Low-Overlap Registration of Multi-Source LiDAR Point Clouds in Urban Scenes Through Dual-Stage Feature Pruning and Progressive Hierarchical Methods
Abstract
1. Introduction
- (1)
- By screening individual points based on predominant structural features, a procedural registration from 2D to 3D is accomplished. This approach not only achieves a robust initial alignment but also significantly minimizes false matches and noise interference, thereby enhancing the algorithm’s robustness in complex scenarios.
- (2)
- The integration of feature point extraction and similarity measurement processes can mitigate information loss and enhance overall efficiency. The procedure for extracting key mapping feature points is inherently aligned with the process of measuring similarity.
- (3)
- By effectively implementing a progressive screening process for matching point pairs based on the dual dimensions of structural features and robust mapping characteristics, we derive the maximum consensus set. This approach addresses the computational overhead associated with large datasets, thereby facilitating more efficient registration.
2. Related Work
2.1. Line Feature-Based Approach
2.2. Deep Learning-Based Methods
3. Materials and Methods
3.1. Workflow
3.2. Extraction of Predominant Structure Feature Point Clusters
3.2.1. Predominant Structure Feature Point
3.2.2. Clustering of Predominant Point Clusters
3.3. Coarse Registration Through Alignment of Predominant Features
3.3.1. Line Extraction
3.3.2. Similarity Measurement
- Forward correspondence: and .
- Reverse correspondence: and .
3.4. Fine Registration Utilizing Reliable Correspondences of Feature Points
3.4.1. Pruning Based on the Reliability of Point Primitive Correspondences
3.4.2. Pruning Based on the Reliability of Line Primitive Correspondences
3.4.3. Registration Procedure
4. Experiments and Results
4.1. Dataset and Computational Environments
4.2. Analysis of Registration Performance
4.3. Analysis of the Extraction Results for Predominant Structural Feature Points
4.4. Analysis of Registration Efficiency
4.5. Partial Overlap Registration
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, S.; Chen, D.; Wang, R.; Li, J.; Zhang, X. Geometric Primitives in LiDAR Point Clouds: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 685–707. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Q.; Wang, H.; Li, X.; Yang, H. Automatic Registration Framework for Multi-Platform Point Cloud Data in Natural Forests. Int. J. Remote Sens. 2023, 44, 4596–4616. [Google Scholar] [CrossRef]
- Bello, S.A.; Yu, S.; Wang, C.; Adam, J.M.; Li, J. Review: Deep Learning on 3D Point Clouds. Remote Sens. 2020, 12, 1729. [Google Scholar] [CrossRef]
- Chen, M.; Xiao, L.; Jin, Z.; Pan, J.; Mu, F.; Tang, F. Registration of Terrestrial Laser Scanning Data in Forest Areas Using Smartphone Positioning and Orientation Data. Remote Sens. Lett. 2023, 14, 381–391. [Google Scholar] [CrossRef]
- Stilla, U.; Xu, Y. Change Detection of Urban Objects Using 3D Point Clouds: A Review. ISPRS J. Photogramm. Remote Sens. 2023, 197, 228–255. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, T.; Rowlinson, S.; Rusch, R.; Ruan, X. A Quantitative Investigation of the Effect of Scan Planning and Multi-Technology Fusion for Point Cloud Data Collection on Registration and Data Quality: A Case Study of Bond University’s Sustainable Building. Buildings 2023, 13, 1473. [Google Scholar] [CrossRef]
