PLCNet: A 3D-CNN-Based Plant-Level Classification Network Hyperspectral Framework for Sweetpotato Virus Disease Detection
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. UAV Data Collection and Preprocessing
2.3. Feature Selection
- (1)
- LCM evaluates the discriminative power of each spectral band by calculating the local variance within target regions of interest, involving steps such as local domain construction, covariance matrix computation, and feature screening based on local variability [32].
- (2)
- mRMR selects features by maximizing relevance with the target variable while minimizing redundancy among features, using an objective function and an incremental search strategy to iteratively select the most informative bands [33].
- (3)
- RF constructs an ensemble of decision trees and ranks spectral bands based on their contribution to model accuracy. Feature importance scores are calculated, and the top-k-ranked bands are selected as the optimal feature subset [34].
2.4. Modeling Methods
2.5. Post-Processing Module
- (1)
- Plant Mask Extraction (PME):
- (2)
- Connected-Components Labeling:
- (3)
- Plant-Level Majority Voting (PLMV):
2.6. Model Performance Evaluation
3. Results
3.1. Spectral Characteristics and SPAD of Healthy and Diseased Sweetpotato
3.2. Feature Selection for SPVD
3.3. Evaluating the Effect of Feature Selection Methods and Classifiers on Recognition Performance
3.4. Classification Performance of Hyperspectral Images of SPVD
4. Discussion
4.1. Challenges in Hyperspectral Remote Sensing Diagnosis of SPVD
4.2. Spectral Response Mechanisms of SPVD-Infected Sweetpotato Leaves
4.3. From Pixel to Plant: A Post-Processing Strategy for Practical SPVD Monitoring
4.4. Toward More Robust and Scalable SPVD Detection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adero, J.; Wokorach, G.; Stomeo, F.; Yao, N.; Machuka, E.; Njuguna, J.; Byarugaba, D.K.; Kreuze, J.; Yencho, G.C.; Otema, M.A.; et al. Next Generation Sequencing and Genetic Analyses Reveal Factors Driving Evolution of Sweetpotato Viruses in Uganda. Pathogens 2024, 13, 833. [Google Scholar] [CrossRef]
- Zhang, K.; Lu, H.; Wan, C.; Tang, D.; Zhao, Y.; Luo, K.; Li, S.; Wang, J. The Spread and Transmission of Sweet Potato Virus Disease (SPVD) and Its Effect on the Gene Expression Profile in Sweet Potato. Plants 2020, 9, 492. [Google Scholar] [CrossRef]
- Fang, D.; Fan, Z.C. Research Progress and Prospects on Control Measures of Sweet Potato Virus Diseases. Crops 2016, 3, 6–11. [Google Scholar] [CrossRef]
- Karyeija, R.F.; Kreuze, J.F.; Gibson, R.W.; Valkonen, J.P.T. Two Serotypes of Sweetpotato Feathery Mottle Virus in Uganda and Their Interaction with Resistant Sweetpotato Cultivars. Phytopathology® 2000, 90, 1250–1255. [Google Scholar] [CrossRef]
- He, Y.; Chen, Z.; Li, Y.; He, M.; Zhang, X.; Zhi, S.; Shen, W.; Qin, S.; Zhang, K.; Ni, Q. Research Progress on Virus Elimination Techniques for Sweet Potato. J. Chang. Veg. 2018, 8, 36–39. [Google Scholar]
- Sun, Z.; Gong, Y.; Zhao, L.; Shi, J.; Mao, B. Advances in Researches on Molecular Biology of SPVD. J. Nucl. Agric. Sci. 2020, 34, 71–77. [Google Scholar] [CrossRef]
- Zeng, F.; Ding, Z.; Song, Q.; Xiao, J.; Zheng, J.; Li, H.; Luo, Z.; Wang, Z.; Yue, X.; Huang, L. Feasibility of Detecting Sweet Potato (Ipomoea Batatas) Virus Disease from High-Resolution Imagery in the Field Using a Deep Learning Framework. Agronomy 2023, 13, 2801. [Google Scholar] [CrossRef]
- Sarkar, A.; Nandi, U.; Kumar Sarkar, N.; Changdar, C.; Paul, B. Deep Learning Based Hyperspectral Image Classification: A Review For Future Enhancement. Int. J. Comput. Digit. Syst. 2024, 15, 419–435. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Li, H.; Li, C.; Wang, A.; Yang, Y.; Wang, P. Hyperspectral Sensing of Plant Diseases: Principle and Methods. Agronomy 2022, 12, 1451. [Google Scholar] [CrossRef]
