Land Cover Change as a Critical Driver of Vegetation Restoration in Water-Scarce Northern China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methods
2.3.1. Hurst Exponent
2.3.2. Trend Analysis
2.3.3. F-Test
2.3.4. Land-Use Change Characteristics
Land-Use Change Indexes
Relationship Between Land-Use Change Characteristics and Vegetation Index
2.3.5. Statistical Analysis and One-Way ANOVA
3. Results
3.1. Vegetation Trend Analysis
3.1.1. Vegetation Coverage and NDVI Changes
3.1.2. Persistence of NDVI Change Trends
3.2. Land-Use Change
3.2.1. Land-Use Transition
3.2.2. Characteristic of Land-Use Change
3.3. The Relationship Between Land-Use and Vegetation
3.3.1. Correlation Between Land-Use Characteristic Indices and NDVI
3.3.2. Quantifying the Impact of Land-Use Characteristic Values on NDVI
3.3.3. Extent and Significance of Land-Use Change Impacts on Vegetation
4. Discussion
4.1. Challenge and Insight of Ecological Restoration Projects
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reynolds, J.F.; Stafford Smith, D.M.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.J.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Amiraslani, F.; Dragovich, D. Combating desertification in Iran over the last 50 years an overview of changing approaches. J. Environ. Manag. 2011, 92, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Moiseraela, P.; Mulale, K. Local perceptions, experiences and responses to climate variability and change in the desertification hotspot of Boteti, Botswana. South Afr. Geogr. J. 2025, 107, 1–21. [Google Scholar] [CrossRef]
- Phogole, B.; Sethusa, M.T.; Yessoufou, K. Policy and Land Degradation Are Neglected in the Desertification, Land Degradation, and Drought Research Landscape in South Africa: Evidence from a Systematic Review and Bibliometric Analysis. Land Degrad. Dev. 2025, 36, 4017–4030. [Google Scholar] [CrossRef]
- Chen, M.; Griffis, T.J.; Baker, J.; Wood, J.D.; Xiao, K. Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes. J. Geophys. Res.-Biogeosciences 2015, 120, 310–325. [Google Scholar] [CrossRef]
- Gelfand, I.; Zenone, T.; Jasrotia, P.; Chen, J.Q.; Hamilton, S.K.; Robertson, G.P. Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. Proc. Natl. Acad. Sci. USA 2011, 108, 13864–13869. [Google Scholar] [CrossRef]
- Yu, G.R.; Zhang, L.M.; Sun, X.M.; Fu, Y.L.; Wen, X.F.; Wang, Q.F.; Li, S.G.; Ren, C.Y.; Song, X.; Liu, Y.F.; et al. Environmental controls over carbon exchange of three forest ecosystems in eastern China. Glob. Change Biol. 2008, 14, 2555–2571. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Yin, R.S.; Yin, G.P.; Li, L.Y. Assessing China’s Ecological Restoration Programs: What’s Been Done and What Remains to Be Done? Environ. Manag. 2010, 45, 442–453. [Google Scholar] [CrossRef]
- Tian, H.J.; Cao, C.X.; Chen, W.; Bao, S.N.; Yang, B.; Myneni, R.B. Response of vegetation activity dynamic to climatic change and ecological restoration programs in Inner Mongolia from 2000 to 2012. Ecol. Eng. 2015, 82, 276–289. [Google Scholar] [CrossRef]
- Niu, Q.F.; Xiao, X.M.; Zhang, Y.; Qin, Y.W.; Dang, X.H.; Wang, J.; Zou, Z.H.; Doughty, R.B.; Brandt, M.; Tong, X.W.; et al. Ecological engineering projects increased vegetation cover, production, and biomass in semiarid and subhumid Northern China. Land Degrad. Dev. 2019, 30, 1620–1631. [Google Scholar] [CrossRef]
