Optimizing Multi-Camera Mobile Mapping Systems with Pose Graph and Feature-Based Approaches
Abstract
1. Introduction
1.1. Related Works
1.2. Research Objectives and Contributions
2. Multi-Camera V-SLAM Approaches and Optimization Algorithms
2.1. Multi-Camera V-SLAM Approaches
2.1.1. Multiple Single-Instance Stereo V-SLAM
2.1.2. Multi-View Odometry
2.2. Optimization Methods
2.2.1. Multi-View Feature-Based Optimization
2.2.2. Multi-Camera Pose Graph Optimization (PGO)
- ○
- (⋅): Robust loss function
- ○
- Ti ϵ SE(3): Estimated absolute pose at node i
- ○
- Zij ϵ SE(3): Measured relative pose from node i to node j
- ○
- ∑ij: Covariance of measurement Zij
- ○
- Log(∙): Log map from SE(3) to the Lie algebra
- ○
- ‖e‖2∑−1 = eT∑−1e: Mahalanobis form
2.3. Integration Methodology
2.3.1. Multi-Instance Stereo V-SLAM
2.3.2. Multi-View V-SLAM
3. Case Studies and Evaluation Approach
3.1. Case Study 1: Sordine of the Duomo Di Milano
3.2. Case Study 2: The Minguzzi Spiral Staircase of the Duomo Di Milano
3.3. Ground Truth and Evaluation Methodology
- (1)
- Absolute Pose Error (APE): assessing the global consistency of the trajectory with respect to translational deviations.
- (2)
- Relative Poses Error (RPE): assessing the local consistency of the trajectory on translation and orientation differences, with the reported error on the translational deviations.
4. Results
4.1. Multi-Instance Stereo V-SLAM Optimization
4.2. Multi-View V-SLAM Optimization
5. Discussion
6. Conclusions
7. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pollefeys, M.; Frahm, J.-M.; Fraundorfer, F.; Zach, C.; Wu, C.; Clipp, B.; Gallup, D. Challenges in Wide-Area Structure-from-Motion. IPSJ Trans. Comput. Vis. Appl. 2010, 2, 105–120. [Google Scholar] [CrossRef][Green Version]
- Rüther, H.; Bhurtha, R.; Held, C.; Schröder, R.; Wessels, S. Laser Scanning in Heritage Documentation. Photogramm. Eng. Remote Sens. 2012, 78, 309–316. [Google Scholar] [CrossRef]
- Holst, C.; Kuhlmann, H. Challenges and Present Fields of Action at Laser Scanner Based Deformation Analyses. J. Appl. Geod. 2016, 10, 17–25. [Google Scholar] [CrossRef]
- Leduc, P.; Peirce, S.; Ashmore, P. Short Communication: Challenges and Applications of Structure-from-Motion Photogrammetry in a Physical Model of a Braided River. Earth Surf. Dynam. 2019, 7, 97–106. [Google Scholar] [CrossRef]
- Berra, E.F.; Peppa, M.V. Advances and Challenges of UAV SFM MVS Photogrammetry and Remote Sensing: Short Review. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–27 March 2020; pp. 267–272. [Google Scholar] [CrossRef]
- Waqar, A.; Othman, I.; Saad, N.; Qureshi, A.H.; Azab, M.; Khan, A.M. Complexities for Adopting 3D Laser Scanners in the AEC Industry: Structural Equation Modeling. Appl. Eng. Sci. 2023, 16, 100160. [Google Scholar] [CrossRef]
- Elhashash, M.; Albanwan, H.; Qin, R. A Review of Mobile Mapping Systems: From Sensors to Applications. Sensors 2022, 22, 4262. [Google Scholar] [CrossRef]
- Ortiz-Coder, P.; Sánchez-Ríos, A. A Self-Assembly Portable Mobile Mapping System for Archeological Reconstruction Based on VSLAM-Photogrammetric Algorithm. Sensors 2019, 19, 3952. [Google Scholar] [CrossRef]
- Torresani, A.; Menna, F.; Battisti, R.; Remondino, F. A V-SLAM Guided and Portable System for Photogrammetric Applications. Remote Sens. 2021, 13, 2351. [Google Scholar] [CrossRef]
- Perfetti, L.; Fassi, F.; Vassena, G. Ant3D—A Fisheye Multi-Camera System to Survey Narrow Spaces. Sensors 2024, 24, 4177. [Google Scholar] [CrossRef]