- Lowe, A.; Harrison, N.; French, A.P. Hyperspectral Image Analysis Techniques for the Detection and Classification of the Early Onset of Plant Disease and Stress. Plant Methods 2017, 13, 80. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, T.; Guo, W.; Xu, X.; Qiao, H.; Xie, Y.; Ma, X. Leaf Area Index Estimation Model for UAV Image Hyperspectral Data Based on Wavelength Variable Selection and Machine Learning Methods. Plant Methods 2021, 17, 49. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Moriya, É.A.S.; Imai, N.N.; Tommaselli, A.M.G.; Honkavaara, E.; Rosalen, D.L. Design of Vegetation Index for Identifying the Mosaic Virus in Sugarcane Plantation: A Brazilian Case Study. Agronomy 2023, 13, 1542. [Google Scholar] [CrossRef]
- Shi, Y.; Han, L.; Kleerekoper, A.; Chang, S.; Hu, T. Novel CropdocNet Model for Automated Potato Late Blight Disease Detection from Unmanned Aerial Vehicle-Based Hyperspectral Imagery. Remote Sens. 2022, 14, 396. [Google Scholar] [CrossRef]
- Mickey Wang, Y.; Ostendorf, B.; Pagay, V. Evaluating the Potential of High-Resolution Hyperspectral UAV Imagery for Grapevine Viral Disease Detection in Australian Vineyards. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103876. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, M.; Zhang, H.; He, B.; Zhang, Y. Rice False Smut Monitoring Based on Band Selection of UAV Hyperspectral Data. Remote Sens. 2023, 15, 2961. [Google Scholar] [CrossRef]
- Gao, J.; Ding, M.; Sun, Q.; Dong, J.; Wang, H.; Ma, Z. Classification of Southern Corn Rust Severity Based on Leaf-Level Hyperspectral Data Collected under Solar Illumination. Remote Sens. 2022, 14, 2551. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, X.; Yang, Z.; Zhou, C.; Wang, R.; Zhang, K.; Lv, X.; Yang, L.; Wang, Z.; Li, P.; et al. Pixel-Level Regression for UAV Hyperspectral Images: Deep Learning-Based Quantitative Inverse of Wheat Stripe Rust Disease Index. Comput. Electron. Agric. 2023, 215, 108434. [Google Scholar] [CrossRef]
- Zhang, E.; Zhang, J.; Bai, J.; Bian, J.; Fang, S.; Zhan, T.; Feng, M. Attention-Embedded Triple-Fusion Branch CNN for Hyperspectral Image Classification. Remote Sens. 2023, 15, 2150. [Google Scholar] [CrossRef]
- Datta, D.; Mallick, P.K.; Gupta, D.; Chae, G.-S. Hyperspectral Image Classification Based on Novel Hybridization of Spatial-Spectral-Superpixelwise Principal Component Analysis and Dense 2D-3D Convolutional Neural Network Fusion Architecture. Can. J. Remote Sens. 2022, 48, 663–680. [Google Scholar] [CrossRef]
- Gao, H.; Chen, Z.; Li, C. Sandwich Convolutional Neural Network for Hyperspectral Image Classification Using Spectral Feature Enhancement. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3006–3015. [Google Scholar] [CrossRef]
- Xue, Z.; Yu, X.; Liu, B.; Tan, X.; Wei, X. HResNetAM: Hierarchical Residual Network With Attention Mechanism for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3566–3580. [Google Scholar] [CrossRef]
- Mu, Q.; Kang, Z.; Guo, Y.; Chen, L.; Wang, S.; Zhao, Y. Hyperspectral Image Classification of Wolfberry with Different Geographical Origins Based on Three-Dimensional Convolutional Neural Network. Int. J. Food Prop. 2021, 24, 1705–1721. [Google Scholar] [CrossRef]
- Trivedi, A.K.; Mahajan, T.; Maheshwari, T.; Mehta, R.; Tiwari, S. Leveraging Feature Fusion Ensemble of VGG16 and ResNet-50 for Automated Potato Leaf Abnormality Detection in Precision Agriculture. Soft Comput. 2025, 29, 2263–2277. [Google Scholar] [CrossRef]