- Ma, H.; Lv, Y.; Li, H.X. Complexity of ecological restoration in China. Ecol. Eng. 2013, 52, 75–78. [Google Scholar] [CrossRef]
- Chen, L.D.; Huang, Z.L.; Gong, J.; Fu, B.J.; Huang, Y.L. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China. Catena 2007, 70, 200–208. [Google Scholar] [CrossRef]
- Chen, Y.H.; Li, X.B.; Su, W.; Li, Y. Simulating the optimal land-use pattern in the farming-pastoral transitional zone of Northern China. Comput. Environ. Urban Syst. 2008, 32, 407–414. [Google Scholar] [CrossRef]
- Zhou, D.C.; Zhao, S.Q.; Zhu, C. The Grain for Green Project induced land cover change in the Loess Plateau: A case study with Ansai County, Shanxi Province, China. Ecol. Indic. 2012, 23, 88–94. [Google Scholar] [CrossRef]
- Xu, H.J.; Wang, X.P.; Zhang, X.X. Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 390–402. [Google Scholar] [CrossRef]
- Leroux, L.; Begue, A.; Lo Seen, D.; Jolivot, A.; Kayitakire, F. Driving forces of recent vegetation changes in the Sahel: Lessons learned from regional and local level analyses. Remote Sens. Environ. 2017, 191, 38–54. [Google Scholar] [CrossRef]
- Li, S.S.; Yan, J.P.; Liu, X.Y.; Wan, J. Response of vegetation restoration to climate change and human activities in Shaanxi-Gansu-Ningxia Region. J. Geogr. Sci. 2013, 23, 98–112. [Google Scholar] [CrossRef]
- Zhang, G.L.; Dong, J.W.; Xiao, X.M.; Hu, Z.M.; Sheldon, S. Effectiveness of ecological restoration projects in Horqin Sandy Land, China based on SPOT-VGT NDVI data. Ecol. Eng. 2012, 38, 20–29. [Google Scholar] [CrossRef]
- Feng, X.M.; Fu, B.J.; Piao, S.; Wang, S.H.; Ciais, P.; Zeng, Z.Z.; Lu, Y.H.; Zeng, Y.; Li, Y.; Jiang, X.H.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K. Analysis of trends in the Sahelian ‘rain-use efficiency’ using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens. Environ. 2011, 115, 438–451. [Google Scholar] [CrossRef]
- Li, S.; Liang, W.; Fu, B.J.; Lu, Y.H.; Fu, S.Y.; Wang, S.; Su, H.M. Vegetation changes in recent large-scale ecological restoration projects and subsequent impact on water resources in China’s Loess Plateau. Sci. Total Environ. 2016, 569, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Eastman, J.R.; Sangermano, F.; Machado, E.A.; Rogan, J.; Anyamba, A. Global Trends in Seasonality of Normalized Difference Vegetation Index (NDVI), 1982–2011. Remote Sens. 2013, 5, 4799–4818. [Google Scholar] [CrossRef]
- Piao, S.L.; Wang, X.H.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.P.; Ciais, P.; Tommervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, A.G.; Dong, B. Changes in global vegetation activity and its driving factors during 1982–2013. Agric. For. Meteorol. 2018, 249, 198–209. [Google Scholar] [CrossRef]
- Feng, D.R.; Fu, M.C.; Sun, Y.Y.; Bao, W.K.; Zhang, M.; Zhang, Y.F.; Wu, J.J. How Large-Scale Anthropogenic Activities Influence Vegetation Cover Change in China? A Review. Forests 2021, 12, 320. [Google Scholar] [CrossRef]
- Ge, W.Y.; Deng, L.Q.; Wang, F.; Han, J.Q. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.C.; Huang, X.; Chen, X.X.; Liu, Z.J. Increased spatial heterogeneity in vegetation greenness due to vegetation greening in mainland China. Ecol. Indic. 2019, 99, 240–250. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, C.H.; Wang, Z.H. Response of Natural Vegetation to Climate in Dryland Ecosystems: A Comparative Study between Xinjiang and Arizona. Remote Sens. 2020, 12, 3567. [Google Scholar] [CrossRef]
