Identifying Forest Drought Sensitivity Drivers in China Under Lagged and Accumulative Effects via XGBoost-SHAP
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. GPP Data
2.2.2. SPEI Data
2.2.3. Driving Factors
2.2.4. Land Cover Data
2.3. Methodology
2.3.1. Quantification of Lagged and Accumulative Effects of Meteorological Droughts
2.3.2. Sensitivity of Vegetation Growth to Meteorological Drought
2.3.3. Driving Analysis
3. Results
3.1. Lagged and Accumulative Effects
3.1.1. Lagged Effect of Drought on Forest GPP
3.1.2. Accumulative Effects of Drought on Forest GPP
3.2. Sensitivity of Vegetation Growth to Droughts
3.3. Driving Factors of Vegetation Sensitivity
4. Discussion
4.1. Response of Forest Productivity to Droughts
4.2. Changes in Drought Sensitivity with Variations in SPEI
5. Conclusions
- (1)
- Drought had significant lagged and accumulative effects on forest GPP, with clear differences across forest types. A total of 99.52% of forest GPP was positively correlated with lagged SPEI, predominantly with a 6–7 month delay. Similarly, 95.55% of regions showed a positive correlation between accumulated SPEI and GPP, with 40.25% responding within just 1 month. EBFs exhibited the strongest lagged and accumulative responses, while DNFs showed the weakest.
- (2)
- The drought sensitivity of China’s forests varied significantly across space, with high-sensitivity areas concentrated in the south. ENFs had the highest proportion of extremely sensitive areas (16.94%), while DNFs had the highest proportion of extremely insensitive areas (17.43%). Over the 37-year period, 67.12% of forested areas showed a declining trend in drought sensitivity.
- (3)
- Temperature and precipitation were the dominant drivers, both showing threshold effects. Specifically, temperatures between 15 and 22 °C and precipitation between 60 and 110 mm tended to increase sensitivity. Evergreen forests showed strong responses to the synergy of water and heat, deciduous forests were highly sensitive to low precipitation, and forest age played a dominant role in DNFs.
- (4)
- Multi-factor interactions amplified the spatial heterogeneity of drought sensitivity. At the national scale, the interaction between precipitation and temperature (q = 0.215) was dominant. Evergreen forests were primarily driven by climate coupling effects, whereas deciduous forests were jointly influenced by structural and climatic factors.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ault, T.R. On the Essentials of Drought in a Changing Climate. Science 2020, 368, 256–260. [Google Scholar] [CrossRef]
- Kuwayama, Y.; Thompson, A.; Bernknopf, R.; Zaitchik, B.; Vail, P. Estimating the Impact of Drought on Agriculture Using the U.S. Drought Monitor. Am. J. Agric. Econ. 2019, 101, 193–210. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, J.; Wang, Y.; Yang, Y.; Guo, Y.; Yang, G.; He, B. Temporal and Spatial Propagation Characteristics of Meteorological Drought to Hydrological Drought and Influencing Factors. Atmos. Res. 2024, 299, 107212. [Google Scholar] [CrossRef]
- Jiang, T.; Su, X.; Zhang, G.; Zhang, T.; Wu, H. Estimating Propagation Probability from Meteorological to Ecological Droughts Using a Hybrid Machine Learning Copula Method. Hydrol. Earth Syst. Sci. 2023, 27, 559–576. [Google Scholar] [CrossRef]
