SLD-YOLO: A Lightweight Satellite Component Detection Algorithm Based on Multi-Scale Feature Fusion and Attention Mechanism
Abstract
1. Introduction
- Targeting the practical requirements of satellite component detection in space environments, this paper conducted grayscale preprocessing and fine-grained annotation work for five target categories based on the currently largest and most comprehensive public dataset UESD [28] in this field, further improving the dataset’s adaptability and practicality in real application scenarios.
- To enhance model operational efficiency, this paper optimized the backbone network structure of YOLO11s, proposing a novel lightweight backbone network RLNet(Reparameterization Lightweight Network) . This network improves detection accuracy while reducing model computational complexity.
- Considering the characteristic of large target scale variations in satellite images, this paper innovatively proposes a multi-scale feature fusion module CSP-HSF (Cross Stage Partial - Hybrid Scale Fusion). This module effectively enhances the model’s perception capability for multi-scale targets through channel division and multi-scale convolution fusion strategies. Additionally, we employ PSConv (Pinwheel-Shaped Convolution) [29] as the downsampling operation to further compress model scale while ensuring feature extraction quality.
- We introduce a lightweight attention mechanism SimAM [30] in the detection head, which can enhance key feature representation capabilities without additional computational costs, improving the model’s overall detection performance.
2. Methods
2.1. The YOLO11 Baseline Framework Introduction
2.2. The Improved SLD-YOLO Network Design
- RLNet is adopted as the backbone network to reduce model complexity.
- CSP-HSF modules are integrated into the neck for enhanced feature fusion.
- PSConv replaces traditional downsampling operations to better preserve features.
- SimAM attention is applied in the detection head to boost feature discrimination.
2.2.1. Improvement of the Backbone Network
2.2.2. Improvement of the C3K2 Module
2.2.3. Modified Downsampling Operation
2.2.4. Enhanced Detection Head with SimAM Attention
3. Experimental Details
3.1. Dataset Preparation
3.2. Dataset Processing
3.3. Experimental Environment
3.4. Experimental Evaluation Criteria
4. Results and Analysis
4.1. Ablation Experiment Analysis
4.2. Backbone Network Comparison Analysis
4.3. Mainstream Object Detection Model Performance Comparison Analysis
4.4. Detection Effect Visualization Analysis
4.5. Robustness Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giordani, M.; Zorzi, M. Non-terrestrial networks in the 6G era: Challenges and opportunities. IEEE Netw. 2020, 35, 244–251. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)—Achievements, prospects and challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- Schmit, T.; Griffith, P.; Gunshor, M.; Daniels, J.; Goodman, S.; Lebair, W. A closer look at the ABI on the goes-r series. Bull. Am. Meteorol. Soc. 2017, 98, 681–698. [Google Scholar] [CrossRef]
- Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the free and open Landsat data policy. Remote Sens. Environ. 2019, 224, 382–385. [Google Scholar] [CrossRef]
- Venkatesan, A.; Lowenthal, J.; Prem, P.; Vidaurri, M. The impact of satellite constellations on space as an ancestral global commons. Nat. Astron. 2020, 4, 1043–1048. [Google Scholar] [CrossRef]
- Davis, J.P.; Mayberry, J.P.; Penn, J.P. On-orbit servicing: Inspection repair refuel upgrade and assembly of satellites in space. In The Aerospace Corporation, Report; The Aerospace Corporation: Chantilly, VA, USA, 2019; Volume 25. [Google Scholar]
- Buckelew, R.; Catalanello, E.; Scacchioli, A. Control of Satellites with Onboard Robotic Manipulators. Aresty Rutgers Undergrad. Res. J. 2021, 1. [Google Scholar] [CrossRef]
- Peng, J.; Xu, W.; Yuan, H. An efficient pose measurement method of a space non-cooperative target based on stereo vision. IEEE Access 2017, 5, 22344–22362. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6, 679–698. [Google Scholar] [CrossRef]
- Ballard, D.H. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 1981, 13, 111–122. [Google Scholar] [CrossRef]
- Cai, J.; Huang, P.; Chen, L.; Zhang, B. A fast detection method of arbitrary triangles for Tethered Space Robot. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 120–125. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gao, J.; Zhang, K. R-CNN-Based Satellite Components Detection in Optical Images. Int. J. Aerosp. Eng. 2020, 2020, 8816187. [Google Scholar] [CrossRef]
- Cao, Y.; Cheng, X.; Mu, J.; Li, D.; Han, F. Detection method based on image enhancement and an improved faster R-CNN for failed satellite components. IEEE Trans. Instrum. Meas. 2023, 72, 5005213. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. arXiv 2016, arXiv:1612.08242. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar] [CrossRef]
- Jocher, G. ultralytics/yolov5: v7.0; YOLOv5 by Ultralytics; Zenodo: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Jocher, G.; Qiu, J.; Chaurasia, A. Ultralytics YOLO, Version 8.0.0; Github: San Francisco, CA, USA, 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 20 August 2025).