- Zheng, K.Y.; Tan, L.S.; Sun, Y.W.; Wu, Y.J.; Duan, Z.; Xu, Y.; Gao, C. Impacts of climate change and anthropogenic activities on vegetation change: Evidence from typical areas in China. Ecol. Indic. 2021, 126, 107648. [Google Scholar] [CrossRef]
- Han, D.X.; Gao, C.Y.; Liu, H.X.; Yu, X.F.; Li, Y.H.; Cong, J.X.; Wang, G.P. Vegetation dynamics and its response to climate change during the past 2000 years along the Amur River Basin, Northeast China. Ecol. Indic. 2020, 117, 106577. [Google Scholar] [CrossRef]
- Kern, A.; Marjanovic, H.; Barcza, Z. Spring vegetation green-up dynamics in Central Europe based on 20-year long MODIS NDVI data. Agric. For. Meteorol. 2020, 287, 107969. [Google Scholar] [CrossRef]
- Linscheid, N.; Estupinan-Suarez, L.M.; Brenning, A.; Caryalhais, N.; Cremer, F.; Gans, F.; Rammig, A.; Reichstein, M.; Sierra, C.A.; Mahecha, M.D. Towards a global understanding of vegetation-climate dynamics at multiple timescales. Biogeosciences 2020, 17, 945–962. [Google Scholar] [CrossRef]
- Neigh, C.S.R.; Tucker, C.J.; Townshend, J.R.G. North American vegetation dynamics observed with multi-resolution satellite data. Remote Sens. Environ. 2008, 112, 1749–1772. [Google Scholar] [CrossRef]
- Wu, Z.T.; Wu, J.J.; Liu, J.H.; He, B.; Lei, T.J.; Wang, Q.F. Increasing terrestrial vegetation activity of ecological restoration program in the Beijing-Tianjin Sand Source Region of China. Ecol. Eng. 2013, 52, 37–50. [Google Scholar] [CrossRef]
- Abbas, G.; Ahmad, S.; Ahmad, A.; Nasim, W.; Fatima, Z.; Hussain, S.; Rehman, M.H.U.; Khan, M.A.; Hasanuzzaman, M.; Fahad, S.; et al. Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agric. For. Meteorol. 2017, 247, 42–55. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.J.; Zhu, J.T.; Liu, Y.J.; Zu, J.X.; Zhang, J. The Influences of Climate Change and Human Activities on Vegetation Dynamics in the Qinghai-Tibet Plateau. Remote Sens. 2016, 8, 876. [Google Scholar] [CrossRef]
- Chen, B.X.; Zhang, X.Z.; Tao, J.; Wu, J.S.; Wang, J.S.; Shi, P.L.; Zhang, Y.J.; Yu, C.Q. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189, 11–18. [Google Scholar] [CrossRef]
- Sun, W.Y.; Song, X.Y.; Mu, X.M.; Gao, P.; Wang, F.; Zhao, G.J. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209, 87–99. [Google Scholar] [CrossRef]
- Du, M.Y.; Kawashima, S.; Yonemura, S.; Zhang, X.Z.; Chen, S.B. Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Glob. Planet. Chang. 2004, 41, 241–249. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.L.; Zhang, M.Y.; Zhang, C.H. Impacts of climate change and human activities on vegetation cover in hilly southern China. Ecol. Eng. 2015, 81, 451–461. [Google Scholar] [CrossRef]
- Wang, S.A.; Fu, B.J.; Piao, S.L.; Lu, Y.H.; Ciais, P.; Feng, X.M.; Wang, Y.F. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Zhang, J.; Niu, J.M.; Bao, T.L.G.; Buyantuyev, A.; Zhang, Q.; Dong, J.J.; Zhang, X.F. Human induced dryland degradation in Ordos Plateau, China, revealed by multilevel statistical modeling of normalized difference vegetation index and rainfall time-series. J. Arid Land 2014, 6, 219–229. [Google Scholar] [CrossRef]