- Baldrian, P.; López-Mondéjar, R.; Kohout, P. Forest Microbiome and Global Change. Nat. Rev. Microbiol. 2023, 21, 487–501. [Google Scholar] [CrossRef] [PubMed]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Albrich, K.; Seidl, R.; Rammer, W.; Thom, D. From Sink to Source: Changing Climate and Disturbance Regimes Could Tip the 21st Century Carbon Balance of an Unmanaged Mountain Forest Landscape. Forestry 2023, 96, 399–409. [Google Scholar] [CrossRef]
- Qin, J.; Liu, P.; Martin, A.R.; Wang, W.; Lei, Y.; Li, H. Forest Carbon Storage and Sink Estimates under Different Management Scenarios in China from 2020 to 2100. Sci. Total Environ. 2024, 927, 172076. [Google Scholar] [CrossRef]
- Tang, T.; Ge, J.; Shi, H.; Wang, L.; Cao, J.; Lee, X. Drought Frequency, Intensity, and Exposure Have Increased Due to Historical Land Use and Land Cover Changes. Commun. Earth Environ. 2025, 6, 398. [Google Scholar] [CrossRef]
- Li, K.; Tong, Z.; Liu, X.; Zhang, J.; Tong, S. Quantitative Assessment and Driving Force Analysis of Vegetation Drought Risk to Climate Change: Methodology and Application in Northeast China. Agric. For. Meteorol. 2020, 282–283, 107865. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Trugman, A.T.; Badgley, G.; Anderson, C.M.; Bartuska, A.; Ciais, P.; Cullenward, D.; Field, C.B.; Freeman, J.; Goetz, S.J.; et al. Climate-Driven Risks to the Climate Mitigation Potential of Forests. Science 2020, 368, eaaz7005. [Google Scholar] [CrossRef]
- Schwarz, J.; Skiadaresis, G.; Kohler, M.; Kunz, J.; Schnabel, F.; Vitali, V.; Bauhus, J. Quantifying Growth Responses of Trees to Drought—A Critique of Commonly Used Resilience Indices and Recommendations for Future Studies. Curr. For. Rep. 2020, 6, 185–200. [Google Scholar] [CrossRef]
- Xue, Z.; Li, X.; Fei, L.; Yang, F.; Dong, W.; Liu, Y. Time Lag and Cumulative Effects of Drought on the Gross Primary Productivity of Different Vegetation Types in the Black Soil Region of Northeast China. Geogr. Sci. 2024, 44, 2060–2071. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; Lorenzo-Lacruz, J.; Camarero, J.J.; López-Moreno, J.I.; Azorin-Molina, C.; Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A. Performance of Drought Indices for Ecological, Agricultural, and Hydrological Applications. Earth Interact. 2012, 16, 1–27. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Cao, L.; Feng, R.; Pan, Y. Response of NDVI of Natural Vegetation to Climate Changes and Drought in China. Land 2021, 10, 966. [Google Scholar] [CrossRef]
- Zhao, A.; Yu, Q.; Feng, L.; Zhang, A.; Pei, T. Evaluating the Cumulative and Time-Lag Effects of Drought on Grassland Vegetation: A Case Study in the Chinese Loess Plateau. J. Environ. Manag. 2020, 261, 110214. [Google Scholar] [CrossRef] [PubMed]
- D’Orangeville, L.; Maxwell, J.; Kneeshaw, D.; Pederson, N.; Duchesne, L.; Logan, T.; Houle, D.; Arseneault, D.; Beier, C.M.; Bishop, D.A.; et al. Drought Timing and Local Climate Determine the Sensitivity of Eastern Temperate Forests to Drought. Glob. Change Biol. 2018, 24, 2339–2351. [Google Scholar] [CrossRef]
- Shatto, C.; Kiene, M.; Hofmann, P.; Walentowitz, A.; Wilkens, V.; Heuser, T.; Weiser, F. Assessing the Recovery of Pinus canariensis Stands after Wildfires and Volcanic Eruption on La Palma, Canary Islands. For. Ecol. Manag. 2024, 572, 122317. [Google Scholar] [CrossRef]