- Wang, C.Y.; Yeh, I.H.; Mark Liao, H.Y. Yolov9: Learning what you want to learn using programmable gradient information. In European Conference on Computer Vision; Springer: Milan, Italy, 2024; pp. 1–21. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J. Yolov10: Real-time end-to-end object detection. Adv. Neural Inf. Process. Syst. 2024, 37, 107984–108011. [Google Scholar]
- Jocher, G.; Qiu, J.; Chaurasia, A. Ultralytics YOLO, Version 8.3.9; Github: San Francisco, CA, USA, 2024. Available online: https://github.com/ultralytics/ultralytics (accessed on 20 August 2025).
- Mahendrakar, T.; White, R.T.; Wilde, M.; Kish, B.; Silver, I. Real-time satellite component recognition with YOLO-V5. In Proceedings of the Small Satellite Conference, Virtual, 7–12 August 2021; Volume 4558. [Google Scholar]
- Li, C.; Zhao, G.; Gu, D.; Wang, Z. Improved lightweight YOLOv5 using attention mechanism for satellite components recognition. IEEE Sens. J. 2022, 23, 514–526. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, W.; Li, J.; Liu, R.; Xu, Y.; Chen, S.; Fang, Z.; Zhao, F. LTSCD-YOLO: A Lightweight Algorithm for Detecting Typical Satellite Components Based on Improved YOLOv8. Remote Sens. 2024, 16, 3101. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhong, R.; Cui, L. Intelligent recognition of spacecraft components from photorealistic images based on Unreal Engine 4. Adv. Space Res. 2023, 71, 3761–3774. [Google Scholar] [CrossRef]
- Yang, J.; Liu, S.; Wu, J.; Su, X.; Hai, N.; Huang, X. Pinwheel-shaped convolution and scale-based dynamic loss for infrared small target detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Philadelphia, PA, USA, 25 February–4 March 2025; Volume 39, pp. 9202–9210. [Google Scholar]
- Yang, L.; Zhang, R.Y.; Li, L.; Xie, X. Simam: A simple, parameter-free attention module for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 11863–11874. [Google Scholar]
- Zhao, Y.; Lv, W.; Xu, S.; Wei, J.; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. Detrs beat yolos on real-time object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–21 June 2024; pp. 16965–16974. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11534–11542. [Google Scholar]
- Liu, X.; Peng, H.; Zheng, N.; Yang, Y.; Hu, H.; Yuan, Y. Efficientvit: Memory efficient vision transformer with cascaded group attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 14420–14430. [Google Scholar]
- Chen, J.; Kao, S.h.; He, H.; Zhuo, W.; Wen, S.; Lee, C.H.; Chan, S.H.G. Run, don’t walk: Chasing higher FLOPS for faster neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 12021–12031. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. In Proceedings of the Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer: Cham, Switzerland, 2020; pp. 213–229. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9627–9636. [Google Scholar]
Label | Panel | Antenna | Instrument | Thruster | Opticpayload |
---|---|---|---|---|---|
Quantity | 16,040 | 6105 | 9549 | 2858 | 1460 |
Parameter | Environment Configuration |
---|---|
Operating System | Ubuntu 22.04.3 |
