A Missing Data Imputation Method for Waste Dump Landslide Deformation Monitoring Based on a Seq2Seq LSTM–Posterior Correction Model
Abstract
1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.2. InSAR Processing
3.3. Data Preprocessing
3.3.1. Uniformization of the Time Series Step Length
3.3.2. Trend Decomposition and Normalization
3.4. Imputation Model for Landslide Deformation Monitoring Data
3.4.1. Seq2Seq LSTM Module
3.4.2. Posterior Correction Module
3.5. Evaluation Metrics for Model Performance
4. Results
4.1. SBAS-InSAR Deformation Results
4.2. Missing Data Imputation in Landslide Deformation Monitoring
5. Discussion
5.1. Model Evaluation for Missing Data Imputation
5.2. Field Validation of Reconstruction Results
5.3. Limitations and Future Work
6. Conclusions
- (1)
- The Seq2Seq LSTM–Posterior Correction model first employs a residual-coupled Seq2Seq LSTM to extract nonlinear deformation features and impute the missing segments under continuity constraints. Subsequently, a posterior correction module based on deformation rate discrepancies was applied to align the imputed trend with GNSS-derived rates. This adjustment effectively reduced cumulative prediction errors over time and mitigated trend drift in the imputed sequences;
- (2)
- The SBAS–InSAR results and the imputed deformation data during the gap period exhibited strong consistency in their response to both heavy rainfall and freeze–thaw processes. The reconstructed long-term deformation series indicated a strong correlation between slope evolution and external climatic factors, particularly precipitation and freeze–thaw cycles. We infer that intense rainfall gradually increases pore water pressure through infiltration, thereby weakening the mechanical integrity of the dump slope landslide. Meanwhile, freeze–thaw processes induce the development of tensile cracks within the slope body, further accelerating deformation;
- (3)
- Compared with traditional imputation approaches, the proposed model achieved lower errors and higher trend consistency, further validated by field surveys and UAV-based optical modeling in May 2023, which confirmed high consistency between observed and imputed deformation;
- (4)
- To enhance the interpretability and applicability of the model, future research could incorporate explainable attention mechanisms to improve the model’s responsiveness to external factors and its ability to capture the stage-specific deformation characteristics of landslides, while parameter uncertainty and sensitivity analyses for the Posterior Correction module will also be explored when more data are available.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Date | P078 (mm) | P117 (mm) | P477 (mm) |
---|---|---|---|
30 April 2018 | −9.08625 | −8.8155 | −4.357 |
31 July 2018 | −19.15342 | −20.557 | −14.8835 |
31 October 2018 | −16.90858 | −35.10675 | −24.71433 |
31 January 2019 | 7.65175 | −25.08475 | −29.94925 |
30 April 2019 | 0.933 | −30.70267 | −42.58533 |
31 July 2019 | −0.568 | −37.97467 | −31.51033 |
31 October 2019 | −5.8745 | −38.1775 | −40.5775 |
31 January 2020 | −40.60367 | −57.877 | −39.899 |
30 April 2020 | −81.99587 | −96.74223 | −46.54307 |
31 July 2020 | −88.94933 | −110.66167 | −54.37 |
31 October 2020 | −119.02725 | −125.54475 | −65.25675 |
31 January 2021 | −133.01722 | −144.48028 | −61.17356 |
30 April 2021 | −155.04006 | −169.93448 | −54.76952 |
31 July 2021 | −151.6105 | −162.56767 | −57.44433 |
31 October 2021 | −158.48758 | −175.65467 | −64.32953 |