- Wei, X.; He, W.; Zhou, Y.; Ju, W.; Xiao, J.; Li, X.; Liu, Y.; Xu, S.; Bi, W.; Zhang, X.; et al. Global Assessment of Lagged and Cumulative Effects of Drought on Grassland Gross Primary Production. Ecol. Indic. 2022, 136, 108646. [Google Scholar] [CrossRef]
- Li, C.; Peng, L.; Zhou, M.; Wei, Y.; Liu, L.; Li, L.; Liu, Y.; Dou, T.; Chen, J.; Wu, X. SIF-Based GPP Is a Useful Index for Assessing Impacts of Drought on Vegetation: An Example of a Mega-Drought in Yunnan Province, China. Remote Sens. 2022, 14, 1509. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y.; Liu, Y.; Li, J.; Qian, K.; Yang, X.; Ma, X. Evaluating the Cumulative and Time-Lag Effects of Vegetation Response to Drought in Central Asia under Changing Environments. J. Hydrol. 2023, 627, 130455. [Google Scholar] [CrossRef]
- Ge, C.; Sun, P.; Yao, R.; Wang, Y.; Chen, W.; Bian, Y.; Zhang, Q. Characteristics of Propagation from Meteorological Drought to Ecological Drought in China: Lag and Cumulative Effects. Atmos. Res. 2024, 304, 107405. [Google Scholar] [CrossRef]
- Li, X.; Liu, M.; Hajek, O.L.; Yin, G. Different Temporal Stability and Responses to Droughts between Needleleaf Forests and Broadleaf Forests in North China during 2001–2018. Forests 2021, 12, 1331. [Google Scholar] [CrossRef]
- Qin, D.; Tao, S.; Dong, S.; Luo, Y. Climate, Environmental, and Socioeconomic Characteristics of China. In Climate and Environmental Change in China: 1951–2012; Qin, D., Ding, Y., Mu, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–27. ISBN 978-3-662-48482-1. [Google Scholar]
- Cheng, K.; Yang, H.; Guan, H.; Ren, Y.; Chen, Y.; Chen, M.; Yang, Z.; Lin, D.; Liu, W.; Xu, J.; et al. Unveiling China’s Natural and Planted Forest Spatial–Temporal Dynamics from 1990 to 2020. ISPRS J. Photogramm. Remote Sens. 2024, 209, 37–50. [Google Scholar] [CrossRef]
- Zhang, P.; Shao, G.; Zhao, G.; Le Master, D.C.; Parker, G.R.; Dunning, J.B.; Li, Q. China’s Forest Policy for the 21st Century. Science 2000, 288, 2135–2136. [Google Scholar] [CrossRef]
- You, W.; Xian, Z.; Zhou, G.; Agathokleous, E.; Yu, Z. Sensitivity of Forest Phenology in China Varies with Proximity to Forest Edges. For. Ecosyst. 2023, 10, 100144. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Qiu, B.; Zhang, Z. Tracking the Seasonal and Inter-Annual Variations of Global Gross Primary Production during Last Four Decades Using Satellite near-Infrared Reflectance Data. Sci. Total Environ. 2021, 755, 142569. [Google Scholar] [CrossRef] [PubMed]
- Gebrechorkos, S.H.; Peng, J.; Dyer, E.; Miralles, D.G.; Vicente-Serrano, S.M.; Funk, C.; Beck, H.E.; Asfaw, D.T.; Singer, M.B.; Dadson, S.J. Global High-Resolution Drought Indices for 1981–2022. Earth Syst. Sci. Data 2023, 15, 5449–5466. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal Change and Trend Analysis of Potential Evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Miralles, D.G.; Bonte, O.; Koppa, A.; Baez-Villanueva, O.M.; Tronquo, E.; Zhong, F.; Beck, H.E.; Hulsman, P.; Dorigo, W.; Verhoest, N.E.C.; et al. GLEAM4: Global Land Evaporation and Soil Moisture Dataset at 0.1° Resolution from 1980 to near Present. Sci. Data 2025, 12, 416. [Google Scholar] [CrossRef]
- Qian, L.; Zhang, Z.; Wu, L.; Fan, S.; Yu, X.; Liu, X.; Ba, Y.; Ma, H.; Wang, Y. High Uncertainty of Evapotranspiration Products under Extreme Climatic Conditions. J. Hydrol. 2023, 626, 130332. [Google Scholar] [CrossRef]