- Chen, T.; Tang, G.P.; Yuan, Y.; Guo, H.; Xu, Z.W.; Jiang, G.; Chen, X.H. Unraveling the relative impacts of climate change and human activities on grassland productivity in Central Asia over last three decades. Sci. Total Environ. 2020, 743, 140649. [Google Scholar] [CrossRef]
- Jin, Z.; You, Q.L.; Mu, M.; Sun, G.D.; Pepin, N. Fingerprints of Anthropogenic Influences on Vegetation Change Over the Tibetan Plateau from an Ecohydrological Diagnosis. Geophys. Res. Lett. 2020, 47, e2020GL087842. [Google Scholar] [CrossRef]
- Shi, Y.; Jin, N.; Ma, X.L.; Wu, B.Y.; He, Q.S.; Yue, C.; Yu, Q. Attribution of climate and human activities to vegetation change in China using machine learning techniques. Agric. For. Meteorol. 2020, 294, 108146. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, X.R.; Tang, Q. Human activity intensity of land surface: Concept, methods and application in China. J. Geogr. Sci. 2016, 26, 1349–1361. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Z.B.; Wang, L.Z.; Li, G.H.; Chang, L.; Li, Y.F. Vegetation Changes in Response to Climatic Factors and Human Activities in Jilin Province, China, 2000–2019. Sustainability 2021, 13, 8956. [Google Scholar] [CrossRef]
- Cao, S.X.; Chen, L.; Shankman, D.; Wang, C.M.; Wang, X.B.; Zhang, H. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Kalisa, W.; Igbawua, T.; Henchiri, M.; Ali, S.; Zhang, S.; Bai, Y.; Zhang, J.H. Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Sci. Rep. 2019, 9, 16865. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zheng, X. The prospects of de velopment of the Three- North Afforestation Program(TNAP): On the basis of the results of the 40- year con struction general assessment of the TNAP. Chin. J. Ecol. 2019, 38, 1600–1610. [Google Scholar] [CrossRef]
- Xia, Z.; Lue, P.; Ma, F.; Cao, M.; Yu, J. Quantifying dune migration patterns and influencing factors in the central Sahara Desert. Catena 2024, 235, 107686. [Google Scholar] [CrossRef]
- John, R.; Chen, J.; Kim, Y.; Ouyang, Z.-T.; Xiao, J.; Park, H.; Shao, C.; Zhang, Y.; Amarjargal, A.; Batkhshig, O.; et al. Differentiating anthropogenic modification and precipitation-driven change on vegetation productivity on the Mongolian Plateau. Landsc. Ecol. 2016, 31, 547–566. [Google Scholar] [CrossRef]
- Xiang, D.; Verbruggen, E.; Hu, Y.J.; Veresoglou, S.D.; Rillig, M.C.; Zhou, W.; Xu, T.L.; Li, H.; Hao, Z.P.; Chen, Y.L.; et al. Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China. New Phytol. 2014, 204, 968–978. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Hu, Z.M.; Li, S.G.; Guo, Q.; Liu, Z.J.; Zhang, L.M. Comparison of surface energy budgets and feedbacks to microclimate among different land use types in an agro-pastoral ecotone of northern China. Sci. Total Environ. 2017, 599, 891–898. [Google Scholar] [CrossRef]
- Yang, X.C.; Xu, B.; Jin, Y.X.; Qin, Z.H.; Ma, H.L.; Li, J.Y.; Zhao, F.; Chen, S.; Zhu, X.H. Remote sensing monitoring of grassland vegetation growth in the Beijing-Tianjin sandstorm source project area from 2000 to 2010. Ecol. Indic. 2015, 51, 244–251. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Luo, L.; Ren, C. Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 528–536. [Google Scholar] [CrossRef]