- Zeng, T.; Wang, Y.; Yang, Y.; Liang, Q.; Fang, J.; Li, Y.; Zhang, H.; Fu, W.; Wang, J.; Zhang, X. Early Detection of Rubber Tree Powdery Mildew Using UAV-Based Hyperspectral Imagery and Deep Learning. Comput. Electron. Agric. 2024, 220, 108909. [Google Scholar] [CrossRef]
- Bhatti, U.A.; Bazai, S.U.; Hussain, S.; Fakhar, S.; Ku, C.S.; Marjan, S.; Yee, P.L.; Jing, L. Deep Learning-Based Trees Disease Recognition and Classification Using Hyperspectral Data. Comput. Mater. Contin. 2023, 77, 681–697. [Google Scholar] [CrossRef]
- Zheng, J.; Sun, C.; Zhao, S.; Hu, M.; Zhang, S.; Li, J. Classification of Salt Marsh Vegetation in the Yangtze River Delta of China Using the Pixel-Level Time-Series and XGBoost Algorithm. J. Remote Sens. 2023, 3, 0036. [Google Scholar] [CrossRef]
- Yang, R.; Kan, J. Classification of Tree Species at the Leaf Level Based on Hyperspectral Imaging Technology. J. Appl. Spectrosc. 2020, 87, 184–193. [Google Scholar] [CrossRef]
- Zhang, C.L.; Sun, H.J.; Yang, D.J.; Ma, J.K.; Xie, Y.P. Effects of Leaf Curl Virus on Growth Characteristic and Yield of Sweet Potato. J. North. Agric. 2020, 48, 94–99. [Google Scholar] [CrossRef]
- Ping, Y. Lipid Metabolism Patterns in SPVD-Infected Sweet Potato Leaves Under Different Temperature Regimes; Jiangsu Normal University: Xuzhou, China, 2018. [Google Scholar]
- Wei, X.; Johnson, M.A.; Langston, D.B.; Mehl, H.L.; Li, S. Identifying Optimal Wavelengths as Disease Signatures Using Hyperspectral Sensor and Machine Learning. Remote Sens. 2021, 13, 2833. [Google Scholar] [CrossRef]
- Fang, L.; He, N.; Li, S.; Plaza, A.J.; Plaza, J. A New Spatial–Spectral Feature Extraction Method for Hyperspectral Images Using Local Covariance Matrix Representation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3534–3546. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, C. mRMR-Based Feature Selection for Classification of Cotton Foreign Matter Using Hyperspectral Imaging. Comput. Electron. Agric. 2015, 119, 191–200. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, F.; Li, R.; Zhang, M.; Luo, X. Hidden AS Link Prediction Based on Random Forest Feature Selection and GWO-XGBoost Model. Comput. Netw. 2025, 262, 111164. [Google Scholar] [CrossRef]
- Allouis, T.; Durrieu, S.; Vega, C.; Couteron, P. Stem Volume and Above-Ground Biomass Estimation of Individual Pine Trees From LiDAR Data: Contribution of Full-Waveform Signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 924–934. [Google Scholar] [CrossRef]
- Blackburn, G.A. Spectral Indices for Estimating Photosynthetic Pigment Concentrations: A Test Using Senescent Tree Leaves. Int. J. Remote Sens. 1998, 19, 657–675. [Google Scholar] [CrossRef]
- Blackburn, G.A. Relationships between Spectral Reflectance and Pigment Concentrations in Stacks of Deciduous Broadleaves. Remote Sens. Environ. 1999, 70, 224–237. [Google Scholar] [CrossRef]
- Chappelle, E.W.; Kim, M.S.; Iii, M.M. Ratio Analysis of Reflectance Spectra (RARS): An Algorithm for the Remote Estimation of the Concentrations of Chlorophyll A, Chlorophyll B, and Carotenoids in Soybean Leaves. Remote Sens. Environ. 1992, 39, 239–247. [Google Scholar] [CrossRef]
- Becker, F.; Choudhury, B.J. Relative sensitivity of normalized difference vegetation Index (NDVI) and microwave polarization difference Index (MPDI) for vegetation and desertification monitoring. Remote Sens. Environ. 1988, 24, 297–311. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- Maccioni, A.; Agati, G.; Mazzinghi, P. New Vegetation Indices for Remote Measurement of Chlorophylls Based on Leaf Directional Reflectance Spectra. J. Photochem. Photobiol. B 2001, 61, 52–61. [Google Scholar] [CrossRef]