31 January 2022 | −167.56662 | −189.83428 | −69.2904 |
30 April 2022 | −151.99594 | −183.37887 | −71.32601 |
31 July 2022 | −154.26318 | −190.10727 | −79.95189 |
31 October 2022 | −142.47695 | −185.82915 | −81.39671 |
31 January 2023 | −155.81659 | −194.569 | −80.71175 |
30 April 2023 | −156.42469 | −241.52894 | −94.27434 |
17 May 2023 | −159.03469 | −3280.81894 | −37.02434 |
References
- Wang, Q.; Xing, A.; Xu, X.; Zhou, Y.; Yang, Q.; Song, H.; Peng, J.; Zhai, L.; Bilal, M.; Liu, Y. Formation mechanism and dynamic process of open-pit coal mine landslides: A case study of the Xinjing landslide in Inner Mongolia, China. Landslides 2024, 21, 541–556. [Google Scholar] [CrossRef]
- Huertas, J.I.; Huertas, M.E.; Izquierdo, S.; González, E.D. Air quality impact assessment of multiple open pit coal mines in northern Colombia. J. Environ. Manag. 2012, 93, 121–129. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Y.; Zhao, F.; Wang, T.; Zhang, K.; Fan, H.; Zhou, D.; Zhang, L.; Yan, S.; Diao, X. Monitoring and analysis of the collapse at Xinjing Open-Pit Mine, Inner Mongolia, China, using multi-source remote sensing. Remote Sens. 2024, 16, 993. [Google Scholar] [CrossRef]
- Zhou, C.; Cao, Y.; Yin, K.; Intrieri, E.; Catani, F.; Wu, L. Characteristic comparison of seepage-driven and buoyancy-driven landslides in Three Gorges Reservoir area, China. Eng. Geol. 2022, 301, 106590. [Google Scholar] [CrossRef]
- Jia, W.; Wang, Z. Landslide activity characteristics and stability analysis based on high-resolution remote sensing image: A case study of Dongmiaojia landslide. Remote Sens. Land Resour. 2019, 31, 174–181. [Google Scholar]
- Ju, L.-Y.; Xiao, T.; He, J.; Xu, W.-F.; Xiao, S.-H.; Zhang, L.-M. A simulation-enabled slope digital twin for real-time assessment of rain-induced landslides. Eng. Geol. 2025, 353, 108116. [Google Scholar] [CrossRef]
- Cao, C.; Zhu, K.; Song, T.; Bai, J.; Zhang, W.; Chen, J.; Song, S. Comparative study on potential landslide identification with ALOS-2 and sentinel-1A data in heavy forest reach, upstream of the Jinsha River. Remote Sens. 2022, 14, 1962. [Google Scholar] [CrossRef]
- Zhu, K.; Xu, P.; Cao, C.; Zheng, L.; Liu, Y.; Dong, X. Preliminary identification of geological hazards from Songpinggou to Feihong in Mao County along the Minjiang River using SBAS-InSAR technique integrated multiple spatial analysis methods. Sustainability 2021, 13, 1017. [Google Scholar] [CrossRef]
- Cao, C.; Zhu, K.; Xu, P.; Shan, B.; Yang, G.; Song, S. Refined landslide susceptibility analysis based on InSAR technology and UAV multi-source data. J. Clean. Prod. 2022, 368, 133146. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, H.; Chen, J.; Lu, C.; Li, T.; Han, B.; Zhao, Z.; Wang, J.; Chen, J. Identification and thermal characteristics of linear discontinuities on a high-steep slope using UAV with thermal infrared imager. Int. J. Rock Mech. Min. Sci. 2025, 186, 106025. [Google Scholar] [CrossRef]
- Bozzano, F.; Cipriani, I.; Mazzanti, P.; Prestininzi, A. Displacement patterns of a landslide affected by human activities: Insights from ground-based InSAR monitoring. Nat. Hazards 2011, 59, 1377–1396. [Google Scholar] [CrossRef]
- Béjar-Pizarro, M.; Ezquerro, P.; Herrera, G.; Tomás, R.; Guardiola-Albert, C.; Ruiz Hernández, J.M.; Fernández Merodo, J.A.; Marchamalo, M.; Martínez, R. Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain. J. Hydrol. 2017, 547, 678–689. [Google Scholar] [CrossRef]
