Improved Clutter Suppression and Detection of Moving Target with a Fully Polarimetric Radar
Abstract
1. Introduction
2. L-Band Fully Polarimetric Radar
3. Clutter Suppression Method
3.1. Optimal Polarization States
3.2. Optimal Scattering Characteristic Fusion
- (1)
- The similarity parameter between the target and a short thin cylinder is defined as
- (2)
- The similarity parameter between the target and a plate is defined as
- (3)
- The similarity parameter between the target and a dihedral corner is defined as
3.3. Comprehensive Clutter Suppression Processing Flow
4. OTSU Threshold Algorithm
5. Field Experiment and Results
5.1. Experimental Scene Setting
5.2. Clutter Suppression Performance Analysis
5.3. Detection Performance Analysis
5.4. Multi-Target Experimental Results
6. Discussion
6.1. The Effect of L-Band Fully Polarimetric Radar on Pedestrian Detection
6.2. The Effect of the Clutter Suppression Method on Radar Data
6.3. The Effect of Target Scattering Feature Simplification
6.4. Discussion on the Manual Initialization Step for Scattering Matrix Estimation
7. Conclusions
- (1)
- HH, HV, VH, and VV polarized radar echoes provide a richer amount of information.
- (2)
- The SCNR of the total power signal span of full-polarization echoes is higher than that of single-polarization echoes.
- (3)
- The proposed clutter suppression method combines the optimal polarization state of antennas and the target’s optimal scattering characteristics, which is able to reduce the non-stationary clutter and the echo generated by multipath effects, improving the SCNR and enhancing pedestrian detection performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FMCW | Frequency Modulated Continuous Wave |
RCS | Radar Cross Section |
SCNR | Signal-to-Clutter-Plus-Noise Ratio |
MTI | Moving Target Indication |
AMTI | Adaptive MTI |
LMS | Least Mean Square |
SFRAF | Sparse Fractional Ambiguity Function |
STAP | Space-Time Adaptive Processing |
KT-CFAR | Keystone Transform-Constant False Alarm Ratio |
SINR | Signal-to-Interference Plus Noise Ratio |
CAE | Convolutional Autoencoders |
RD | Range-Doppler |
CFAR | Constant False Alarm Ratio |
H | Horizontal |
V | Vertical |
CF | Comprehensive Function |
References
- Wachtel, D.; Rothmeier, T.; Bussche, T.v.d.; Huber, W.; Vossiek, M. Radar in the Rain: Understanding and Simulating Environmental Effects on ADAS Radar Sensors. In Proceedings of the 2024 IEEE Radar Conference (RadarConf24), Denver, CO, USA, 6–10 May 2024; pp. 1–6. [Google Scholar]
- Tavanti, E.; Rizik, A.; Fedeli, A.; Caviglia, D.D.; Randazzo, A. A Short-Range FMCW Radar-Based Approach for Multi-Target Human-Vehicle Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 2003816. [Google Scholar] [CrossRef]
- Sun, S.; Petropulu, A.P.; Poor, H.V. MIMO Radar for Advanced Driver-Assistance Systems and Autonomous Driving: Advantages and Challenges. IEEE Signal Process Mag. 2020, 37, 98–117. [Google Scholar] [CrossRef]
- Held, P.; Steinhauser, D.; Koch, A.; Brandmeier, T.; Schwarz, U.T. A Novel Approach for Model-Based Pedestrian Tracking Using Automotive Radar. IEEE Trans. Intell. Transp. Syst. 2022, 23, 7082–7095. [Google Scholar] [CrossRef]
- Ramchandani, M.; Sahu, S.P.; Dewangan, D.K. A Comparative Study in Pedestrian Detection for Autonomous Driving Systems. In Proceedings of the 2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development (OTCON), Raigarh, India, 8–10 February 2023; pp. 1–6. [Google Scholar]
- Steinhauser, D.; Held, P.; Thöresz, B.; Brandmeier, T. Towards Safe Autonomous Driving: Challenges of Pedestrian Detection in Rain with Automotive Radar. In Proceedings of the 2020 17th European Radar Conference (EuRAD), Utrecht, The Netherlands, 10–15 January 2021; pp. 409–412. [Google Scholar]
- Jeon, S.Y.; Kim, S.; Kim, J.; Kim, S.; Shin, S.; Kim, M.; Ka, M.H. W-Band FMCW MIMO Radar System for High-Resolution Multimode Imaging With Time- and Frequency-Division Multiplexing. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5042–5057. [Google Scholar] [CrossRef]