- Datt, B. A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests Using Eucalyptus Leaves. J. Plant Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Lu, S.; Lu, F.; You, W.; Wang, Z.; Liu, Y.; Omasa, K. A Robust Vegetation Index for Remotely Assessing Chlorophyll Content of Dorsiventral Leaves across Several Species in Different Seasons. Plant Methods 2018, 14, 15. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated Narrow-Band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band Model for Noninvasive Estimation of Chlorophyll, Carotenoids, and Anthocyanin Contents in Higher Plant Leaves. Geophys. Res. Lett. 2006, 33, 431–433. [Google Scholar] [CrossRef]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A Narrow-Waveband Spectral Index That Tracks Diurnal Changes in Photosynthetic Efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Yoav, Z.; Olga, B. Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy. Photochem. Photobiol. 2002, 75, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Mahlein, A.K.; Rumpf, T.; Welke, P. Development of Spectral Indices for Detecting and Identifying Plant Diseases. Remote Sens. Environ. 2013, 128, 21–30. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive Optical Detection of Pigment Changes during Leaf Senescence and Fruit Ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Carter, G.A. Ratios of Leaf Reflectances in Narrow Wavebands as Indicators of Plant Stress. Int. J. Remote Sens. 1994, 15, 697–703. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Fauvel, M.; Chanussot, J.; Benediktsson, J.A. SVM- and MRF-Based Method for Accurate Classification of Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2010, 7, 736–740. [Google Scholar] [CrossRef]
- Li, S.; Sun, L.; Tian, Y.; Lu, X.; Fu, Z.; Lv, G.; Zhang, L.; Xu, Y.; Che, W. Research on Non-Destructive Identification Technology of Rice Varieties Based on HSI and GBDT. Infrared Phys. Technol. 2024, 142, 105511. [Google Scholar] [CrossRef]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3D-2D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 277–281. [Google Scholar] [CrossRef]
- Kalaivani, S.; Tharini, C.; Viswa, T.M.S.; Sara, K.Z.F.; Abinaya, S.T. ResNet-Based Classification for Leaf Disease Detection. J. Inst. Eng. India Ser. B 2025, 106, 1–14. [Google Scholar] [CrossRef]
- Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding Deep Learning (Still) Requires Rethinking Generalization. Commun. ACM 2021, 64, 107–115. [Google Scholar] [CrossRef]
- Smirnov, E.A.; Timoshenko, D.M.; Andrianov, S.N. Comparison of Regularization Methods for ImageNet Classification with Deep Convolutional Neural Networks. AASRI Procedia 2014, 6, 89–94. [Google Scholar] [CrossRef]
- Chen, S.; Jin, M.; Ding, J. Hyperspectral Remote Sensing Image Classification Based on Dense Residual Three-Dimensional Convolutional Neural Network. Multimed. Tools Appl. 2021, 80, 1859–1882. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, A.M.; Mazzara, M.; Distefano, S.; Ali, M.; Sarfraz, M.S. A Fast and Compact 3-D CNN for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, H.; Pan, L. A Gamma-Signal-Regulated Connected Components Labeling Algorithm. Pattern Recognit. 2019, 91, 281–290. [Google Scholar] [CrossRef]
- Lam, L.; Suen, S.Y. Application of Majority Voting to Pattern Recognition: An Analysis of Its Behavior and Performance. IEEE Trans. Syst. Man Cybern.-Part Syst. Hum. 1997, 27, 553–568. [Google Scholar] [CrossRef]