- Będkowski, J. Open Source, Open Hardware Hand-Held Mobile Mapping System for Large Scale Surveys. SoftwareX 2024, 25, 101618. [Google Scholar] [CrossRef]
- Szrek, A.; Romańczukiewicz, K.; Kujawa, P.; Trybała, P. Comparison of TLS and SLAM Technologies for 3D Reconstruction of Objects with Different Geometries. IOP Conf. Ser. Earth Environ. Sci. 2024, 1295, 012012. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, L.; Yang, J.; Cao, C.; Wang, W.; Ran, Y.; Tan, Z.; Luo, M. A Review of Multi-Sensor Fusion SLAM Systems Based on 3D LIDAR. Remote Sens. 2022, 14, 2835. [Google Scholar] [CrossRef]
- Zhu, J.; Li, H.; Zhang, T. Camera, LiDAR, and IMU Based Multi-Sensor Fusion SLAM: A Survey. Tsinghua Sci. Technol. 2024, 29, 415–429. [Google Scholar] [CrossRef]
- Smith, R.; Self, M.; Cheeseman, P. A Stochastic Map for Uncertain Spatial Relationships. In Proceedings of the 4th International Symposium on Robotic Research, Santa Cruz, CA, USA, 9–14 August 1987; pp. 467–474. [Google Scholar]
- Durrant-Whyte, H.; Bailey, T. Simultaneous Localization and Mapping: Part I. IEEE Robot. Automat. Mag. 2006, 13, 99–110. [Google Scholar] [CrossRef]
- Jin, Y.; Mishkin, D.; Mishchuk, A.; Matas, J.; Fua, P.; Yi, K.M.; Trulls, E. Image Matching Across Wide Baselines: From Paper to Practice. Int. J. Comput. Vis. 2021, 129, 517–547. [Google Scholar] [CrossRef]
- Klein, G.; Murray, D. Parallel Tracking and Mapping for Small AR Workspaces. In Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007; pp. 1–10. [Google Scholar]
- Newcombe, R.A.; Lovegrove, S.J.; Davison, A.J. DTAM: Dense Tracking and Mapping in Real-Time. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2320–2327. [Google Scholar]
- Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef]
- Macario Barros, A.; Michel, M.; Moline, Y.; Corre, G.; Carrel, F. A Comprehensive Survey of Visual SLAM Algorithms. Robotics 2022, 11, 24. [Google Scholar] [CrossRef]
- Kuo, J.; Muglikar, M.; Zhang, Z.; Scaramuzza, D. Redesigning SLAM for Arbitrary Multi-Camera Systems. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–4 June 2020; pp. 2116–2122. [Google Scholar]
- Elalailyi, A.; Perfetti, L.; Fassi, F.; Remondino, F. V-SLAM-Aided Photogrammetry to Process Fisheye Multi-Camera Systems Sequences. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 48, 189–195. [Google Scholar] [CrossRef]
- Kaveti, P.; Vaidyanathan, S.N.; Chelvan, A.T.; Singh, H. Design and Evaluation of a Generic Visual SLAM Framework for Multi Camera Systems. IEEE Robot. Autom. Lett. 2023, 8, 7368–7375. [Google Scholar] [CrossRef]
- Davison. Real-Time Simultaneous Localisation and Mapping with a Single Camera. In Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; Volume 2, pp. 1403–1410. [Google Scholar]
- Forster, C.; Pizzoli, M.; Scaramuzza, D. SVO: Fast Semi-Direct Monocular Visual Odometry. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–5 June 2014; pp. 15–22. [Google Scholar]
- Engel, J.; Koltun, V.; Cremers, D. Direct Sparse Odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 611–625. [Google Scholar] [CrossRef]
- Yang, S.; Scherer, S. CubeSLAM: Monocular 3-D Object SLAM. IEEE Trans. Robot. 2019, 35, 925–938. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, S.; Wang, S.; Yin, Y.; Yang, Y.; Fan, Q.; Chen, B. SLAM3R: Real-Time Dense Scene Reconstruction from Monocular RGB Videos. arXiv 2025, arXiv:2412.09401. [Google Scholar] [CrossRef]
- Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef]