- Yan, F.; Wu, B.; Wang, Y. Estimating spatiotemporal patterns of aboveground biomass using Landsat TM and MODIS images in the Mu Us Sandy Land, China. Agric. For. Meteorol. 2015, 200, 119–128. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Yan, C.; Qi, Y. 1:100,000 desert (sand) distribution dataset in China. Natl. Tibet. Plateau Data Cent. 2013, 56, 301–310. [Google Scholar] [CrossRef]
- Momeni, M.; Migoya-Orué, Y. Solar activity and ionospheric variation: A comprehensive study using hurst exponent and probability density functions analysis. Adv. Space Res. 2025, 75, 7668–7683. [Google Scholar] [CrossRef]
- Borin, D. Hurst exponent: A method for characterizing dynamical traps. Phys. Rev. E 2024, 110, 064227. [Google Scholar] [CrossRef]
- Gutman, G.G. Vegetation Indexes from Avhrr—An Update and Future-Prospects. Remote Sens. Environ. 1991, 35, 121–136. [Google Scholar] [CrossRef]
- Foley, J.; Defries, R.; Asner, G.; Barford, C.; Bonan, G.; Carpenter, S.; Chapin Iii, F.S.; Coe, M.; Daily, G.; Gibbs, H.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Zika, M.; Erb, K.H. The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecol. Econ. 2009, 69, 310–318. [Google Scholar] [CrossRef]
- Landmann, T.; Dubovyk, O. Spatial analysis of human-induced vegetation productivity decline over eastern Africa using a decade (2001–2011) of medium resolution MODIS time-series data. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 76–82. [Google Scholar] [CrossRef]
- Zewdie, W.; Csaplovics, E. Identifying Categorical Land Use Transition and Land Degradation in Northwestern Drylands of Ethiopia. Remote Sens. 2016, 8, 408. [Google Scholar] [CrossRef]
- Hasler, N.; Werth, D.; Avissar, R. Effects of Tropical Deforestation on Global Hydroclimate: A Multimodel Ensemble Analysis. J. Clim. 2009, 22, 1124–1141. [Google Scholar] [CrossRef]
- Huang, C.C.; Zhang, M.L.; Zou, J.; Zhu, A.X.; Chen, X.; Mi, Y.; Wang, Y.H.; Yang, H.; Li, Y.M. Changes in land use, climate and the environment during a period of rapid economic development in Jiangsu Province, China. Sci. Total Environ. 2015, 536, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. On the importance of including vegetation dynamics in Budyko’s hydrological model. Hydrol. Earth Syst. Sci. 2007, 11, 983–995. [Google Scholar] [CrossRef]
- Cao, S.X.; Ma, H.; Yuan, W.P.; Wang, X. Interaction of ecological and social factors affects vegetation recovery in China. Biol. Conserv. 2014, 180, 270–277. [Google Scholar] [CrossRef]
- Xu, D.Y.; Kang, X.W.; Zhuang, D.F.; Pan, J.J. Multi-scale quantitative assessment of the relative roles of climate change and human activities in desertification—A case study of the Ordos Plateau, China. J. Arid. Environ. 2010, 74, 498–507. [Google Scholar] [CrossRef]
- Wilson, D.J.; Western, A.W.; Grayson, R.B. A terrain and data-based method for generating the spatial distribution of soil moisture. Adv. Water Resour. 2005, 28, 43–54. [Google Scholar] [CrossRef]
- Jia, Y.H.; Shao, M.A. Dynamics of deep soil moisture in response to vegetational restoration on the Loess Plateau of China. J. Hydrol. 2014, 519, 523–531. [Google Scholar] [CrossRef]
- Legates, D.R.; Mahmood, R.; Levia, D.F.; DeLiberty, T.L.; Quiring, S.M.; Houser, C.; Nelson, F.E. Soil moisture: A central and unifying theme in physical geography. Prog. Phys. Geogr.-Earth Environ. 2011, 35, 65–86. [Google Scholar] [CrossRef]
