Mitigating Integrity Risk in SBAS Positioning Using Enhanced IGG III Robust Estimation
Abstract
Highlights
- The improved IGG III robust estimation algorithm significantly enhances the user-end positioning performance of SBAS. In various scenarios, it greatly improves the positioning accuracy in both the horizontal and vertical directions, reduces the integrity risk, and enhances the availability.
- This method effectively suppresses the influence of outliers in the observed data, avoids overly conservative protection level (PL) estimation, and obtains more reasonable and reliable protection level values without affecting real-time performance.
- This research offers a powerful and computationally efficient solution that can enhance the service reliability of SBAS in challenging environments such as urban dynamics and UAV maneuvering flight, making it highly suitable for safety-critical applications in aviation and intelligent transportation.
- This algorithm has strong adaptability and stability in multiple practical scenarios, providing an important reference for the performance optimization and integrity guarantee of future SBAS user-end under poor data quality conditions.
Abstract
1. Introduction
2. Method
2.1. IGG III Variance Expansion Function
2.2. SBAS User-End Positioning and Protection Level Calculation
- (1)
- Enhanced positioning solution
- (2)
- Protection level solution
2.3. Improved SBAS User Positioning Algorithm Combined with IGG III Robust Estimation
3. Experiment and Result Analysis
3.1. Processing Strategy and Data Quality Analysis
3.2. Static Scenario
3.3. Urban Environment Vehicle Scenario
3.4. UAV Maneuvering Flight Scenario
3.5. Statistical Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; She, J.; Zhang, X.; Wang, Z.; Shao, B. A review on the development of satellite-based augmentation technology. Nav. Posit. Time 2025, 12, 35–49. [Google Scholar]
- Jing, C.; Bertolesi, E.; Huang, G.; Li, X.; Zhang, Q.; Zhai, W.; Liu, G.; Li, H. Predicting accelerometer baseline correction and non-divergent deformation velocity based on convolutional neural network (CNN) during GNSS Downgrade. IEEE Sens. J. 2025, 25, 11982–11994. [Google Scholar] [CrossRef]
- Krasuski, K.; Wierzbicki, D. Application the SBAS/EGNOS Corrections in UAV Positioning. Energies 2021, 14, 739. [Google Scholar] [CrossRef]
- Krasuski, K.; Ciećko, A.; Bakuła, M.; Grunwald, G. Accuracy Examination of the SDCM Augmentation System in Aerial Navigation. Energies 2022, 15, 7776. [Google Scholar] [CrossRef]
- Krasuski, K.; Bakuła, M.; Gołda, P.; Grunwald, G.; Gołda, P.; Mrozik, M.; Kozuba, J. Algorithms to improve unmanned aerial vehicle positioning accuracy using European Geostationary Navigation Overlay Service and System for Differential Corrections and Monitoring ionospheric corrections. Adv. Sci. Technol. Res. J. 2025, 19, 284–300. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Seok, H.; Lim, C.; Park, B. An Online SBAS Service to Improve Drone Navigation Performance in High-Elevation Masked Areas. Sensors 2020, 20, 3047. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jia, C.; Zhao, L.; Cheng, J.; Liu, J.; Ding, J. Real-Time Single Frequency Precise Point Positioning Using SBAS Corrections. Sensors 2016, 16, 1261. [Google Scholar] [CrossRef]
- Park, K.W.; Cho, M.G.; Park, C. An efficient positioning method for multi-GNSS with multi-SBAS. J. Position. Navig. Timing 2018, 7, 245–253. [Google Scholar]
- Li, K.; Wang, X.; Zheng, S.; Chen, S.; Gao, M.; Yang, P.; Jin, X.; Yang, J. IFree filter-based user positioning for satellite-based augmentation system. Int. J. Aeronaut. Space Sci. 2024, 25, 687–697. [Google Scholar] [CrossRef]