- Pinzon, J.E.; Pak, E.W.; Tucker, C.J.; Bhatt, U.S.; Frost, G.V.; Macander, M.J. Global Vegetation Greenness (NDVI) from AVHRR GIMMS-3G+, 1981–2022; ORNL DAAC: Oak Ridge, TN, USA, 2023. [CrossRef]
- Shang, R.; Lin, X.; Chen, J.M.; Liang, Y.; Fang, K.; Xu, M.; Yan, Y.; Ju, W.; Yu, G.; He, N.; et al. China’s Annual Forest Age Dataset at 30 m Spatial Resolution from 1986 to 2022. Earth Syst. Sci. Data Discuss. 2025, 17, 3219–3241. [Google Scholar] [CrossRef]
- Cai, Y.; Xu, X.; Zhu, P.; Nie, S.; Wang, C.; Xiong, Y.; Liu, X. Unveiling Spatiotemporal Tree Cover Patterns in China: The First 30 m Annual Tree Cover Mapping from 1985 to 2023. ISPRS J. Photogramm. Remote Sens. 2024, 216, 240–258. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, Z.; Chen, B.; Gong, P.; Xu, B.; Fu, H. A Prolonged Artificial Nighttime-Light Dataset of China (1984–2020). Sci. Data 2024, 11, 414. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gong, P.; Wang, J.; Clinton, N.; Bai, Y.; Liang, S. Annual Dynamics of Global Land Cover and Its Long-Term Changes from 1982 to 2015. Earth Syst. Sci. Data 2020, 12, 1217–1243. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, T.; Xu, H.; Liu, W.; Wang, J.; Chen, X.; Liu, L. GLC_FCS30D: The First Global 30-m Land-Cover Dynamics Monitoring Product with a Fine Classification System for the Period from 1985 to 2022 Generated Using Dense-Time-Series Landsat Imagery and the Continuous Change-Detection Method. Earth Syst. Sci. Data 2024, 16, 1353–1381. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.; Zhao, C. Drought Sensitivity of Vegetation Photosynthesis along the Aridity Gradient in Northern China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102418. [Google Scholar] [CrossRef]
- Xu, Q.; Yu, R.; Guo, L. Evaluation of Forest Ecosystem Resilience to Drought Considering Lagged Effects of Drought. Ecol. Evol. 2024, 14, e70281. [Google Scholar] [CrossRef]
- Gan, W.; Guo, H.; Cao, Y.; Wang, W.; Yao, N.; Wang, Y.; Maeyer, P.D. Spatiotemporal Evolution and Intensification of Extreme Precipitation Events in Mainland China from 1961 to 2022. Remote Sens. 2025, 17, 2037. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, G.; Hu, G.; Zou, D.; Li, R.; Du, E.; Wu, T.; Wu, X.; Zhao, G.; Zhao, Y.; et al. Mapping Mountain Permafrost via GPR-Augmented Machine Learning in the Northeastern Qinghai–Tibet Plateau. Remote Sens. 2025, 17, 2015. [Google Scholar] [CrossRef]
- Ma, F.; Yuan, X. Vegetation Greening and Climate Warming Increased the Propagation Risk from Meteorological Drought to Soil Drought at Subseasonal Timescales. Geophys. Res. Lett. 2024, 51, e2023GL107937. [Google Scholar] [CrossRef]
- Rashid, K.J.; Tuli, R.D.; Liu, W.; Mesev, V. Quantifying the Drivers of the Spatial Distribution of Urban Surfaces in Bangladesh: A Multi-Method Geospatial Analysis. Remote Sens. 2025, 17, 2050. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Trugman, A.T.; Badgley, G.; Konings, A.G.; Shaw, J. Divergent Forest Sensitivity to Repeated Extreme Droughts. Nat. Clim. Change 2020, 10, 1091–1095. [Google Scholar] [CrossRef]
- Qiaoqian, L.U.; Tao, J.; Danli, L.I.U.; Zhiyong, L.I.U. The Response Characteristics of NDVI with Different Vegetation Cover Types to Temperature and Precipitation in China. Ecol. Environ. 2020, 29, 23. [Google Scholar] [CrossRef]
