Hyperspectral Imaging-Based Marine Oil Spills Remote Sensing System Design and Implementation
Abstract
1. Introduction
2. Airborne Hyperspectral Imaging System Methods
2.1. Hyperspectral Camera Design
2.1.1. Optical Analysis
2.1.2. Optical Design
2.1.3. Optical Quality Analysis
2.2. Stable System Design
2.3. Control and Data Acquiation Design
- (1)
- Receive and store raw data from hyperspectral camera;
- (2)
- Display hyperspectral pseudo color images on the interface;
- (3)
- Switch spectral channels for hyperspectral pseudo color images;
- (4)
- Receive inertial navigation data and parse required information;
- (5)
- Control the hyperspectral camera’s frame rate based on real-time flight parameters;
- (6)
- Adjust hyperspectral camera parameters such as gain and exposure time.
2.4. System Integration Design
3. Results
3.1. Airborne Hyperspectral Imaging Flight Experiment Introduction
3.2. Data Processing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SAR | Synthetic Aperture Radar |
MTF | Modulation Transfer Function |
RMS | Root Mean Square |
PCIE | Peripheral Component Interconnect Express |
GNSS | Global Navigation Satellite System |
INS | Inertial Navigation System |
IMU | Inertial Measurement Unit |
FOG | Fiber Optic Gyroscope |
MEMS | Microelectromechanical System |
SBAS | Satellite-Based Augmentation System |
RTK | Real-time Kinematic |
GPS | Global Position System |
UPS | Uninterruptible Power Supply |
References
- Jha, M.N.; Levy, J.; Gao, Y. Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance. Sensors 2008, 8, 236–255. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Chen, L.; Sun, S.; Sun, Z.; Chen, Y.; Mei, Q.; Chen, Z. Detection of Oil Spills in the Northern South China Sea Using Landsat-8 OLI. Remote Sens. 2022, 14, 3966. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Hu, Y.; Ma, Y.; Li, Z.; Zhang, J. Hyperspectral Marine Oil Spill Monitoring Using a Dual-Branch Spatial–Spectral Fusion Model. Remote Sens. 2023, 15, 4170. [Google Scholar] [CrossRef]
- Kessler, J.D.; Valentine, D.L.; Redmond, M.C.; Du, M.; Chan, E.W.; Mendes, S.D.; Quiroz, E.W.; Villanueva, C.J.; Shusta, S.S.; Werra, L.M.; et al. A persistent oxygen anomaly reveals the fate of spilled methane in the Deep Gulf of Mexico. Science 2011, 331, 312–315. [Google Scholar] [CrossRef]
- Liu, S.; Chi, M.; Zou, Y.; Samat, A.; Benediktsson, J.A.; Plaza, A. Oil Spill Detection via Multitemporal Optical Remote Sensing Images: A Change Detection Perspective. IEEE Geosci. Remote Sens. Lett. 2017, 14, 324–328. [Google Scholar] [CrossRef]
- Brekke, C.; Solberg, A. Oil spill detection by satellite remote sensing. Remote Sens. Environ. 2005, 95, 1–13. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C. Review of oil spill remote sensing. Mar. Pollut. Bull. 2014, 83, 9–23. [Google Scholar] [CrossRef]
- Bao, M.; Zhang, J.; Zhang, X.; Meng, J.M. Oil spill detection from GF-1 images with spectral and textural features. Adv. Mar. Sci. 2020, 38, 504–512. [Google Scholar]
- Huang, K.; Pan, Q.; Zhang, J.Y.; Wang, Y.L.; Yang, G.; Sun, W.W. Quantitative monitoring in oil spill incidents based on GF-1 satellite: Qingdao oil spill accident case. Mar. Sci. Bull. 2020, 39, 266–271. [Google Scholar]
- Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.; Hu, Y.; Matheson, S.; Jones, C.E.; Holt, B.; et al. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote Sens. Environ. 2012, 124, 185–209. [Google Scholar] [CrossRef]
- Sun, S.; Hu, C.; Garcia-Pineda, O.; Kourafalou, V.; Le Hénaff, M.; Androulidakis, Y. Remote sensing assessment of oil spills near a damaged platform in the Gulf of Mexico. Mar. Pollut. Bull. 2018, 136, 141–151. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Couvillion, B.R.; Holloway, J.; Roberts, D.A.; Ustin, S.L.; Peterson, S.H.; Khanna, S.; Piazza, S.C. Spectroscopic remote sensing of the distribution and persistence of oil from the Deepwater Horizon spill in Barataria Bay marshes. Remote Sens. Environ. 2013, 129, 210–230. [Google Scholar] [CrossRef]
- Sun, S.; Hu, C. The challenges of interpreting oil–water spatial and spectral contrasts for the estimation of oil thickness: Examples from satellite and airborne measurements of the Deepwater Horizon oil spill. IEEE Trans. Geosci. Remote 2019, 57, 2643–2658. [Google Scholar] [CrossRef]
- Hu, C.; Lu, Y.; Sun, S.; Liu, Y. Optical remote sensing of oil spills in the ocean: What is really possible? J. Remote Sens. 2021, 2021, 9141902. [Google Scholar] [CrossRef]
