Rates of Subtropical Underwater in the Pacific Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 1571–1590. [Google Scholar] [CrossRef]
- Suga, T.; Kato, A.; Hanawa, K. North Pacific Tropical Water: Its Climatology and Temporal Changes Associated with the Climate Regime Shift in the 1970s. Prog. Oceanogr. 2000, 47, 223–256. [Google Scholar] [CrossRef]
- Barcelo-Llull, B.; Pallas-Sanz, E.; Sangra, P.; Martinez-Marrero, A.; Estrada-Allis, S.N.; Aristegui, J. Ageostrophic Secondary Circulation in a Subtropical Intrathermocline Eddy. J. Phys. Oceanogr. 2017, 47, 1107–1123. [Google Scholar] [CrossRef]
- Chang, Y.-L.; Miyazawa, Y.; Oey, L.-Y.; Kodaira, T.; Huang, S. The Formation Processes of Phytoplankton Growth and Decline in Mesoscale Eddies in the Western North Pacific Ocean. J. Geophys. Res. Ocean. 2017, 122, 4444–4455. [Google Scholar] [CrossRef]
- Vinogradova, N.T.; Ponte, R.M. Clarifying the Link between Surface Salinity and Freshwater Fluxes on Monthly to Interannual Time Scales. J. Geophys. Res. Ocean. 2013, 118, 3190–3201. [Google Scholar] [CrossRef]
- Grodsky, S.A.; Reul, N.; Lagerloef, G.; Reverdin, G.; Carton, J.A.; Chapron, B.; Quilfen, Y.; Kudryavtsev, V.N.; Kao, H.-Y. Haline Hurricane Wake in the Amazon/Orinoco Plume: AQUARIUS/SACD and SMOS Observations. Geophys. Res. Lett. 2012, 39, L20603. [Google Scholar] [CrossRef]
- Drushka, K.; Asher, W.E.; Sprintall, J.; Gille, S.T.; Hoang, C. Global Patterns of Submesoscale Surface Salinity Variability. J. Phys. Oceanogr. 2019, 49, 1669–1685. [Google Scholar] [CrossRef]
- Zhu, R.; Yang, H.; Li, M.; Chen, Z.; Ma, X.; Cai, J.; Wu, L. Observations Reveal Vertical Transport Induced by Submesoscale Front. Sci. Rep. 2024, 14, 4407. [Google Scholar] [CrossRef]
- Schlegel, R.W.; Oliver, E.C.J.; Hobday, A.J.; Smit, A.J. Detecting Marine Heatwaves with Sub-Optimal Data. Front. Mar. Sci. 2019, 6, 737. [Google Scholar] [CrossRef]
- Gaube, P.; Chelton, D.B.; Samelson, R.M.; Schlax, M.G.; O’Neill, L.W. Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping. J. Phys. Oceanogr. 2015, 45, 104–132. [Google Scholar] [CrossRef]
- Delcroix, T.; Chaigneau, A.; Soviadan, D.; Boutin, J.; Pegliasco, C. Eddy-Induced Salinity Changes in the Tropical Pacific. J. Geophys. Res. Ocean. 2019, 124, 374–389. [Google Scholar] [CrossRef]
- Liu, H.; Wei, Z. Intercomparison of Global Sea Surface Salinity from Multiple Datasets over 2011–2018. Remote Sens. 2021, 13, 811. [Google Scholar] [CrossRef]
- Bian, C.; Jing, Z.; Wang, H.; Wu, L.; Chen, Z.; Gan, B.; Yang, H. Oceanic Mesoscale Eddies as Crucial Drivers of Global Marine Heatwaves. Nat. Commun. 2023, 14, 2970. [Google Scholar] [CrossRef]
- Song, X.; Sun, R.; He, S.; Zhang, H.; Gu, Y.; Li, P.; Song, J. Impact of Anticyclonic Mesoscale Eddies on the Vertical Structures of Marine Heatwaves in the South China Sea. Remote Sens. 2025, 17, 370. [Google Scholar] [CrossRef]