- Gomez-Ojeda, R.; Zuñiga-Noël, D.; Moreno, F.-A.; Scaramuzza, D.; Gonzalez-Jimenez, J. PL-SLAM: A Stereo SLAM System through the Combination of Points and Line Segments. IEEE Trans. Robot. 2019, 35, 734–746. [Google Scholar] [CrossRef]
- Nguyen, D.-D.; Elouardi, A.; Rodriguez Florez, S.A.; Bouaziz, S. HOOFR SLAM System: An Embedded Vision SLAM Algorithm and its Hardware-Software Mapping-Based Intelligent Vehicles Applications. IEEE Trans. Intell. Transport. Syst. 2019, 20, 4103–4118. [Google Scholar] [CrossRef]
- Ince, O.F.; Kim, J.-S. TIMA SLAM: Tracking Independently and Mapping Altogether for an Uncalibrated Multi-Camera System. Sensors 2021, 21, 409. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, K.; Wang, S. AQUA-SLAM: Tightly-Coupled Underwater Acoustic-Visual-Inertial SLAM with Sensor Calibration. arXiv 2025, arXiv:2503.11420. [Google Scholar] [CrossRef]
- Steinbrucker, F.; Sturm, J.; Cremers, D. Real-Time Visual Odometry from Dense RGB-D Images. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011; pp. 719–722. [Google Scholar]
- Kerl, C.; Sturm, J.; Cremers, D. Dense Visual SLAM for RGB-D Cameras. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 2100–2106. [Google Scholar]
- Kerl, C.; Stuckler, J.; Cremers, D. Dense Continuous-Time Tracking and Mapping with Rolling Shutter RGB-D Cameras. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 2264–2272. [Google Scholar]
- Li, G.; Chen, Q.; Yan, Y.; Pu, J. EC-SLAM: Effectively Constrained Neural RGB-D SLAM with Sparse TSDF Encoding and Global Bundle Adjustment. arXiv 2024, arXiv:2404.13346. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, Y.; Li, K.; Feng, J.; Zhang, L. RoDyn-SLAM: Robust Dynamic Dense RGB-D SLAM with Neural Radiance Fields. IEEE Robot. Autom. Lett. 2024, 9, 7509–7516. [Google Scholar] [CrossRef]
- Hu, J.; Chen, X.; Feng, B.; Li, G.; Yang, L.; Bao, H.; Zhang, G.; Cui, Z. CG-SLAM: Efficient Dense RGB-D SLAM in a Consistent Uncertainty-Aware 3D Gaussian Field. arXiv 2024, arXiv:2403.16095. [Google Scholar] [CrossRef]
- Chai, W.; Li, C.; Zhang, M.; Sun, Z.; Yuan, H.; Lin, F.; Li, Q. An Enhanced Pedestrian Visual-Inertial SLAM System Aided with Vanishing Point in Indoor Environments. Sensors 2021, 21, 7428. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, Z.; Tie, M.; Ai, Z.; Gan, Z.; Ding, W. VINGS-Mono: Visual-Inertial Gaussian Splatting Monocular SLAM in Large Scenes. arXiv 2025, arXiv:2501.08286. [Google Scholar] [CrossRef]
- Liu, B.; Cheng, M. Real-Time Visual SLAM Optimization Method Based on YOLOv8 and Geometric Constraints in Dynamic Scenes. In Proceedings of the International Conference on Remote Sensing, Mapping, and Image Processing, Xiamen, China, 19–21 January 2024; p. 10. [Google Scholar]
- Yang, Z.; Zhang, H.; Fan, X. Dynamic Visual SLAM Algorithm Based on Lightweight YOLOv8. In Proceedings of the 2024 3rd International Conference on Artificial Intelligence and Computer Information Technology (AICIT), Yichang, China, 20–22 September 2024; pp. 1–4. [Google Scholar]
- Li, Y.; Song, G.; Hao, S.; Mao, J.; Song, A. Semantic Stereo Visual SLAM toward Outdoor Dynamic Environments Based on ORB-SLAM2. Int. J. Robot. Res. Appl. 2023, 50, 542–554. [Google Scholar] [CrossRef]
- Islam, Q.U.; Ibrahim, H.; Chin, P.K.; Lim, K.; Abdullah, M.Z. MVS-SLAM: Enhanced Multiview Geometry for Improved Semantic RGBD SLAM in Dynamic Environment. J. Field Robot. 2024, 41, 109–130. [Google Scholar] [CrossRef]
- Yeh, T.-H.; Chiang, K.-W.; Lu, P.-R.; Li, P.-L.; Lin, Y.-S.; Hsu, C.-Y. V-SLAM Enhanced INS/GNSS Fusion Scheme for Lane Level Vehicular Navigation Applications in Dynamic Environment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 547–553. [Google Scholar] [CrossRef]