- Xie, W.; Yang, J.; Li, Y.; Lei, J.; Zhong, J.; Li, J. Discriminative Feature Learning Constrained Unsupervised Network for Cloud Detection in Remote Sensing Imagery. Remote Sens. 2020, 12, 456. [Google Scholar] [CrossRef]
- Tsironi, V.; Ganas, A.; Karamitros, I.; Efstathiou, E.; Koukouvelas, I.; Sokos, E. Kinematics of active landslides in Achaia (Peloponnese, Greece) through InSAR time series analysis and relation to rainfall patterns. Remote Sens. 2022, 14, 844. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, W.; Lu, C.; Zheng, Y.; Liu, H.; Li, W.; Yin, H.; Wang, J.; Wang, Y. Evolution and migration patterns of sediments in an earthquake-affected catchment in Wenchuan, Sichuan Province, China. Catena 2025, 249, 108712. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geod. Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Moretto, S.; Bozzano, F.; Mazzanti, P. The role of satellite InSAR for landslide forecasting: Limitations and openings. Remote Sens. 2021, 13, 3735. [Google Scholar] [CrossRef]
- Höser, T. Analysing the Capabilities and Limitations of InSAR Using Sentinel-1 Data for Landslide Detection and Monitoring. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2018. [Google Scholar]
- Hippert-Ferrer, A.; Yan, Y.; Bolon, P. EM-EOF: Gap-filling in incomplete SAR displacement time series. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5794–5811. [Google Scholar] [CrossRef]
- Appel, M. Efficient data-driven gap filling of satellite image time series using deep neural networks with partial convolutions. Artif. Intell. Earth Syst. 2024, 3, 220055. [Google Scholar] [CrossRef]
- Jancevičius, J. Enhancing land use classification with hybrid machine learning and satellite imagery. New Trends Comput. Sci. 2025, 3, 1–17. [Google Scholar] [CrossRef]
- Lepot, M.; Aubin, J.-B.; Clemens, F.H. Interpolation in time series: An introductive overview of existing methods, their performance criteria and uncertainty assessment. Water 2017, 9, 796. [Google Scholar] [CrossRef]
- Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. 2017, 11, 042609. [Google Scholar] [CrossRef]
- Borovykh, A.; Bohte, S.; Oosterlee, C.W. Conditional time series forecasting with convolutional neural networks. arXiv 2017, arXiv:1703.04691. [Google Scholar]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar] [CrossRef]
- Prater, R.; Hanne, T.; Dornberger, R. Generalized Performance of LSTM in Time-Series Forecasting. Appl. Artif. Intell. 2024, 38, 2377510. [Google Scholar] [CrossRef]
- Kim, T.; Sharda, S.; Zhou, X.; Pendyala, R.M. A stepwise interpretable machine learning framework using linear regression (LR) and long short-term memory (LSTM): City-wide demand-side prediction of yellow taxi and for-hire vehicle (FHV) service. Transp. Res. Part C Emerg. Technol. 2020, 120, 102786. [Google Scholar] [CrossRef]
- Buratto, W.G.; Muniz, R.N.; Nied, A.; González, G.V. Seq2Seq-LSTM with attention for electricity load forecasting in Brazil. IEEE Access 2024, 12, 30020–30029. [Google Scholar] [CrossRef]
- Xiang, Z.; Yan, J.; Demir, I. A rainfall-runoff model with LSTM-based sequence-to-sequence learning. Water Resour. Res. 2020, 56, e2019WR025326. [Google Scholar] [CrossRef]
- Masood, Z.; Gantassi, R.; Choi, Y. A multi-step time-series clustering-based Seq2Seq LSTM learning for a single household electricity load forecasting. Energies 2022, 15, 2623. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Cao, C.; Zhang, W.; Zhu, K.; Bai, J.; Wu, C. Enhancing long-term prediction of non-homogeneous landslides incorporating spatiotemporal graph convolutional networks and InSAR. Eng. Geol. 2025, 347, 107917. [Google Scholar] [CrossRef]