- Cui, H.; Dahnoun, N. High Precision Human Detection and Tracking Using Millimeter-Wave Radars. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 22–32. [Google Scholar] [CrossRef]
- Han, K.; Hong, S. Detection and Localization of Multiple Humans Based on Curve Length of I/Q Signal Trajectory Using MIMO FMCW Radar. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 413–416. [Google Scholar] [CrossRef]
- Sun, R.; Suzuki, K.; Owada, Y.; Takeda, S.; Umehira, M.; Wang, X.; Kuroda, H. A millimeter-wave automotive radar with high angular resolution for identification of closely spaced on-road obstacles. Sci. Rep. 2023, 13, 3233. [Google Scholar] [CrossRef]
- Duan, Z.; Wu, B.; Wang, Y.; Fang, Y.; Li, Y.; Wu, Y.; Zhang, T.; Zhu, C.; Dai, Y.; Sang, L.; et al. A 76–81 GHz 2×8 MIMO Radar Transceiver with Broadband Fast Chirp Generation and 16-Antenna-in-Package Virtual Array. IEEE J. Solid-St. Cir. 2023, 58, 3103–3112. [Google Scholar] [CrossRef]
- Manzoni, M.; Tebaldini, S.; Monti-Guarnieri, A.V.; Prati, C.M. Multipath in Automotive MIMO SAR Imaging. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5202612. [Google Scholar] [CrossRef]
- Balashova, D.M.; Burov, V.N.; Kuzin, A.A.; Mihaylov, A.D.; Myakinkov, A.V.; Fadeev, R.S.; Shabalin, S.A.; Fomina, K.S. Technique of beam forming for the radar of railway crossing control. AIP Conf. Proc. 2023, 2605, 020004. [Google Scholar] [CrossRef]
- Fang, X.; Li, J.; Zhang, Z.; Xiao, G. FMCW-MIMO Radar-Based Pedestrian Trajectory Tracking Under Low- Observable Environments. IEEE Sens. J. 2022, 22, 19675–19687. [Google Scholar] [CrossRef]
- Will, C.; Vaishnav, P.; Chakraborty, A.; Santra, A. Human Target Detection, Tracking, and Classification Using 24-GHz FMCW Radar. IEEE Sens. J. 2019, 19, 7283–7299. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Huang, D.; Fang, X.; Zhou, M.; Zhang, Y. MRPT: Millimeter-Wave Radar-Based Pedestrian Trajectory Tracking for Autonomous Urban Driving. IEEE Trans. Instrum. Meas. 2022, 71, 8000117. [Google Scholar] [CrossRef]
- Etinger, A.; Balal, N.; Litvak, B.; Einat, M.; Kapilevich, B.; Pinhasi, Y. Non-Imaging MM-Wave FMCW Sensor for Pedestrian Detection. IEEE Sens. J. 2014, 14, 1232–1237. [Google Scholar] [CrossRef]
- López-Valcárcel, L.A.; Sánchez, M.G.; Fioranelli, F.; Krasnov, O.A. An MTI-Like Approach for Interference Mitigation in FMCW Radar Systems. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 1985–2000. [Google Scholar] [CrossRef]
- Goncharenko, Y.V.; Farquharson, G.; Gorobets, V.; Gutnik, V.; Tsarin, Y. Adaptive moving target indication in a windblown clutter environment. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 2989–2997. [Google Scholar] [CrossRef]
- Jin, F.; Cao, S. Automotive Radar Interference Mitigation Using Adaptive Noise Canceller. IEEE Trans. Veh. Technol. 2019, 68, 3747–3754. [Google Scholar] [CrossRef]
- Chen, X.; Yu, X.; Huang, Y.; Guan, J. Adaptive Clutter Suppression and Detection Algorithm for Radar Maneuvering Target With High-Order Motions Via Sparse Fractional Ambiguity Function. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1515–1526. [Google Scholar] [CrossRef]
- Yu, J.; Krolik, J. MIMO multipath clutter mitigation for GMTI automotive radar in urban environments. In Proceedings of the IET International Conference on Radar Systems (Radar 2012), Glasgow, UK, 22–25 October 2012; pp. 1–5. [Google Scholar]
- Uysal, F.; Sanka, S. Mitigation of automotive radar interference. In Proceedings of the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 0405–0410. [Google Scholar]
- Correas-Serrano, A.; Gonzalez-Huici, M.A. Sparse Reconstruction of Chirplets for Automotive FMCW Radar Interference Mitigation. In Proceedings of the 2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Detroit, MI, USA, 15–16 April 2019; pp. 1–4. [Google Scholar]
- Wu, J.; Yang, S.; Lu, W.; Liu, Z. Iterative modified threshold method based on EMD for interference suppression in FMCW radars. IET Radar Sonar Navig. 2020, 14, 1219–1228. [Google Scholar] [CrossRef]