- Song, H.; Liu, C.; Dai, H. BundledSLAM: An Accurate Visual SLAM System Using Multiple Cameras. In Proceedings of the IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 15–17 March 2024; pp. 106–111. [Google Scholar] [CrossRef]
- Wang, Y.; Ng, Y.; Sa, I.; Parra, A.; Rodriguez, C.; Lin, T.J.; Li, H. MAVIS: Multi-Camera Augmented Visual-Inertial SLAM Using SE2(3) Based Exact IMU Pre-Integration. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 1694–1700. [Google Scholar] [CrossRef]
- Yang, A.J.; Cui, C.; Bârsan, I.A.; Urtasun, R.; Wang, S. Asynchronous Multi-View SLAM. arXiv 2021, arXiv:2101.06562. [Google Scholar] [CrossRef]
- Li, S.; Pang, L.; Hu, X. Multicam-SLAM: Non-Overlapping Multi-Camera SLAM for Indirect Visual Localization and Navigation. arXiv 2024, arXiv:2406.06374. [Google Scholar] [CrossRef]
- Li, X.; Ling, H. PoGO-Net: Pose Graph Optimization with Graph Neural Networks. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 5875–5885. [Google Scholar]
- Duan, R.; Feng, Y.; Wen, C.-Y. Deep Pose Graph-Matching-Based Loop Closure Detection for Semantic Visual SLAM. Sustainability 2022, 14, 11864. [Google Scholar] [CrossRef]
- Jia, G.; Li, X.; Zhang, D.; Xu, W.; Lv, H.; Shi, Y.; Cai, M. Visual-SLAM Classical Framework and Key Techniques: A Review. Sensors 2022, 22, 4582. [Google Scholar] [CrossRef]
- Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Morelli, L.; Ioli, F.; Beber, R.; Menna, F.; Remondino, F.; Vitti, A. COLMAP-SLAM: A Framework for Visual Odometry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 317–324. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, X.; Miao, J.; Chen, W.; Chen, P.C.Y.; Li, Z. ALIKE: Accurate and Lightweight Keypoint Detection and Descriptor Extraction. IEEE Trans. Multimed. 2023, 25, 3101–3112. [Google Scholar] [CrossRef]
- Agisoft Metashape, version 2.1; Agisoft: St. Petersburg, Russia, 2024.
- Będkowski, J. Large-Scale Simultaneous Localization and Mapping; Cognitive Intelligence and Robotics; Springer Nature: Singapore, 2022; ISBN 978-981-19-1971-8. [Google Scholar] [CrossRef]
- Luhmann, T.; Robson, S.; Kyle, S.; Boehm, J. Close-Range Photogrammetry and 3D Imaging. De Gruyter: Berlin, Germany, 2023; ISBN 978-3-11-102967-2. [Google Scholar] [CrossRef]
- Habich, T.-L.; Stuede, M.; Labbe, M.; Spindeldreier, S. Have I Been Here before? Learning to Close the Loop with LiDAR Data in Graph-Based SLAM. In Proceedings of the 2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Delft, The Netherlands, 12–16 July 2021; pp. 504–510. [Google Scholar]
- Dellaert, F.; Varun, A.; Roberts, R.; Cunningham, A.; Beall, C.; Duy-Nguyen, T.; Jiang, F.; Lucacarlone; Nikai; Blanco-Claraco, J.L.; et al. Borglab/Gtsam: Release 4.2; 2023. Available online: https://github.com/borglab/gtsam (accessed on 16 October 2024).
- Carlone, L.; Kim, A.; Dellaert, F.; Barfoot, T.; Cremers, D. From Localization and Mapping to Spatial Intelligence. In SLAM Handbook; Cambridge University Press: Cambridge, MA, USA, 2024. [Google Scholar]
- Elalailyi, A.; Trybała, P.; Morelli, L.; Fassi, F.; Remondino, F.; Fregonese, L. Pose Graph Data Fusion for Visual- and LiDAR-Based Low-Cost Portable Mapping Systems. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 48, 147–154. [Google Scholar] [CrossRef]
- Grupp, M. Evo: Python Package for the Evaluation of Odometry and SLAM. 2017. Available online: https://github.com/MichaelGrupp/evo (accessed on 12 August 2024).