- Yang, Y.; Yao, Z.; Mao, Y.; Xu, T.; Wang, D. Resilient satellite-based PNT system design and key technologies. Chinese Sci. Bull. 2025, 55, 686–698. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H. Integrated BeiDou satellite-based augmentation system framework combining B2a and B1C services. GPS Sol. 2025, 29, 74. [Google Scholar] [CrossRef]
- Wang, E.; Wang, Y.; Yu, T.; Zhang, S.; Liu, L.; Jia, S.; Lei, H.; Chen, Y. Research on the Fusion Positioning Algorithm of BDSBAS and MSAS Based on Fully Connected Neural Network. J. Aeronaut. Astronaut. Aviat. 2025, 57, 207–222. [Google Scholar]
- Wang, K.; El-Mowafy, A.; Rizos, C.; Wang, J. SBAS DFMC service for road transport: Positioning and integrity monitoring with a new weighting model. J. Geod. 2021, 95, 29. [Google Scholar] [CrossRef]
- Zheng, S.; Gao, M.; Huang, Z.; Jin, X.; Li, K. Satellite integrity monitoring for satellite-based augmentation system: An improved covariance-based method. Satell. Navig. 2022, 3, 9. [Google Scholar] [CrossRef]
- Zheng, S.; Gao, M.; Li, K.; Jin, X.; Qin, J.; Xia, D. Potential performance of satellite-based augmentation system based on CMONOC in China. In Proceedings of the China Satellite Navigation Conference (CSNC2022), Beijing, China, 22–25 May 2022; pp. 231–243. [Google Scholar]
- Wang, Q.; Li, R.; Li, M. Research on the impact of the decrease in observation stations on SBAS. In Proceedings of the China Satellite Navigation Conference (CSNC 2022), Beijing, China, 22–25 May 2022; pp. 96–105. [Google Scholar]
- Shao, B.; Ding, Q.; Wu, X.B. Estimation method of SBAS dual-frequency range error integrity parameter. Satell. Navig. 2020, 1, 663–673. [Google Scholar] [CrossRef]
- Li, X.; Qiao, Y.; Wang, T. Analysis on the integrity simulation of dual-frequency WAAS. In Proceedings of the 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 25–26 March 2017; pp. 2078–2082. [Google Scholar]
- Zhang, Y.; Xiao, Z.; Li, P.; Tang, X.; Ou, G. Conservative Sensor Error Modeling Using a Modified Paired Overbound Method and its Application in Satellite-Based Augmentation Systems. Sensors 2019, 19, 2826. [Google Scholar] [CrossRef]
- Xin, J.; Wang, D.; Li, K. An Integrity Monitoring Method for Navigation Satellites Based on Multi-Source Observation Links. Remote Sens. 2024, 16, 4574. [Google Scholar] [CrossRef]
- Liu, C.; Liu, C.J.; Wang, S.; Xu, L.; Zhang, X. Two New Improvements of IGGⅢ Scheme. Bull. Surv. Mapp. 2016, 4, 54–57. [Google Scholar]
- Yang, Y. The Theory of Tolerance Estimation and Its Application; Bayi Publishing House: Beijing, China, 1993; pp. 107–110. [Google Scholar]
- She, H.; Huang, G.; Wang, L.; Lai, W.; Xie, S. Enhancing LEO orbit determination and prediction through constraints on atmospheric drag scale factor. GPS Sol. 2025, 29, 94. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Z.; Li, R. Computation of satellite clock-ephemeris augmentation parameters for dual-frequency multi-constellation satellite-based augmentation system. J. Syst. Eng. Electron. 2018, 29, 1111–1123. [Google Scholar]
- Wang, Z.; Wang, L.; Xie, W.; Huang, G.; Yang, W.; Tian, Y. DFMC SBAS service performance analysis of multi-GNSS based on BDS-3 in different regions. Meas. Sci. Technol. 2024, 35, 116310. [Google Scholar] [CrossRef]
- Krasuski, K.; Mrozik, M.; Wierzbicki, D.; Ćwiklak, J.; Kozuba, J.; Ciećko, A. Designation of the Quality of EGNOS+SDCM Satellite Positioning in the Approach to Landing Procedure. Appl. Sci. 2022, 12, 1335. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Y.; Shao, B.; Tang, C.; Zhou, S.; Hu, X.; Yang, J.; Liu, J.; Li, P. Research on performance improvement method of BDSBAS multi-GNSS service with DFMC protocol. Adv. Space Res. 2023, 72, 2283–2296. [Google Scholar] [CrossRef]
Relationship | Service State | Affect |
---|---|---|
PE ≤ PL ≤ AL | Available | None |
PL < PE ≤ AL | Misleading Information (MI) | Integrity risk |
AL < PL < | MI | Integrity risk |