- Knapp, A.K.; Condon, K.V.; Folks, C.C.; Sturchio, M.A.; Griffin-Nolan, R.J.; Kannenberg, S.A.; Gill, A.S.; Hajek, O.L.; Siggers, J.A.; Smith, M.D. Field Experiments Have Enhanced Our Understanding of Drought Impacts on Terrestrial Ecosystems—But Where Do We Go from Here? Funct. Ecol. 2024, 38, 76–97. [Google Scholar] [CrossRef]
- Lenz, A.-K.; Bauer, U.; Ruxton, G.D. An Ecological Perspective on Water Shedding from Leaves. J. Exp. Bot. 2022, 73, 1176–1189. [Google Scholar] [CrossRef] [PubMed]
- Bachofen, C.; Tumber-Dávila, S.J.; Mackay, D.S.; McDowell, N.G.; Carminati, A.; Klein, T.; Stocker, B.D.; Mencuccini, M.; Grossiord, C. Tree Water Uptake Patterns across the Globe. New Phytol. 2024, 242, 1891–1910. [Google Scholar] [CrossRef]
- Han, L.; Chen, Y.; Wang, Y.; Sun, Y.; Ding, Z.; Zhang, H.; Tang, X. Divergent Responses of Subtropical Evergreen and Deciduous Forest Carbon Cycles to the Summer 2022 Drought. Environ. Res. Lett. 2024, 19, 054043. [Google Scholar] [CrossRef]
- Xu, T.-L.; Yang, R.-Q.; Zaw, Z.; Fu, P.-L.; Panthi, S.; Bräuning, A.; Fan, Z.-X. Growth-Climate Relationships of Four Tree Species in the Subtropical Evergreen Broad-Leaved Forests in Southwest China. Dendrochronologia 2024, 85, 126186. [Google Scholar] [CrossRef]
- Gao, J.; Ji, Y.; Zhang, X. Net Primary Productivity Exhibits a Stronger Climatic Response in Planted versus Natural Forests. For. Ecol. Manag. 2023, 529, 120722. [Google Scholar] [CrossRef]
- Slate, M.L.; Antoninka, A.; Bailey, L.; Berdugo, M.B.; Callaghan, D.A.; Cárdenas, M.; Chmielewski, M.W.; Fenton, N.J.; Holland-Moritz, H.; Hopkins, S.; et al. Impact of Changing Climate on Bryophyte Contributions to Terrestrial Water, Carbon, and Nitrogen Cycles. New Phytol. 2024, 242, 2411–2429. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jiao, L.; Xue, R.; Zhang, P.; Li, Q.; Yuan, X. Drought Type Determines the Pattern of Ecological Response to Drought in Trees with Different Sensitivities. Plant Soil 2025. [Google Scholar] [CrossRef]
- Shi, X.; Du, C.; Guo, X.; Shi, W. Heterogeneity of Water-Retention Capacity of Forest and Its Influencing Factors Based on Meta-Analysis in the Beijing-Tianjin-Hebei Region. J. Geogr. Sci. 2021, 31, 69–90. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, P.; Wang, G.; Wang, Q.; Wang, D.; Wang, R.; Zhang, X.; Yin, H. The Synergistic Strategy of Leaf Nitrogen Conservation and Root Nitrogen Acquisition in an Alpine Coniferous Forest along an Elevation Gradient. Plant Soil 2025. [Google Scholar] [CrossRef]
- Schnabel, F.; Liu, X.; Kunz, M.; Barry, K.E.; Bongers, F.J.; Bruelheide, H.; Fichtner, A.; Härdtle, W.; Li, S.; Pfaff, C.-T.; et al. Species Richness Stabilizes Productivity via Asynchrony and Drought-Tolerance Diversity in a Large-Scale Tree Biodiversity Experiment. Sci. Adv. 2021, 7, eabk1643. [Google Scholar] [CrossRef]
- Wu, Y.T.; Wang, W.G.; Wei, J. Response of Global Forest Greenness Anomalies to Drought Events. Water Sav. Irrig. 2023, 1, 92–98. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, S.; Chi, Y.; Ju, W.; Huang, K.; Mickler, R.A.; Wang, M.; Yu, Q. Changes in the Carbon and Water Fluxes of Subtropical Forest Ecosystems in South-Western China Related to Drought. Water 2018, 10, 821. [Google Scholar] [CrossRef]