- Li, R.; Gan, S.; Yuan, X.; Bi, R.; Luo, W.; Chen, C.; Zhu, Z. Automatic Registration of Large-Scale Building Point Clouds with High Outlier Rates. Autom. Constr. 2024, 168, 105870. [Google Scholar] [CrossRef]
- Yang, S.; Hou, M.; Shaker, A.; Li, S. Modeling and Processing of Smart Point Clouds of Cultural Relics with Complex Geometries. IJGI 2021, 10, 617. [Google Scholar] [CrossRef]
- Gao, X.; Yang, R.; Chen, X.; Tan, J.; Liu, Y.; Liu, S. Indoor Scene Reconstruction from LiDAR Point Cloud Based on Roof Extraction. J. Build. Eng. 2024, 97, 110874. [Google Scholar] [CrossRef]
- Zuo, C.; Feng, Z.; Xiao, X. CCMD-SLAM: Communication-Efficient Centralized Multirobot Dense SLAM With Real-Time Point Cloud Maintenance. IEEE Trans. Instrum. Meas. 2024, 73, 7504812. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Aiger, D.; Mitra, N.J.; Cohen-Or, D. 4-Points Congruent Sets for Robust Pairwise Surface Registration. ACM Trans. Graph. 2008, 27, 1–10. [Google Scholar] [CrossRef]
- Yang, H.; Shi, J.; Carlone, L. TEASER: Fast and Certifiable Point Cloud Registration. IEEE Trans. Robot. 2021, 37, 314–333. [Google Scholar] [CrossRef]
- Wang, Q.; Kim, M.-K. Applications of 3D Point Cloud Data in the Construction Industry: A Fifteen-Year Review from 2004 to 2018. Adv. Eng. Inform. 2019, 39, 306–319. [Google Scholar] [CrossRef]
- Hu, K.; Chen, Z.; Kang, H.; Tang, Y. 3D Vision Technologies for a Self-Developed Structural External Crack Damage Recognition Robot. Autom. Constr. 2024, 159, 105262. [Google Scholar] [CrossRef]
- Kumar Singh, S.; Pratap Banerjee, B.; Raval, S. A Review of Laser Scanning for Geological and Geotechnical Applications in Underground Mining. Int. J. Min. Sci. Technol. 2023, 33, 133–154. [Google Scholar] [CrossRef]
- Chen, M.; Wang, S.; Wang, M.; Wan, Y.; He, P. Entropy-Based Registration of Point Clouds Using Terrestrial Laser Scanning and Smartphone GPS. Sensors 2017, 17, 197. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Tian, T.; Zou, X.; Yan, L.; Zhong, S. Robust Point Cloud Registration via Patch Matching. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5102213. [Google Scholar] [CrossRef]
- Cattaneo, D.; Vaghi, M.; Valada, A. LCDNet: Deep Loop Closure Detection and Point Cloud Registration for LiDAR SLAM. IEEE Trans. Robot. 2022, 38, 2074–2093. [Google Scholar] [CrossRef]
- Huang, X.; Mei, G.; Zhang, J. Feature-Metric Registration: A Fast Semi-Supervised Approach for Robust Point Cloud Registration Without Correspondences. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Sarode, V.; Li, X.; Goforth, H.; Aoki, Y.; Srivatsan, R.A.; Lucey, S.; Choset, H. PCRNet: Point Cloud Registration Network Using PointNet Encoding. arXiv 2019, arXiv:1908.07906. [Google Scholar] [CrossRef]
- Jeon, Y.; Seo, S.-W. EFGHNet: A Versatile Image-to-Point Cloud Registration Network for Extreme Outdoor Environment. IEEE Robot. Autom. Lett. 2022, 7, 7511–7517. [Google Scholar] [CrossRef]
- Yu, X.; Tang, L.; Rao, Y.; Huang, T.; Zhou, J.; Lu, J. Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 19291–19300. [Google Scholar]
- Wu, Y.; Hu, X.; Zhang, Y.; Gong, M.; Ma, W.; Miao, Q. SACF-Net: Skip-Attention Based Correspondence Filtering Network for Point Cloud Registration. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 3585–3595. [Google Scholar] [CrossRef]