- Zhu, Z.C.; Piao, S.L.; Myneni, R.B.; Huang, M.T.; Zeng, Z.Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Piao, S.L.; Yin, G.D.; Tan, J.G.; Cheng, L.; Huang, M.T.; Li, Y.; Liu, R.G.; Mao, J.F.; Myneni, R.B.; Peng, S.S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Change Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef]
- Xu, C.G.; McDowell, N.G.; Fisher, R.A.; Wei, L.; Sevanto, S.; Christoffersen, B.O.; Weng, E.S.; Middleton, R.S. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Chang. 2019, 9, 948–953. [Google Scholar] [CrossRef]
- Li, A.; Wu, J.G.; Huang, J.H. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in inner Mongolia. Landsc. Ecol. 2012, 27, 969–982. [Google Scholar] [CrossRef]
- Liu, J.Y.; Kuang, W.H.; Zhang, Z.X.; Xu, X.L.; Qin, Y.W.; Ning, J.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Liu, J.Y.; Liu, M.L.; Tian, H.Q.; Zhuang, D.F.; Zhang, Z.X.; Zhang, W.; Tang, X.M.; Deng, X.Z. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.Y.; Kuang, W.H.; Xu, X.L.; Zhang, S.W.; Yan, C.Z.; Li, R.D.; Wu, S.X.; Hu, Y.F.; Du, G.M.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Liu, C.L.; Li, W.L.; Wang, W.Y.; Zhou, H.K.; Liang, T.G.; Hou, F.J.; Xu, J.; Xue, P.F. Quantitative spatial analysis of vegetation dynamics and potential driving factors in a typical alpine region on the northeastern Tibetan Plateau using the Google Earth Engine. Catena 2021, 206, 105500. [Google Scholar] [CrossRef]
Grade | Vegetation Coverage (%) | Surface Landscape Characteristics |
---|---|---|
High coverage (V) | ≥70 | Dense vegetation such as grasslands and forests |
Relatively high coverage (IV) | 50–70 | Patchy sandy areas, medium-to-high-yield grasslands, and forests |
Moderate coverage (III) | 30–50 | Fixed sand dunes, farmland, and forests |
Relatively low coverage (II) | 10–30 | Semi-mobile sand dunes, low-yield grasslands, and sparse forests |
Low coverage (I) | <10 | Mobile sand dunes, residential areas, water bodies, transportation routes, and construction sites |
Year | Percentage of Change Area (%) | MWSD | KEQS | KBQD | SNS | HSDKS |
---|---|---|---|---|---|---|
1990–2000 | Significantly increased | 55.08 | 42.57 | 56.25 | 29.88 | 42.75 |
Not significantly increased | 6.12 | 4.73 | 6.25 | 3.32 | 4.75 | |
Significantly decreased | 36.86 | 50.07 | 35.63 | 63.46 | 49.88 | |
Not significantly decreased | 1.94 | 2.64 | 1.88 | 3.34 | 2.63 | |
2000–2010 | Significantly increased | 78.03 | 54.54 | 64.98 | 79.83 | 44.73 |
Not significantly increased | 8.67 | 6.06 | 7.22 | 8.87 | 4.97 | |
Significantly decreased | 22.14 | 37.43 | 26.41 | 20.24 | 47.79 | |
Not significantly decreased | 1.17 | 1.97 | 1.39 | 1.07 | 2.52 | |
2010–2020 | Significantly increased | 85.77 | 82.26 | 85.59 | 77.04 | 74.34 |
Not significantly increased | 9.53 | 9.14 | 9.51 | 8.56 | 8.26 | |
Significantly decreased | 4.47 | 8.17 | 4.66 | 13.68 | 16.53 | |
Not significantly decreased | 0.24 | 0.43 | 0.25 | 0.72 | 0.87 | |
1990–2020 | Significantly increased | 89.46 | 73.89 | 85.86 | 80.91 | 58.86 |
Not significantly increased | 9.94 | 8.21 | 9.54 | 8.99 | 6.54 | |
Significantly decreased | 0.57 | 17.01 | 4.37 | 9.60 | 32.87 | |
Not significantly decreased | 0.03 | 0.90 | 0.23 | 0.51 | 1.73 |
Year | Changes in Area (km2) | KEQS | SNS | MWSD | KBQD | HSDKS |