- Schonberger, J.L.; Frahm, J.-M. Structure-from-Motion Revisited. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 4104–4113. [Google Scholar]
- Cloud Compare, version 2.13; GPL software; Daniel Girardeau-Montaut: Grenoble, France, 2024.
- Perfetti, L.; Polari, C.; Fassi, F. Fisheye Photogrammetry: Tests and Methodologies for the Survey of Narrow Spaces. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 573–580. [Google Scholar] [CrossRef]
Sordine Study Case | Minguzzi Study Case | ||
---|---|---|---|
Total Dataset | 2731 img/cam | 1581 img/cam | |
Multi-Instance Stereo V-SLAM | Left S.I. | 636 img/cam | 592 img/cam |
Right S.I. | 765 img/cam | 489 img/cam | |
Front-right S.I. | 987 img/cam | 434 img/cam | |
Front-left S.I. | N.A | 321 img/cam | |
Multi-View V-SLAM | 1955 img/cam | 1526 img/cam | |
Photogrammetry | 2731 img/cam | 1581 img/cam | |
V-SLAM-aided photogrammetry | 1955 img/cam | 1526 img/cam |
Approaches | Cameras Absolute Poses Root Mean Square Error [m] | ||||||
---|---|---|---|---|---|---|---|
Sordine case study | Minguzzi case study | ||||||
V-SLAM | Before Optim. | Feature-Based Optim. | Pose Graph Optim. | Before Optim. | Feature-Based Optim. | Pose Graph Optim. | |
Single- instance stereo V-SLAM | Left S.I. | 0.45 (2 cam) | 0.03 (5 cam) | - | 0.92 (2 cam) | 0.12 (5 cam) | - |
Right S.I. | 1.27 (2 cam) | 0.02 (5 cam) | - | 0.34 (2 cam) | 0.05 (5 cam) | - | |
Front-right S.I. | 1.10 (2 cam) | 0.07 (5 cam) | - | 0.53 (2 cam) | 0.05 (5 cam) | - | |
Front-left S.I. | N.A | N.A | - | 0.60 (2 cam) | 0.26 (5 cam) | - | |
Multi-View Odometry/V-SLAM (5 cam) | Odometry 0.64 | V-SLAM 0.08 | - | Odometry 0.11 | V-SLAM 0.08 | - | |
Multi-Instance Stereo V-SLAM | - | 0.04 | - | 0.03 | |||
Baselines | |||||||
Photogrammetry | 0.03 | 0.05 | |||||
V-SLAM-aided Photogrammetry | 0.04 | 0.06 |
Cameras Absolute Poses Root Mean Square Error [m] | |||
---|---|---|---|
Sordine Study Case | Minguzzi Study Case | ||
Multi-View Odometry | Two cameras | 1.932 | 0.107 |
Three cameras | 0.505 | 0.113 | |
Five cameras | 0.643 | 0.110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Alailyi, A.; Morelli, L.; Trybała, P.; Fassi, F.; Remondino, F. Optimizing Multi-Camera Mobile Mapping Systems with Pose Graph and Feature-Based Approaches. Remote Sens. 2025, 17, 2810. https://doi.org/10.3390/rs17162810
El-Alailyi A, Morelli L, Trybała P, Fassi F, Remondino F. Optimizing Multi-Camera Mobile Mapping Systems with Pose Graph and Feature-Based Approaches. Remote Sensing. 2025; 17(16):2810. https://doi.org/10.3390/rs17162810
Chicago/Turabian StyleEl-Alailyi, Ahmad, Luca Morelli, Paweł Trybała, Francesco Fassi, and Fabio Remondino. 2025. "Optimizing Multi-Camera Mobile Mapping Systems with Pose Graph and Feature-Based Approaches" Remote Sensing 17, no. 16: 2810. https://doi.org/10.3390/rs17162810
APA StyleEl-Alailyi, A., Morelli, L., Trybała, P., Fassi, F., & Remondino, F. (2025). Optimizing Multi-Camera Mobile Mapping Systems with Pose Graph and Feature-Based Approaches. Remote Sensing, 17(16), 2810. https://doi.org/10.3390/rs17162810