- Gao, J.; Westergaard, J.C.; Sundmark, E.H.R.; Bagge, M.; Liljeroth, E.; Alexandersson, E. Automatic Late Blight Lesion Recognition and Severity Quantification Based on Field Imagery of Diverse Potato Genotypes by Deep Learning. Knowl.-Based Syst. 2021, 214, 106723. [Google Scholar] [CrossRef]
- Foody, G.M. Explaining the Unsuitability of the Kappa Coefficient in the Assessment and Comparison of the Accuracy of Thematic Maps Obtained by Image Classification. Remote Sens. Environ. 2020, 239, 111630. [Google Scholar] [CrossRef]
- Untiveros, M.; Fuentes, S.; Salazar, L.F. Synergistic Interaction of Sweet Potato Chlorotic Stunt Virus (Crinivirus) with Carla-, Cucumo-, Ipomo-, and Potyviruses Infecting Sweet Potato. Plant Dis. 2007, 91, 669–676. [Google Scholar] [CrossRef]
- Kokkinos, C.D.; Clark, C.A.; McGregor, C.E.; LaBonte, D.R. The Effect of Sweet Potato Virus Disease and Its Viral Components on Gene Expression Levels in Sweetpotato. J. Am. Soc. Hortic. Sci. 2006, 131, 657–666. [Google Scholar] [CrossRef]
- Römer, C.; Wahabzada, M.; Ballvora, A.; Pinto, F.; Rossini, M.; Panigada, C.; Behmann, J.; Léon, J.; Thurau, C.; Bauckhage, C.; et al. Early Drought Stress Detection in Cereals: Simplex Volume Maximisation for Hyperspectral Image Analysis. Funct. Plant Biol. 2012, 39, 878. [Google Scholar] [CrossRef]
- Grisham, M.P.; Johnson, R.M.; Zimba, P.V. Detecting Sugarcane Yellow Leaf Virus Infection in Asymptomatic Leaves with Hyperspectral Remote Sensing and Associated Leaf Pigment Changes. J. Virol. Methods 2010, 167, 140–145. [Google Scholar] [CrossRef]
- Chávez, P.; Zorogastúa, P.; Chuquillanqui, C.; Salazar, L.F.; Mares, V.; Quiroz, R. Assessing Potato Yellow Vein Virus (PYVV) Infection Using Remotely Sensed Data. Int. J. Pest Manag. 2009, 55, 251–256. [Google Scholar] [CrossRef]
- Wang, Y.M.; Ostendorf, B.; Pagay, V. Detecting Grapevine Virus Infections in Red and White Winegrape Canopies Using Proximal Hyperspectral Sensing. Sensors 2023, 23, 2851. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa Yield Prediction Using UAV-Based Hyperspectral Imagery and Ensemble Learning. Remote Sens. 2020, 12, 2028. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Ackleson, S.G.; Joyce, K.E.; Hestir, E.L.; Castagna, A.; Lavender, S.; McManus, M.A. Living up to the Hype of Hyperspectral Aquatic Remote Sensing: Science, Resources and Outlook. Front. Environ. Sci. 2021, 9, 649528. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, Z.; Liu, X.; Ustin, S.L. Detection of Stress in Tomatoes Induced by Late Blight Disease in California, USA, Using Hyperspectral Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2003, 4, 295–310. [Google Scholar] [CrossRef]
- Ali, M.M.; Bachik, N.A.; Muhadi, N.; Atirah; Tuan Yusof, T.N.; Gomes, C. Non-Destructive Techniques of Detecting Plant Diseases: A Review. Physiol. Mol. Plant Pathol. 2019, 108, 101426. [Google Scholar] [CrossRef]
- Larsolle, A.; Hamid Muhammed, H. Measuring Crop Status Using Multivariate Analysis of Hyperspectral Field Reflectance with Application to Disease Severity and Plant Density. Precis. Agric. 2007, 8, 37–47. [Google Scholar] [CrossRef]
- Rumpf, T.; Mahlein, A.-K.; Steiner, U.; Oerke, E.-C.; Dehne, H.-W.; Plümer, L. Early Detection and Classification of Plant Diseases with Support Vector Machines Based on Hyperspectral Reflectance. Comput. Electron. Agric. 2010, 74, 91–99. [Google Scholar] [CrossRef]
Type | Spectral Index | Short | Formulation | Reference |
---|---|---|---|---|
Chlorophyll | Pigment-Specific Simple Ratio | PSSRa | R800/R675 | [36] |
PSSRb | R800/R650 | [37] | ||
Ratio Analysis of Reflectance Spectra | RARSa | R675/R700 | [38] | |
RARSb | R675/R650 × R700 | |||
Normalized Difference Vegetation Index | NDVI | (RNIR − RR)/(RNIR + RR) | [39] | |