---|---|---|---|---|---|---|
1990–2000 | Significantly increased | 53,202.36 | 15,391.99 | 44,899.92 | 49,063.75 | 112,755.75 |
Not significantly increased | 5911.37 | 1710.22 | 4988.88 | 5451.52 | 12,528.41 | |
Significantly decreased | 62,662.14 | 32,759.03 | 30,103.84 | 31,032.18 | 131,317.22 | |
Not significantly decreased | 3133.10 | 1637.95 | 1505.19 | 1551.60 | 6565.86 | |
2000–2010 | Significantly increased | 68,212.19 | 41,164.53 | 63,690.04 | 56,614.83 | 117,871.97 |
Not significantly increased | 7579.13 | 4573.83 | 7076.67 | 6290.53 | 13,096.88 | |
Significantly decreased | 46,818.42 | 5554.68 | 10,269.82 | 23,061.60 | 125,916.76 | |
Not significantly decreased | 2464.12 | 292.35 | 540.51 | 1213.76 | 6627.19 | |
2010–2020 | Significantly increased | 102,908.81 | 39,760.76 | 69,983.12 | 74,581.85 | 195,873.92 |
Not significantly increased | 11,434.31 | 4417.86 | 7775.90 | 8286.87 | 21,763.76 | |
Significantly decreased | 10,194.21 | 7036.43 | 3627.14 | 4096.41 | 43,581.37 | |
Not significantly decreased | 509.71 | 351.82 | 181.35 | 204.82 | 2179.06 | |
1990–2020 | Significantly increased | 92,471.76 | 41,731.10 | 73,000.96 | 74,885.22 | 155,016.24 |
Not significantly increased | 10,274.64 | 4636.78 | 8111.21 | 8320.58 | 17,224.02 | |
Significantly decreased | 21,211.10 | 4956.64 | 441.63 | 3776.19 | 86,708.92 | |
Not significantly decreased | 1116.37 | 260.87 | 23.24 | 198.74 | 4563.62 |
Class | R2 | Fitted Equation | p Value |
---|---|---|---|
C_NDVI | 0.615 | C_NDVI = 0.419 ∗ L − 0.042 ∗ R + 0.807 | 4.59 × 10−31 |
A_NDVI | 0.651 | A_NDVI = 0.492 ∗ L − 0.056 ∗ R + 0.860 | 7.13 × 10−34 |
Area | Class | R2 | Fitted Equation | p Value |
---|---|---|---|---|
MWSD | C_NDVI | 0.696 | C_NDVI = 0.761 ∗ L − 0.023 ∗ R + 1.023 | 1.87 × 10−7 |
A_NDVI | 0.616 | A_NDVI = 0.671 ∗ L − 0.023 ∗ R + 0.939 | 3.94 × 10−6 | |
KBQD | C_NDVI | 0.628 | C_NDVI = 0.970 ∗ L − 0.048 ∗ R +1.031 | 1.60 × 10−6 |
A_NDVI | 0.589 | A_NDVI = 0.902 ∗ L − 0.056 ∗ R + 1.025 | 6.20 × 10−6 | |
HSDKS | C_NDVI | 0.015 | C_NDVI = 0.704 ∗ L − 0.056 ∗ R + 0.603 | 8.22 × 10−1 |
A_NDVI | 0.031 | A_NDVI = 0.626 ∗ L + 0.206 ∗ R + 0.750 | 6.67 × 10−1 | |
KEQS | C_NDVI | 0.029 | C_NDVI = 0.936 ∗ L + 0.023 ∗ R + 1.157 | 6.68 × 10−1 |
A_NDVI | 0.049 | A_NDVI = 0.717 ∗ L + 0.800 ∗ R + 1.244 | 5.09 × 10−1 | |
SNS | C_NDVI | 0.338 | C_NDVI = −0.645 ∗ L + 0.0199 ∗ R + 2.599 | 3.84 × 10−3 |
A_NDVI | 0.376 | A_NDVI = −0.817 ∗ L − 0.005 ∗ R + 3.123 | 1.72 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, L.; Wang, Z.; He, F. Land Cover Change as a Critical Driver of Vegetation Restoration in Water-Scarce Northern China. Remote Sens. 2025, 17, 3010. https://doi.org/10.3390/rs17173010
Lan L, Wang Z, He F. Land Cover Change as a Critical Driver of Vegetation Restoration in Water-Scarce Northern China. Remote Sensing. 2025; 17(17):3010. https://doi.org/10.3390/rs17173010
Chicago/Turabian StyleLan, Lihua, Zhenbo Wang, and Fei He. 2025. "Land Cover Change as a Critical Driver of Vegetation Restoration in Water-Scarce Northern China" Remote Sensing 17, no. 17: 3010. https://doi.org/10.3390/rs17173010
APA StyleLan, L., Wang, Z., & He, F. (2025). Land Cover Change as a Critical Driver of Vegetation Restoration in Water-Scarce Northern China. Remote Sensing, 17(17), 3010. https://doi.org/10.3390/rs17173010