CPU | AMD EPYC 7K62 48-Core Processor |
GPU | GTX 4090 24G |
Memory | 100G |
Environment Version | Pytorch 2.2.2 |
IDE | VS Code 1.90.2 |
Group | RLNet | CSP-HSF | PSConv | simAM | mAP50/% | mAP50:95/% | GFLOPs/G | Parameters/M | Size/MB |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 85.22 | 61.53 | 21.3 | 9.41 | 18.3 |
2 | √ | - | - | - | 85.86 | 61.91 | 17.1 | 7.27 | 14.3 |
3 | - | √ | - | - | 86.19 | 62.62 | 21.5 | 9.40 | 18.3 |
4 | - | - | √ | - | 86.09 | 62.31 | 21.1 | 9.13 | 17.8 |
5 | - | - | - | √ | 85.50 | 62.05 | 21.3 | 9.41 | 18.3 |
6 | √ | - | √ | - | 86.64 | 62.73 | 16.8 | 6.85 | 13.6 |
7 | √ | - | - | √ | 86.51 | 62.41 | 17.0 | 7.13 | 14.1 |
8 | √ | √ | - | - | 86.76 | 62.95 | 17.3 | 7.26 | 14.3 |
9 | √ | √ | √ | - | 86.92 | 63.02 | 17.1 | 6.97 | 13.8 |
10 | √ | √ | √ | √ | 87.44 | 63.25 | 17.1 | 6.97 | 13.8 |
Group | Precision/% | Recall/% | mAP50/% | mAP50:95/% | GFLOPs/G | Parameters/M | Size/MB |
---|---|---|---|---|---|---|---|
Baseline (CSPDarknet) | 88.15 | 79.51 | 85.22 | 61.53 | 21.3 | 9.41 | 18.3 |
EfficientViT | 85.59 | 73.12 | 79.14 | 56.10 | 14.3 | 7.28 | 14.7 |
FasterNet | 87.45 | 74.71 | 81.55 | 58.07 | 15.6 | 7.52 | 14.7 |
PPHGNetV2 | 88.07 | 79.81 | 84.99 | 61.24 | 18.3 | 7.60 | 14.9 |
Ours (RLNet) | 88.93 | 80.20 | 85.86 | 61.91 | 17.1 | 7.27 | 14.3 |
Group | Precision/% | Recall/% | mAP50/% | mAP50:95/% | GFLOPs/G | Parameters/M | Size/MB |
---|---|---|---|---|---|---|---|
YOLOV8s | 89.30 | 80.23 | 85.75 | 61.80 | 28.4 | 11.13 | 21.5 |
YOLOV9s | 89.40 | 80.70 | 86.10 | 62.60 | 38.7 | 9.60 | 20.3 |
YOLOV10s | 88.86 | 79.04 | 84.53 | 61.20 | 24.5 | 7.22 | 16.6 |
YOLO11s | 88.15 | 79.51 | 85.22 | 61.53 | 21.3 | 9.41 | 18.3 |
DETR-ResNet50 | 88.50 | 82.10 | 86.20 | 55.50 | 95.1 | 41.56 | 170 |
RT-DETR-L | 74.89 | 66.74 | 72.44 | 50.90 | 100.6 | 28.45 | 56.4 |
FCOS | 84.10 | 72.90 | 80.0 | 55.40 | 50.8 | 32.12 | 128.4 |
Ours (SLD-YOLO) | 89.46 | 81.97 | 87.44 | 63.25 | 17.1 | 6.97 | 13.8 |
Group | Precision/% | Recall/% | mAP50/% | mAP50:95/% |
---|---|---|---|---|
YOLO11s | 65.11 | 50.49 | 55.01 | 32.52 |
SLD-YOLO | 69.12 | 54.37 | 57.98 | 32.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yang, H.; Lü, B.; Wu, X. SLD-YOLO: A Lightweight Satellite Component Detection Algorithm Based on Multi-Scale Feature Fusion and Attention Mechanism. Remote Sens. 2025, 17, 2950. https://doi.org/10.3390/rs17172950
Li Y, Yang H, Lü B, Wu X. SLD-YOLO: A Lightweight Satellite Component Detection Algorithm Based on Multi-Scale Feature Fusion and Attention Mechanism. Remote Sensing. 2025; 17(17):2950. https://doi.org/10.3390/rs17172950
Chicago/Turabian StyleLi, Yonghao, Hang Yang, Bo Lü, and Xiaotian Wu. 2025. "SLD-YOLO: A Lightweight Satellite Component Detection Algorithm Based on Multi-Scale Feature Fusion and Attention Mechanism" Remote Sensing 17, no. 17: 2950. https://doi.org/10.3390/rs17172950
APA StyleLi, Y., Yang, H., Lü, B., & Wu, X. (2025). SLD-YOLO: A Lightweight Satellite Component Detection Algorithm Based on Multi-Scale Feature Fusion and Attention Mechanism. Remote Sensing, 17(17), 2950. https://doi.org/10.3390/rs17172950