- Dai, Y.X.; Ma, Y.; Jiang, Z.C.; Du, K.; Wang, H.Q. Multi-spectral remote sensing detection of marine oil spill based on multi-kernel SVM decision fusion model. Mari. Sci. 2022, 46, 11–23. [Google Scholar]
- Lu, Y.C.; Li, X.; Tian, Q.; Zheng, G.; Sun, S.J.; Liu, Y.X.; Yang, Q. Progress in marine oil spill optical remote sensing: Detected targets, spectral response characteristics, and theories. Mar. Geod. 2013, 363, 334–346. [Google Scholar] [CrossRef]
- Fiscella, B.; Giancaspro, A.; Nirchio, F.; Pavese, P. Oil spill detection using marine SAR images. Int. J. Remote Sens. 2000, 21, 3561–3566. [Google Scholar] [CrossRef]
- Li, Y.C.; Liu, J.N.; Shi, H.D. Research on identification of marine oil spill based on polarization characteristics. Acta Photonica Sin. 2021, 50, 0712001. [Google Scholar]
- Jiao, J.N.; Lu, Y.C.; Hu, C.M.; Shi, J.; Sun, S.J.; Liu, Y.X. Quantifying ocean surface oil thickness using thermal remote sensing. Remote Sens. Environ. 2021, 2611, 112513. [Google Scholar] [CrossRef]
- Suo, Z.Y.; Lu, Y.C.; Liu, J.Q.; Ding, J.; Yin, D.Y.; Xu, F.F.; Jiao, J.N. Ultraviolet remote sensing of marine oil spills: A new approach of HaiYang-1C satellite. Opt. Express 2021, 29, 13486–13495. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, H.M.; Zhang, Z.D.; Liu, P. A novel nonlinear hyperspectral unmixing approach for images of oil spills at sea. Int. J. Remote Sens. 2020, 41, 46824699. [Google Scholar] [CrossRef]
- Yang, J.F.; Wan, J.H.; Ma, Y.; Zhang, J.; Hu, Y.B. Characterization analysis and identification of common marine oil spill types using hyperspectral remote sensing. Int. J. Remote Sens. 2020, 41, 7163–7185. [Google Scholar] [CrossRef]
- Jiang, Z.C.; Zhang, J.; Ma, Y.; Mao, X.P. Hyperspectral remote sensing detection of marine oil spills using an adaptive long-term moment estimation optimizer. Remote Sens. 2021, 141, 157. [Google Scholar] [CrossRef]
Parameter | Ship Monitoring | Satellite Remote Sensing | Airborne Remote Sensing | Buoy Monitoring |
---|---|---|---|---|
Observation coverage | Low | High | High | Low |
Continuous endurance | High | Low | High | High |
Environmental adaptability | High | Medium | Medium | High |
Cost | Low | High | Medium | Low |
Resolution | High | Low | High | High |
Sensor types | High | Low | High | Low |
Flexibility | Low | Low | High | Low |
Timeliness | Low | Low | High | Low |
Parameter | Index |
---|---|
effective pixel | 2048 × 2048 |
pixel size | 11 µm × 11 µm |
frame rate | 46 fps @ Standard mode |
quantum efficiencies | 77% @ 275 nm, 86% @ 420 nm, 95% @ 560 nm |
dynamic range | >64 dB |
Inertial Navigation Sensor | Item | Specification |
---|---|---|
Position Accuracy | Horizontal | Single point: 1.2 m SBAS: 0.6 m DGPS: 0.4 m RTK: 1 cm |
Vertical | 15 cm | |
Velocity Accuracy | Horizontal | 0.02 m/s |
Vertical | 0.01 m/s | |
Attitude Accuracy | Roll/Pitch | 0.02° |
Heading | 0.027° | |
3-axis Accelerometers | Full Scale Bias Bias stability | −10 g to 10 g 50 mg ±0.75 mg |
3-axis Gyroscopes | Full scale Bias Bias stability | −375°/s to 375°/s 20°/h ±1°/h |
Data rate | IMU Raw Data INS Solution | 100 Hz 200 Hz |
Mechanical | Size Weight | 152 mm × 168 mm × 89 mm 2.29 kg |
Max Power Consumption | - | 13 W |
Parameter | Index |
---|---|
pixel resolution | 0.98 m @ 3000 m |
focal length | 33.7 mm |
field of view | 37° |
imaging width | 2007 m @ 3000 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Huang, M.; Zhang, Z.; Zhao, W.; Qian, L.; Shi, Z.; Wang, G.; Zhao, Y.; He, S. Hyperspectral Imaging-Based Marine Oil Spills Remote Sensing System Design and Implementation. Remote Sens. 2025, 17, 3099. https://doi.org/10.3390/rs17173099
Wang Z, Huang M, Zhang Z, Zhao W, Qian L, Shi Z, Wang G, Zhao Y, He S. Hyperspectral Imaging-Based Marine Oil Spills Remote Sensing System Design and Implementation. Remote Sensing. 2025; 17(17):3099. https://doi.org/10.3390/rs17173099
Chicago/Turabian StyleWang, Zhanchao, Min Huang, Zixuan Zhang, Wenhao Zhao, Lulu Qian, Zhengyang Shi, Guangming Wang, Yixin Zhao, and Shaoshuai He. 2025. "Hyperspectral Imaging-Based Marine Oil Spills Remote Sensing System Design and Implementation" Remote Sensing 17, no. 17: 3099. https://doi.org/10.3390/rs17173099
APA StyleWang, Z., Huang, M., Zhang, Z., Zhao, W., Qian, L., Shi, Z., Wang, G., Zhao, Y., & He, S. (2025). Hyperspectral Imaging-Based Marine Oil Spills Remote Sensing System Design and Implementation. Remote Sensing, 17(17), 3099. https://doi.org/10.3390/rs17173099