- Du, W. A Deep Learning Model to Impute Missing Data in Time Series. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2021. [Google Scholar]
- Stefenon, S.F.; Seman, L.O.; Aquino, L.S.; dos Santos Coelho, L. Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants. Energy 2023, 274, 127350. [Google Scholar] [CrossRef]
- Li, M.; Ren, Q.; Li, M.; Qi, Z.; Tan, D.; Wang, H. Multivariate probabilistic prediction of dam displacement behaviour using extended Seq2Seq learning and adaptive kernel density estimation. Adv. Eng. Inform. 2025, 65, 103343. [Google Scholar] [CrossRef]
- Sun, G.; Zhao, Y.; Qi, X. Sequence to sequence architecture based on hybrid LSTM global and local encoders approach for meteorological factors forecasting. Sci. Rep. 2025, 15, 22753. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.; Han, D.; Im, J.; Sung, T.; Kim, Y.J. Deep learning-based gap filling for near real-time seamless daily global sea surface salinity using satellite observations. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104029. [Google Scholar] [CrossRef]
- Casolaro, A.; Capone, V.; Iannuzzo, G.; Camastra, F. Deep learning for time series forecasting: Advances and open problems. Information 2023, 14, 598. [Google Scholar] [CrossRef]
- Wen, Q.; Chen, W.; Sun, L.; Zhang, Z.; Wang, L.; Jin, R.; Tan, T. Onenet: Enhancing time series forecasting models under concept drift by online ensembling. Adv. Neural Inf. Process. Syst. 2023, 36, 69949–69980. [Google Scholar]
- Cao, H.; Leng, H.; Zhao, J.; Xu, X.; Yang, J.; Li, B.; Zhou, Y.; Huang, L. Exploration of Deep-Learning-Based Error-Correction Methods for Meteorological Remote-Sensing Data: A Case Study of Atmospheric Motion Vectors. Remote Sens. 2024, 16, 3522. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, J.; Meng, J. Difference attention based error correction LSTM model for time series prediction. J. Phys. Conf. Ser. 2020, 1550, 032121. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2003, 40, 2375–2383. [Google Scholar] [CrossRef]
- Shan, B.; Qi, J.; Tian, W.; Zhu, K.; Jin, T.; Yang, Q.; An, X.; Yang, G.; Hu, Q.; Cao, C. Early Identification of Geological Hazards Along the Power Transmission Line in Weinan Based on SBAS-InSAR. Appl. Sci. 2025, 15, 920. [Google Scholar] [CrossRef]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; p. 27. [Google Scholar]
- Lamb, A.M.; ALIAS PARTH GOYAL, A.G.; Zhang, Y.; Zhang, S.; Courville, A.C.; Bengio, Y. Professor forcing: A new algorithm for training recurrent networks. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; p. 29. [Google Scholar]
- Petley, D.N.; Bulmer, M.H.; Murphy, W. Patterns of movement in rotational and translational landslides. Geology 2002, 30, 719–722. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Gao, G.; Wang, P.; Hou, Z.; Jiao, Q. Analysis of the instability conditions and failure mode of a special type of translational landslide using long-term monitoring data: A case study of the Wobaoshi landslide (in Bazhong, China). Nat. Hazards Earth Syst. Sci. 2020, 20, 1305–1319. [Google Scholar] [CrossRef]
- Xin, P.; Kang, X.; Wu, W.; Scaringi, G.; Wang, X.; Wu, Q. Centrifuge modelling of a roto-translational landslide in stiff clay formation. Eng. Geol. 2025, 349, 107964. [Google Scholar] [CrossRef]
- Yang, J.; Wu, G.; Jiao, J.; Dyck, M.; He, H. Freeze-thaw induced landslides on grasslands in cold regions. Catena 2022, 219, 106650. [Google Scholar] [CrossRef]