- Oliveira, M.L.L.d.; Bekooij, M.J.G. Deep Convolutional Autoencoder Applied for Noise Reduction in Range-Doppler Maps of FMCW Radars. In Proceedings of the 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA, 28–30 April 2020; pp. 630–635. [Google Scholar]
- Rock, J.; Toth, M.; Meissner, P.; Pernkopf, F. Deep Interference Mitigation and Denoising of Real-World FMCW Radar Signals. In Proceedings of the 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA, 28–30 April 2020; pp. 624–629. [Google Scholar]
- Mun, J.; Ha, S.; Lee, J. Automotive Radar Signal Interference Mitigation Using RNN with Self Attention. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 3802–3806. [Google Scholar]
- Tinti, A.; Alfageme, S.T.; Biarge, S.D.; Balcells-Ventura, J.; Pohl, N. Fully Polarimetric Automotive Radar: Proof of Concept. IEEE Trans. Radar Syst. 2024, 2, 645–660. [Google Scholar] [CrossRef]
- Raney, R.K. Radar Polarimetry: Classical Versus Quad-Pol Methodologies. IEEE Geosci. Remote Sens. Lett. 2024, 21, 4002204. [Google Scholar] [CrossRef]
- Aldhubaib, F.; Shuley, N.V. Radar Target Recognition Based on Modified Characteristic Polarization States. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 1921–1933. [Google Scholar] [CrossRef]
- Yang, J.; Peng, Y.-N.; Lin, S.-M. Similarity between two scattering matrices. Electron. Lett. 2001, 37, 193–194. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, H.; Yamaguchi, Y. GOPCE-Based Approach to Ship Detection. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1089–1093. [Google Scholar] [CrossRef]
- Zhang, C.; Mu, Y.; Xia, Z.; Jin, S.; Yue, F.; Liu, X.; Zhang, L.; Tian, Z.; Liu, Z.; Zhang, Y.; et al. Feature Extraction for Moving Targets Based on the Statistical Characteristics of Echo Amplitude with the L-Band Fully Polarimetric Radar. Remote Sens. 2023, 15, 80. [Google Scholar] [CrossRef]
- Huynen, J.R. Measurement of the target scattering matrix. Proc. IEEE 1965, 53, 936–946. [Google Scholar] [CrossRef]
- Guissard, A. Mueller and Kennaugh matrices in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1994, 32, 590–597. [Google Scholar] [CrossRef]
- Jian, Y.; Yamaguchi, Y.; Boerner, W.M.; Lin, S. Numerical methods for solving the optimal problem of contrast enhancement. IEEE Trans. Geosci. Remote Sens. 2000, 38, 965–971. [Google Scholar] [CrossRef]
- Ghojogh, B.; Karray, F.; Crowley, M. Eigenvalue and generalized eigenvalue problems: Tutoria. arXiv 2019, arXiv:1903.11240. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Xu, J.; Liu, P.; Wang, H.; Lian, J.; Li, B. Marine Radar Oil Spill Monitoring Technology Based on Dual-Threshold and C–V Level Set Methods. J. Indian Soc. Remote Sens. 2018, 46, 1949–1961. [Google Scholar] [CrossRef]
Pedestrian | Clutter | |
---|---|---|
Scattering matrix | ||
Similar parameter | ||
Optimal polarization states | ||
Optimal fused coefficients |
HH | HV | VH | VV | span | CF | |
---|---|---|---|---|---|---|
SCNR (dB) | — | — | 23 | 20 | 35 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Wen, Z.; Xue, C.; Cui, Z.; Hou, X.; Zhu, H.; Mu, Y.; Liu, Z.; Xia, Z.; Liu, X. Improved Clutter Suppression and Detection of Moving Target with a Fully Polarimetric Radar. Remote Sens. 2025, 17, 2975. https://doi.org/10.3390/rs17172975
Zhao Z, Wen Z, Xue C, Cui Z, Hou X, Zhu H, Mu Y, Liu Z, Xia Z, Liu X. Improved Clutter Suppression and Detection of Moving Target with a Fully Polarimetric Radar. Remote Sensing. 2025; 17(17):2975. https://doi.org/10.3390/rs17172975
Chicago/Turabian StyleZhao, Zhilong, Zhongkai Wen, Changhu Xue, Zhiying Cui, Xutao Hou, Haibin Zhu, Yaxin Mu, Zongqiang Liu, Zhenghuan Xia, and Xin Liu. 2025. "Improved Clutter Suppression and Detection of Moving Target with a Fully Polarimetric Radar" Remote Sensing 17, no. 17: 2975. https://doi.org/10.3390/rs17172975
APA StyleZhao, Z., Wen, Z., Xue, C., Cui, Z., Hou, X., Zhu, H., Mu, Y., Liu, Z., Xia, Z., & Liu, X. (2025). Improved Clutter Suppression and Detection of Moving Target with a Fully Polarimetric Radar. Remote Sensing, 17(17), 2975. https://doi.org/10.3390/rs17172975