Red-Edge NDVI | mNDVI | (R750 − R705)/(R750 + R705) | [40] | |
Green NDVI | gNDVI | (R750 − RG)/(R750 + RG) | [41] | |
Macc01 | Macc01 | (R780 − R710)/(R780 − R680) | [42] | |
DATT | DATT | (R850 − R710)/(R850 − R680) | [43] | |
Modified DATT | MDATT | (R721 − R744)/(R721 − R714) | [44] | |
Red-Edge Chlorophyll Index | CI | R750/R710 | [45] | |
Chl_red edge | Chl_red edge | Rnir/Rred_edge − 1 | [46] | |
Carotenoid | Photochemical Reflectance Index | PRI | (R531 − R570)/(R531 + R570) | [47] |
Carotenoid Reflectance Index | CRI550 | (1/R510) − (1/R550) | [48] | |
CRI700 | (1/R510) − (1/R700) | |||
CRI515,550 | (1/R515) − (1/R550) | |||
CRI515,550 | (1/R515) − (1/R700) | |||
RI530,800 | RI530,800 | R530/R800 | ||
ND800,530 | ND800,530 | (R800 − R530)/(R800 + R530) | ||
Plant Stress | Health Index (534,698,704) | HI_2013 | (R534 − R698)/(R534 + R698) − 0.5 × R704 | [49] |
Plant Senescence Reflectance Index | PSRI | (R680 − R500)/R750 | [50] | |
Simple Ratio | RR | R695/R670 | [51] | |
R695/R760 | ||||
R710/R760 |
Method | Wavelength/nm | VIF (nm) |
---|---|---|
LCM | 794, 798, 802, 806, 810, 814, 818, 822, 826, 830, 834, 854, 858, 862, 866, 870, 874, 878, 882, 886, 890, 894, 898, 902, 906, 910, 914, 918, 922, 926 | 794, 926 |
mRMR | 674, 678, 682, 686, 770, 774, 778, 782, 786, 790, 794, 798, 802, 806, 810, 814, 818, 822, 826, 830, 834, 838, 842, 846, 906, 914, 922, 926, 930, 934 | 674, 686, 906 |
RF | 450, 454, 458, 646, 650, 662, 666, 670, 674, 678, 682, 686, 690, 694, 698, 702, 706, 710, 714, 718, 722, 790, 794, 802, 806, 810, 814, 818, 822, 834 | 458, 650, 706, 714, 914 |
Method | OA/% | F1/% |
---|---|---|
LCM | 76.75 | 75.37 |
mRMR | 89.15 | 87.88 |
RF | 91.36 | 90.41 |
Type | Chlorophyll | Carotenoid | |||
---|---|---|---|---|---|
Index | PSSRb | DATT | MDATT | PRI | ND800,530 |
Method | SVM | GBDT | ResNet | 3D-CNN | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OA/% | F1/% | UA_mean | PA_mean | OA/% | F1/% | UA_mean | PA_mean | OA/% | F1/% | UA_mean | PA_mean | OA/% | F1/% | UA_mean | PA_mean | |
LCM + Vis | 91.33 | 90.81 | 0.9332 | 0.9299 | 91.50 | 91.07 | 0.9136 | 0.9098 | 93.07 | 92.41 | 0.9238 | 0.9257 | 93.86 | 93.66 | 0.9394 | 0.9369 |
mRMR + Vis | 91.18 | 90.65 | 0.9333 | 0.9297 | 91.46 | 91.02 | 0.9133 | 0.9093 | 93.37 | 92.67 | 0.9294 | 0.9257 | 94.90 | 94.68 | 0.9303 | 0.9280 |
RF + Vis | 91.49 | 91.00 | 0.9343 | 0.9311 | 91.90 | 91.49 | 0.9422 | 0.9411 | 93.67 | 92.96 | 0.9351 | 0.9303 | 96.55 | 95.36 | 0.9498 | 0.9504 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Wang, W.; Su, H.; Yang, G.; Xue, J.; Hou, H.; Geng, X.; Cao, Q.; Xu, Z. PLCNet: A 3D-CNN-Based Plant-Level Classification Network Hyperspectral Framework for Sweetpotato Virus Disease Detection. Remote Sens. 2025, 17, 2882. https://doi.org/10.3390/rs17162882
Zhang Q, Wang W, Su H, Yang G, Xue J, Hou H, Geng X, Cao Q, Xu Z. PLCNet: A 3D-CNN-Based Plant-Level Classification Network Hyperspectral Framework for Sweetpotato Virus Disease Detection. Remote Sensing. 2025; 17(16):2882. https://doi.org/10.3390/rs17162882
Chicago/Turabian StyleZhang, Qiaofeng, Wei Wang, Han Su, Gaoxiang Yang, Jiawen Xue, Hui Hou, Xiaoyue Geng, Qinghe Cao, and Zhen Xu. 2025. "PLCNet: A 3D-CNN-Based Plant-Level Classification Network Hyperspectral Framework for Sweetpotato Virus Disease Detection" Remote Sensing 17, no. 16: 2882. https://doi.org/10.3390/rs17162882
APA StyleZhang, Q., Wang, W., Su, H., Yang, G., Xue, J., Hou, H., Geng, X., Cao, Q., & Xu, Z. (2025). PLCNet: A 3D-CNN-Based Plant-Level Classification Network Hyperspectral Framework for Sweetpotato Virus Disease Detection. Remote Sensing, 17(16), 2882. https://doi.org/10.3390/rs17162882