- Shi, X.; Liu, T.; Han, X. Improved Iterative Closest Point(ICP) 3D Point Cloud Registration Algorithm Based on Point Cloud Filtering and Adaptive Fireworks for Coarse Registration. Int. J. Remote Sens. 2020, 41, 3197–3220. [Google Scholar] [CrossRef]
- Geng, H.; Song, P.; Zhang, W. An Improved Large Planar Point Cloud Registration Algorithm. Electronics 2024, 13, 2696. [Google Scholar] [CrossRef]
- Tian, Y.; Yue, X.; Zhu, J. Coarse–Fine Registration of Point Cloud Based on New Improved Whale Optimization Algorithm and Iterative Closest Point Algorithm. Symmetry 2023, 15, 2128. [Google Scholar] [CrossRef]
- Das, A.; Waslander, S.L. Scan Registration Using Segmented Region Growing NDT. Int. J. Robot. Res. 2014, 33, 1645–1663. [Google Scholar] [CrossRef]
- Lv, C.; Lin, W.; Zhao, B. KSS-ICP: Point Cloud Registration Based on Kendall Shape Space. IEEE Trans. Image Process. 2023, 32, 1681–1693. [Google Scholar] [CrossRef]
- Parkison, S.A.; Ghaffari, M.; Gan, L.; Zhang, R.; Ushani, A.K.; Eustice, R.M. Boosting Shape Registration Algorithms via Reproducing Kernel Hilbert Space Regularizers. IEEE Robot. Autom. Lett. 2019, 4, 4563–4570. [Google Scholar] [CrossRef]
- Tao, W.; Xiao, Y.; Wang, R.; Lu, T.; Xu, S. A Fast Registration Method for Building Point Clouds Obtained by Terrestrial Laser Scanner via 2-D Feature Points. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 9324–9336. [Google Scholar] [CrossRef]
- Yue, X.; Liu, Z.; Zhu, J.; Gao, X.; Yang, B.; Tian, Y. Coarse-Fine Point Cloud Registration Based on Local Point-Pair Features and the Iterative Closest Point Algorithm. Appl. Intell. 2022, 52, 12569–12583. [Google Scholar] [CrossRef]
- Yang, L.; Xu, S.; Yang, Z.; He, J.; Gong, L.; Wang, W.; Li, Y.; Wang, L.; Chen, Z. Fast Registration Algorithm for Laser Point Cloud Based on 3D-SIFT Features. Sensors 2025, 25, 628. [Google Scholar] [CrossRef]
- Zhong, Y. Intrinsic Shape Signatures: A Shape Descriptor for 3D Object Recognition. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 27 September–4 October 2009; pp. 689–696. [Google Scholar]
- He, L.; Wang, S.; Hu, Q.; Cai, Q.; Li, M.; Bai, Y.; Wu, K.; Xiang, B. GFOICP: Geometric Feature Optimized Iterative Closest Point for 3-D Point Cloud Registration. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5704217. [Google Scholar] [CrossRef]
- Sipiran, I.; Bustos, B. Harris 3D: A Robust Extension of the Harris Operator for Interest Point Detection on 3D Meshes. Vis. Comput. 2011, 27, 963–976. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, J.; Wang, Y.; Lu, Z.; Wang, Y. A Novel Rock-Mass Point Cloud Registration Method Based on Feature Line Extraction and Feature Point Matching. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5701117. [Google Scholar] [CrossRef]
- Ma, G.; Wei, H. A Novel Sketch-Based Framework Utilizing Contour Cues for Efficient Point Cloud Registration. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5703616. [Google Scholar] [CrossRef]
- Li, R.; Yuan, X.; Gan, S.; Bi, R.; Luo, W.; Chen, C.; Zhu, Z. Automatic Coarse Registration of Urban Point Clouds Using Line-Planar Semantic Structural Features. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5707824. [Google Scholar] [CrossRef]