PL L < | Hazardous MI (HMI) | Integrity risk (missing detections) |
PE L < | Unavailable | Alarm |
Item | Solution 1 | Solution 2 |
---|---|---|
Signal frequency | GPS L1&L2 | GPS L1&L2 |
Orbital correction | Broadcast ephemeris + DFMC SBAS | Broadcast ephemeris + DFMC SBAS |
Clock correction | Broadcast ephemeris + DFMC SBAS | Broadcast ephemeris + DFMC SBAS |
Ionospheric correction | Dual-frequency combination | Dual-frequency combination |
Tropospheric correction | UNB3m | UNB3m |
Elevation cut-off | 10° | 10° |
Robust | No | Yes |
Station ID | SNR (L1)/dB-Hz | SNR (L2)/dB-Hz | Multipath Error (L1)/m | Multipath Error (L2)/m | PDOP/m |
---|---|---|---|---|---|
CSH2 | 42.16 | 37.25 | 0.17 | 0.14 | 1.98 |
KAS2 | 43.29 | 36.34 | 0.35 | 0.25 | 2.44 |
FUZ2 | 42.42 | 36.47 | 0.16 | 0.14 | 2.2 |
CAR | 44.15 | 41.00 | 0.13 | 0.17 | 2.51 |
FLY | 41.59 | 38.83 | 0.17 | 0.31 | 4.13 |
ID | Solution | Horizontal | Vertical | ||||
---|---|---|---|---|---|---|---|
Availability | HMI | MI | Availability | HMI | MI | ||
CSH2 | Solution 1 | 99.07% | 0.001% | 0.93% | 98.38% | 0.007% | 0.27% |
Solution 2 | 100% | 0% | 0% | 98.55% | 0% | 0% | |
FUZ2 | Solution 1 | 98.82% | 0.003% | 0.86% | 98.13% | 0.02% | 0.38% |
Solution 2 | 99.66% | 0% | 0.002% | 98.27% | 0% | 0% | |
KAS2 | Solution 1 | 89.49% | 0.001% | 10.44% | 95.91% | 0.002% | 0.48% |
Solution 2 | 96.12% | 0% | 3.72% | 96.06% | 0% | 0% |
Station ID | Solution 1 | Horizontal | Vertical | ||
---|---|---|---|---|---|
STD/m | RMSE/m | STD/m | RMSE/m | ||
KAS2 | Solution 1 | 1.22 | 2.73 | 1.87 | 1.99 |
Solution 2 | 0.35 | 2.4 | 0.62 | 0.82 | |
M-estimators | 0.85 | 2.64 | 1.43 | 1.61 | |
FUZ2 | Solution 1 | 0.52 | 1.13 | 1.28 | 1.48 |
Solution 2 | 0.2 | 1.01 | 0.62 | 0.82 | |
M-estimators | 0.29 | 1.04 | 0.89 | 1.07 | |
CSH2 | Solution 1 | 0.42 | 1.08 | 0.95 | 1.04 |
Solution 2 | 0.14 | 0.99 | 0.3 | 0.43 | |
M-estimators | 0.14 | 0.99 | 0.3 | 0.46 |
Item | T | p | D |
---|---|---|---|
CAR-vertical-errors | 10.509 | <0.001 | 2.151 |
CAR-vertical-PL | 18.525 | <0.001 | 5.916 |
CAR-horizontal-errors | 0.477 | 0.633 | 0.542 |
CAR-horizontal-PL | 21.942 | <0.001 | 0.551 |
FLY-vertical-errors | 6.705 | <0.001 | 2.466 |
FLY-vertical-PL | 26.699 | <0.001 | 0.931 |
FLY-horizontal-errors | 2.084 | <0.037 | 1.244 |
FLY-horizontal-PL | 16.346 | <0.001 | 2.083 |
FUZ2-vertical-errors | 51.247 | <0.001 | 1.145 |
FUZ2-vertical-PL | 22.317 | <0.001 | 1.920 |
FUZ2-horizontal-errors | 5.282 | <0.001 | 0.498 |
FUZ2-horizontal-PL | −1.860 | 0.063 | 0.689 |
KAS2-vertical-errors | 22.743 | <0.001 | 1.811 |
KAS2-vertical-PL | 5.642 | <0.001 | 1.552 |
KAS2-horizontal-errors | 16.181 | <0.001 | 1.18 |
KAS2-horizontal-PL | 11.656 | <0.001 | 1.087 |
CSH2-vertical-errors | 35.629 | <0.001 | 0.933 |
CSH2-vertical-PL | 17.022 | <0.001 | 1.56 |
CSH2-horizontal-errors | 11.257 | <0.001 | 0.408 |
CSH2-horizontal-PL | 4.91 | <0.001 | 0.454 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; She, J.; Cui, B.; Wang, Z.; Yang, W.; Wang, Y. Mitigating Integrity Risk in SBAS Positioning Using Enhanced IGG III Robust Estimation. Remote Sens. 2025, 17, 3067. https://doi.org/10.3390/rs17173067
Wang L, She J, Cui B, Wang Z, Yang W, Wang Y. Mitigating Integrity Risk in SBAS Positioning Using Enhanced IGG III Robust Estimation. Remote Sensing. 2025; 17(17):3067. https://doi.org/10.3390/rs17173067
Chicago/Turabian StyleWang, Le, Jinbo She, Bobin Cui, Ziwei Wang, Weicong Yang, and Yimin Wang. 2025. "Mitigating Integrity Risk in SBAS Positioning Using Enhanced IGG III Robust Estimation" Remote Sensing 17, no. 17: 3067. https://doi.org/10.3390/rs17173067
APA StyleWang, L., She, J., Cui, B., Wang, Z., Yang, W., & Wang, Y. (2025). Mitigating Integrity Risk in SBAS Positioning Using Enhanced IGG III Robust Estimation. Remote Sensing, 17(17), 3067. https://doi.org/10.3390/rs17173067