- Wang, G.; Sassa, K. Pore-pressure generation and movement of rainfall-induced landslides: Effects of grain size and fine-particle content. Eng. Geol. 2003, 69, 109–125. [Google Scholar] [CrossRef]
- Pelascini, L.; Steer, P.; Mouyen, M.; Longuevergne, L. Finite-hillslope analysis of landslides triggered by excess pore water pressure: The roles of atmospheric pressure and rainfall infiltration during typhoons. Nat. Hazards Earth Syst. Sci. 2022, 22, 3125–3141. [Google Scholar] [CrossRef]
- Li, T.; Zhang, L.; Gong, W.; Tang, H.; Jiang, R. Initiation mechanism of landslides in cold regions: Role of freeze-thaw cycles. Int. J. Rock Mech. Min. Sci. 2024, 183, 105906. [Google Scholar] [CrossRef]
- Chen, T.; Shu, J.; Han, L.; Tovele, G.S.; Li, B. Landslide mechanism and stability of an open-pit slope: The Manglai open-pit coal mine. Front. Earth Sci. 2023, 10, 1038499. [Google Scholar] [CrossRef]
- Hill, P.; Biggs, J.; Ponce-López, V.; Bull, D. Time-series prediction approaches to forecasting deformation in Sentinel-1 INSAR data. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020176. [Google Scholar] [CrossRef]
- Guerriero, L.; Prinzi, E.P.; Calcaterra, D.; Ciarcia, S.; Di Martire, D.; Guadagno, F.M.; Ruzza, G.; Revellino, P. Kinematics and geologic control of the deep-seated landslide affecting the historic center of Buonalbergo, southern Italy. Geomorphology 2021, 394, 107961. [Google Scholar] [CrossRef]
- Crippa, C.; Valbuzzi, E.; Frattini, P.; Crosta, G.B.; Spreafico, M.C.; Agliardi, F. Semi-automated regional classification of the style of activity of slow rock-slope deformations using PS InSAR and SqueeSAR velocity data. Landslides 2021, 18, 2445–2463. [Google Scholar] [CrossRef]
- Zhou, C.; Ye, M.; Xia, Z.; Wang, W.; Luo, C.; Muller, J.-P. An interpretable attention-based deep learning method for landslide prediction based on multi-temporal InSAR time series: A case study of Xinpu landslide in the TGRA. Remote Sens. Environ. 2025, 318, 114580. [Google Scholar] [CrossRef]
Hyperparameters | Parameter |
---|---|
LSTM hidden size | 128 |
Number of LSTM layers | 2 |
Batch size | 32 |
Loss function | MSE + 0.5 × continuity loss |
Optimizer | AdamW |
Initial learning rate | 1 × 10−4 |
Weight decay | 1 × 10−4 |
Teacher forcing (init/min/decay) | 0.8/0.01/0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, T.; Cao, C.; Li, M.; Zhu, K.; Jing, Y.; Wu, C.; An, X.; Bai, J. A Missing Data Imputation Method for Waste Dump Landslide Deformation Monitoring Based on a Seq2Seq LSTM–Posterior Correction Model. Remote Sens. 2025, 17, 2962. https://doi.org/10.3390/rs17172962
Jin T, Cao C, Li M, Zhu K, Jing Y, Wu C, An X, Bai J. A Missing Data Imputation Method for Waste Dump Landslide Deformation Monitoring Based on a Seq2Seq LSTM–Posterior Correction Model. Remote Sensing. 2025; 17(17):2962. https://doi.org/10.3390/rs17172962
Chicago/Turabian StyleJin, Tie, Chen Cao, Ming Li, Kuanxing Zhu, Yaxuan Jing, Chenyang Wu, Xiguan An, and Ji Bai. 2025. "A Missing Data Imputation Method for Waste Dump Landslide Deformation Monitoring Based on a Seq2Seq LSTM–Posterior Correction Model" Remote Sensing 17, no. 17: 2962. https://doi.org/10.3390/rs17172962
APA StyleJin, T., Cao, C., Li, M., Zhu, K., Jing, Y., Wu, C., An, X., & Bai, J. (2025). A Missing Data Imputation Method for Waste Dump Landslide Deformation Monitoring Based on a Seq2Seq LSTM–Posterior Correction Model. Remote Sensing, 17(17), 2962. https://doi.org/10.3390/rs17172962