- Wu, Y.; Lei, J.; Yuan, Y.; Fan, X.; Gong, M.; Ma, W.; Miao, Q.; Zhang, M. Equivariance-Based Markov Decision Process for Unsupervised Point Cloud Registration. IEEE Trans. Circuits Syst. Video Technol. 2025, 35, 4648–4660. [Google Scholar] [CrossRef]
- Wang, C.; Gu, Y.; Li, X. LPRnet: A Self-Supervised Registration Network for LiDAR and Photogrammetric Point Clouds. IEEE Trans. Geosci. Remote Sens. 2025, 63, 4404012. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, S.; Butt, J.A.; Cai, Y.; Varga, M.; Wieser, A. Cross-Modal Feature Fusion for Robust Point Cloud Registration with Ambiguous Geometry. ISPRS J. Photogramm. Remote Sens. 2025, 227, 31–47. [Google Scholar] [CrossRef]
- Bello, S.A.; Alfasly, S.; Mao, J.; Lu, J.; Li, L.; Xu, C.; Zou, Y. Geometric Edge Convolution for Rigid Transformation Invariant Features in 3D Point Clouds. Neurocomputing 2025, 622, 129313. [Google Scholar] [CrossRef]
- Zhao, Z.; Kang, J.; Feng, L.; Liang, J.; Ren, Y.; Wu, B. LFA-Net: Enhanced PointNet and Assignable Weights Transformer Network for Partial-to-Partial Point Cloud Registration. IEEE Trans. Circuits Syst. Video Technol. 2025, 35, 162–177. [Google Scholar] [CrossRef]
- Liu, S.; Wang, T.; Zhang, Y.; Zhou, R.; Li, L.; Dai, C.; Zhang, Y.; Wang, L.; Wang, H. Deep Semantic Graph Matching for Large-Scale Outdoor Point Cloud Registration. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5701412. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Fan, X.; Gong, M.; Miao, Q.; Ma, W. INENet: Inliers Estimation Network with Similarity Learning for Partial Overlapping Registration. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 1413–1426. [Google Scholar] [CrossRef]
- Ma, T.; Han, G.; Chu, Y.; Ren, H. Sparse-to-Dense Point Cloud Registration Based on Rotation-Invariant Features. Remote Sens. 2024, 16, 2485. [Google Scholar] [CrossRef]
- Li, S.; Yan, F.; Ma, K.; Hu, Q.; Wang, F.; Liu, W. Optimal Feature-Guided Position-Shape Dual Optimization for Building Point Cloud Facade Detail Enhancement. Remote Sens. 2024, 16, 4324. [Google Scholar] [CrossRef]
- Wang, F.-D.; Xue, N.; Zhang, Y.; Xia, G.-S.; Pelillo, M. A Functional Representation for Graph Matching. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2737–2754. [Google Scholar] [CrossRef]
- Yan, L.; Wei, P.; Xie, H.; Dai, J.; Wu, H.; Huang, M. A New Outlier Removal Strategy Based on Reliability of Correspondence Graph for Fast Point Cloud Registration. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 7986–8002. [Google Scholar] [CrossRef] [PubMed]
- Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J.D.; Schindler, K.; Pollefeys, M. Semantic3D.Net: A New Large-Scale Point Cloud Classification Benchmark. arXiv 2017, arXiv:1704.03847. [Google Scholar] [CrossRef]
- Dong, Z.; Liang, F.; Yang, B.; Xu, Y.; Zang, Y.; Li, J.; Wang, Y.; Dai, W.; Fan, H.; Hyyppä, J.; et al. Registration of Large-Scale Terrestrial Laser Scanner Point Clouds: A Review and Benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 163, 327–342. [Google Scholar] [CrossRef]
- Theiler, P.W.; Wegner, J.D.; Schindler, K. Keypoint-Based 4-Points Congruent Sets—Automated Marker-Less Registration of Laser Scans. ISPRS J. Photogramm. Remote Sens. 2014, 96, 149–163. [Google Scholar] [CrossRef]
- Wei, P.; Yan, L.; Xie, H.; Huang, M. Automatic Coarse Registration of Point Clouds Using Plane Contour Shape Descriptor and Topological Graph Voting. Autom. Constr. 2022, 134, 104055. [Google Scholar] [CrossRef]