- Napitupulu, G. Eddy-Induced Modulation of Marine Heatwaves and Cold Spells in a Tropical Region: A Case Study in the Natuna Sea Area. Ocean Dyn. 2025, 75, 28. [Google Scholar] [CrossRef]
- Ni, Q.; Zhai, X.; Wang, G.; Marshall, D.P. Random Movement of Mesoscale Eddies in the Global Ocean. J. Phys. Oceanogr. 2020, 50, 2341–2357. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, B.; Liu, H.; Zhang, Z. Doubling of Surface Oceanic Meridional Heat Transport by Non-Symmetry of Mesoscale Eddies. Nat. Commun. 2023, 14, 5460. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, F.; Wang, G. Global Mapping of Mesoscale Eddy Vertical Tilt. J. Geophys. Res. Ocean. 2022, 127, e2022JC019131. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Qiu, B.; Zhao, W.; Chang, P.; Wu, D.; Wan, X. Observed 3D Structure, Generation, and Dissipation of Oceanic Mesoscale Eddies in the South China Sea. Sci. Rep. 2016, 6, 24349. [Google Scholar] [CrossRef] [PubMed]
Information | Content |
---|---|
Position | 23°N, 158°W |
Observed period | 15 August 2004–6 June 2024 |
Observed level | 7, 15, 25, 35, 40, 45, 50, 55, 65, 75, 85, 95, 105, 120, 135, 155 |
Observed elements | Salinity, Temperature |
Time resolution | Daily |
Category | Number | Percentage of Time | Intensity (psu) | Duration (Days) |
---|---|---|---|---|
HSEs | 572 | / | 0.25 | 16.41 |
LSEs | 408 | / | −0.39 | 26.51 |
Moderate HSEs | 559 | 97.73% | 0.25 | 15.90 |
Strong HSEs | 13 | 2.27% | 0.31 | 3.61 |
Moderate LSEs | 316 | 77.45% | −0.30 | 14.05 |
Strong LSEs | 83 | 20.34% | −0.39 | 12.41 |
Severe LSEs | 9 | 2.21% | −0.38 | 7.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Yi, Z.; Sun, Q.; Wang, H.; Gao, X.; Zhang, W.; Shi, J.; Guo, H.; Chen, J.; Wu, J. Three-Dimensional Heterogeneity of Salinity Extremes Modulated by Mesoscale Eddies Around the Hawaiian Islands. Remote Sens. 2025, 17, 3167. https://doi.org/10.3390/rs17183167
Li S, Yi Z, Sun Q, Wang H, Gao X, Zhang W, Shi J, Guo H, Chen J, Wu J. Three-Dimensional Heterogeneity of Salinity Extremes Modulated by Mesoscale Eddies Around the Hawaiian Islands. Remote Sensing. 2025; 17(18):3167. https://doi.org/10.3390/rs17183167
Chicago/Turabian StyleLi, Shiyan, Zhenhui Yi, Qiwei Sun, Hanshi Wang, Xiang Gao, Wenjing Zhang, Jian Shi, Hailong Guo, Jingxing Chen, and Jie Wu. 2025. "Three-Dimensional Heterogeneity of Salinity Extremes Modulated by Mesoscale Eddies Around the Hawaiian Islands" Remote Sensing 17, no. 18: 3167. https://doi.org/10.3390/rs17183167
APA StyleLi, S., Yi, Z., Sun, Q., Wang, H., Gao, X., Zhang, W., Shi, J., Guo, H., Chen, J., & Wu, J. (2025). Three-Dimensional Heterogeneity of Salinity Extremes Modulated by Mesoscale Eddies Around the Hawaiian Islands. Remote Sensing, 17(18), 3167. https://doi.org/10.3390/rs17183167