- Liu, M.; Trugman, A.T.; Peñuelas, J.; Anderegg, W.R.L. Climate-Driven Disturbances Amplify Forest Drought Sensitivity. Nat. Clim. Change 2024, 14, 746–752. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, R.; Wen, Z.; Khalifa, M.; Zheng, C.; Ren, H.; Zhang, Z.; Wang, Z. Assessing the Impacts of Drought on Net Primary Productivity of Global Land Biomes in Different Climate Zones. Ecol. Indic. 2021, 130, 108146. [Google Scholar] [CrossRef]
- Weng, Z.; Niu, J.; Guan, H.; Kang, S. Three-Dimensional Linkage between Meteorological Drought and Vegetation Drought across China. Sci. Total Environ. 2023, 859, 160300. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Wu, S.; Li, S.; Qin, D. Water Memory Effects and Their Impacts on Global Vegetation Productivity and Resilience. Sci. Rep. 2018, 8, 2962. [Google Scholar] [CrossRef]
- Hu, Z.; Dai, Q.; Li, H.; Yan, Y.; Zhang, Y.; Yang, X.; Zhang, X.; Zhou, H.; Yao, Y. Response of Ecosystem Water-Use Efficiency to Global Vegetation Greening. Catena 2024, 239, 107952. [Google Scholar] [CrossRef]
- Li, Z.; Lai, Q.; Bao, Y.; Sude, B.; Bao, Z.; Liu, X. Carbon Allocation to Leaves and Its Controlling Factors and Impacts on Gross Primary Productivity in Forest Ecosystems of Northeast China. Forests 2024, 15, 129. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Fischer, T.; Wang, Y.; Kundzewicz, Z.W.; Zhai, J.; Sun, H.; Wang, A.; Zeng, X.; Wang, G.; et al. Drought Losses in China Might Double between the 1.5 °C and 2.0 °C Warming. Proc. Natl. Acad. Sci. USA 2018, 115, 10600–10605. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Wu, S.; Gao, J.; Liu, L.; Li, D.; Yan, R.; Wang, J. Increased Stress from Compound Drought and Heat Events on Vegetation. Sci. Total Environ. 2024, 949, 175113. [Google Scholar] [CrossRef]
- Vacek, Z.; Prokůpková, A.; Vacek, S.; Bulušek, D.; Šimůnek, V.; Hájek, V.; Králíček, I. Mixed vs. Monospecific Mountain Forests in Response to Climate Change: Structural and Growth Perspectives of Norway Spruce and European Beech. For. Ecol. Manag. 2021, 488, 119019. [Google Scholar] [CrossRef]
- Vangi, E.; Dalmonech, D.; Cioccolo, E.; Marano, G.; Bianchini, L.; Puchi, P.F.; Grieco, E.; Cescatti, A.; Colantoni, A.; Chirici, G.; et al. Stand Age Diversity (and More than Climate Change) Affects Forests’ Resilience and Stability, Although Unevenly. J. Environ. Manag. 2024, 366, 121822. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Z.; Diao, S.; Yang, F.; Fei, L.; Wang, W.; Fang, L.; Liu, Y. Identifying Forest Drought Sensitivity Drivers in China Under Lagged and Accumulative Effects via XGBoost-SHAP. Remote Sens. 2025, 17, 2903. https://doi.org/10.3390/rs17162903
Xue Z, Diao S, Yang F, Fei L, Wang W, Fang L, Liu Y. Identifying Forest Drought Sensitivity Drivers in China Under Lagged and Accumulative Effects via XGBoost-SHAP. Remote Sensing. 2025; 17(16):2903. https://doi.org/10.3390/rs17162903
Chicago/Turabian StyleXue, Ze, Simeng Diao, Fuxiao Yang, Long Fei, Wenjuan Wang, Lantong Fang, and Yan Liu. 2025. "Identifying Forest Drought Sensitivity Drivers in China Under Lagged and Accumulative Effects via XGBoost-SHAP" Remote Sensing 17, no. 16: 2903. https://doi.org/10.3390/rs17162903
APA StyleXue, Z., Diao, S., Yang, F., Fei, L., Wang, W., Fang, L., & Liu, Y. (2025). Identifying Forest Drought Sensitivity Drivers in China Under Lagged and Accumulative Effects via XGBoost-SHAP. Remote Sensing, 17(16), 2903. https://doi.org/10.3390/rs17162903