Datasets | NCWU | SEMANTIC | WHU | |||
---|---|---|---|---|---|---|
Reference | Alignment | Reference | Alignment | Reference | Alignment | |
Platform | Mobile | UAV | Terrestrial | Terrestrial | Terrestrial | Terrestrial |
Point number | 8,494,883 | 17,421,283 | 41,268,288 | 35,207,289 | 9,285,860 | 11,259,360 |
Coverage area (m) | 200 × 190 × 60 | 290 × 210 × 60 | 250 × 270 × 50 | 320 × 270 × 160 | 400 × 800 × 120 | 500 × 700 × 180 |
Dataset | Metric | ICP | K4PCS | PKSS | Line-Based Registration | Ours |
---|---|---|---|---|---|---|
NCWU | (deg) | 0.659 | 0.315 | 0.115 | 0.209 | 0.088 |
(m) | 1.168 | 0.698 | 0.265 | 0.733 | 0.116 | |
SEMANTIC | (deg) | 0.542 | 0.237 | 0.135 | 0.172 | 0.074 |
(m) | 1.340 | 0.249 | 0.202 | 0.895 | 0.017 | |
WHU | (deg) | 0.627 | 0.223 | 0.172 | 0.240 | 0.062 |
(m) | 1.652 | 0.590 | 0.109 | 0.524 | 0.027 |
Dataset | Average Distance (m) | RMSE (m) |
---|---|---|
NCWU | 0.099 | 0.0688 |
SEMANTIC | 0.057 | 0.0543 |
WHU | 0.059 | 0.0487 |
Dataset | K4PCS | PKSS | Registration Stage | Ours |
---|---|---|---|---|
NCWU | 492 | 550 | 31 | 474 |
SEMANTIC | 153 | 259 | 5 | 67 |
WHU | 504 | 560 | 8 | 480 |
Dataset | Average Number of Points | Average Elevation Structural Points | Nodal Strength Points | Final Pruning Point | Realization of Mapping Points |
---|---|---|---|---|---|
NCWU | 12,958,083 | 467,773 | 55,340 | 1651 | 1966 |
SEMANTIC | 38,237,789 | 96,768 | 13,628 | 3821 | 13,151 |
WHU | 10,272,610 | 782,528 | 58,844 | 4768 | 27,651 |
Dataset | Facade Structural Point Rates | Node Strength Rates | Final Pruning Rates | Mapping Achievement Rates |
---|---|---|---|---|
NCWU | 36.1‰ | 4.3‰ | 0.1‰ | 0.2‰ |
SEMANTIC | 2.5‰ | 0.4‰ | 0.1‰ | 0.3‰ |
WHU | 76.2‰ | 5.7‰ | 0.5‰ | 2.7‰ |
Overlap | 40~50% | 30~40% | 20~30% | |||
---|---|---|---|---|---|---|
Rotation | Translation | Rotation | Translation | Rotation | Translation | |
NCWU | 0.134 | 0.192 | 0.223 | 0.211 | 45.059 | 62.857 |
SEMANTIC | 0.156 | 0.188 | 0.259 | 1.395 | 99.964 | 37.538 |
WHU | 0.067 | 0.023 | 0.088 | 0.029 | 88.549 | 38.947 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, K.; Yan, F.; Li, S.; Huang, G.; Jia, X.; Wang, F.; Chen, L. Low-Overlap Registration of Multi-Source LiDAR Point Clouds in Urban Scenes Through Dual-Stage Feature Pruning and Progressive Hierarchical Methods. Remote Sens. 2025, 17, 2938. https://doi.org/10.3390/rs17172938
Ma K, Yan F, Li S, Huang G, Jia X, Wang F, Chen L. Low-Overlap Registration of Multi-Source LiDAR Point Clouds in Urban Scenes Through Dual-Stage Feature Pruning and Progressive Hierarchical Methods. Remote Sensing. 2025; 17(17):2938. https://doi.org/10.3390/rs17172938
Chicago/Turabian StyleMa, Kaifeng, Fengtao Yan, Shiming Li, Guiping Huang, Xiaojie Jia, Feng Wang, and Li Chen. 2025. "Low-Overlap Registration of Multi-Source LiDAR Point Clouds in Urban Scenes Through Dual-Stage Feature Pruning and Progressive Hierarchical Methods" Remote Sensing 17, no. 17: 2938. https://doi.org/10.3390/rs17172938
APA StyleMa, K., Yan, F., Li, S., Huang, G., Jia, X., Wang, F., & Chen, L. (2025). Low-Overlap Registration of Multi-Source LiDAR Point Clouds in Urban Scenes Through Dual-Stage Feature Pruning and Progressive Hierarchical Methods. Remote Sensing, 17(17), 2938. https://doi.org/10.3390/rs17172938