Spatiotemporal Dynamics and Multiple Drivers of Vegetation Cover in the Jinsha River Basin: A Geodetector-Based Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Sources
2.2.1. MODIS LAI
2.2.2. Elevation and Slope
2.2.3. Meteorological Data
2.2.4. Human Activity Factor
2.2.5. Land Use Type Data
2.3. Methodology
2.3.1. Analysis of Vegetation Dynamics
- 1.
- The M-K test, paired with the Sen’s Slope method
- 2.
- Wavelet analysis
- 3.
- Spatial hot spot analysis
2.3.2. Geodetector
2.3.3. Multiple Linear Regression (MLR)
2.3.4. AutoRegressive Integrated Moving Average (ARIMA)
3. Results
3.1. Spatial and Temporal Characteristics of LAI
3.1.1. Temporal Characteristics of LAI
3.1.2. Spatial Distribution Characteristics of LAI
3.2. Analysis of Influencing Factors
3.3. Future Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Hu, X.; Cherubini, F. Accounting for exact vegetation index recording date to enhance evaluation of time-lagged and accumulated climatic effects on global vegetation greenness. Environ. Res. 2025, 275, 121398. [Google Scholar] [CrossRef]
- Shi, W.; Lu, P.; Yang, H.; Han, J.; Wang, Q. Quantifying the relative importance of natural and human factors on vegetation dynamics in China’s western frontiers during 2010–2021. Environ. Res. 2025, 271, 121120. [Google Scholar] [CrossRef]
- Zhang, Z.; Xin, Q.; Li, W. Machine learning-based modeling of vegetation leaf area index and gross primary productivity across North America and comparison with a process-based model. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002802. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A.; Adams, R.S. Evaluation of hemispherical photography for determining plant area index and geometry of a forest stand. Agric. For. Meteorol. 1991, 56, 129–143. [Google Scholar] [CrossRef]
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An overview of global leaf area index (LAI): Methods, products, validation, and applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Wei, B.; Ma, X.; Guan, H.; Yu, M.; Yang, C.; He, H.; Wang, F.; Shen, P. Dynamic simulation of leaf area index for the soybean canopy based on 3D reconstruction. Ecol. Inform. 2023, 75, 102070. [Google Scholar] [CrossRef]
- Hashimoto, H.; Wang, W.; Milesi, C.; White, M.A.; Ganguly, S.; Gamo, M.; Hirata, R.; Myneni, R.B.; Nemani, R.R. Exploring Simple Algorithms for Estimating Gross Primary Production in Forested Areas from Satellite Data. Remote Sens. 2012, 4, 303–326. [Google Scholar] [CrossRef]
- Leuning, R.; Zhang, Y.Q.; Rajaud, A.; Cleugh, H.; Tu, K. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation. Water Resour. Res. 2008, 406, W10419. [Google Scholar] [CrossRef]
- Ahlström, A.; Xia, J.; Arneth, A.; Luo, Y.; Smith, B. Importance of vegetation dynamics for future terrestrial carbon cycling. Environ. Res. Lett. 2015, 10, 054019. [Google Scholar] [CrossRef]
- Sun, Y.; Qin, Q.; Zhang, Y.; Ren, H.; Han, G.; Zhang, Z.; Zhang, T.; Wang, B. A leaf chlorophyll vegetation index with reduced LAI effect based on Sentinel-2 multispectral red-edge information. Comput. Electron. Agric. 2025, 236, 110500. [Google Scholar] [CrossRef]
- Zhuang, Z.-H.; Tsai, H.P.; Chen, C.-I.; Yang, M.-D. Subtropical region tea tree LAI estimation integrating vegetation indices and texture features derived from UAV multispectral images. Smart Agric. Technol. 2024, 9, 100650. [Google Scholar] [CrossRef]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Change Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Tesemma, Z.K.; Wei, Y.; Western, A.W.; Peel, M.C. Leaf area index variation for crop, pasture, and tree in response to climatic variation in the Goulburn–Broken catchment, Australia. J. Hydrometeorol. 2014, 15, 1592–1606. [Google Scholar] [CrossRef]
- Sun, K.; Zeng, X.; Li, F. Study on the dominant climatic driver affecting the changes of LAI of ecological fragile zones in China. J. Nat. Resour. 2021, 36, 1873–1892. [Google Scholar] [CrossRef]
- Huang, A.; Shen, R.; Shi, C.; Sun, S. Effects of satellite LAI data on modelling land surface temperature and related energy budget in the Noah-MP land surface model. J. Hydrol. 2022, 613, 128351. [Google Scholar] [CrossRef]
- Yao, L.; Wang, X.; Zhang, J.; Yao, F. Analysis of spatiotemporal variation and driving forces of leaf area index in Hainan Island over the last 20 years based on MODIS data. Chin. J. Eco-Agric. 2024, 32, 1719–1730. [Google Scholar]
- Zou, Y.; Chen, W.; Li, S.; Wang, T.; Yu, L.; Xu, M.; Singh, R.P.; Liu, C.-Q. Spatiotemporal Changes in Vegetation in the Last Two Decades (2001–2020) in the Beijing–Tianjin–Hebei Region. Remote Sens. 2022, 14, 3958. [Google Scholar] [CrossRef]
- Reygadas, Y.; Jensen, J.L.R.; Moisen, G.G.; Currit, N.; Chow, E.T. Assessing the relationship between vegetation greenness and surface temperature through Granger causality and Impulse-Response coefficients: A case study in Mexico. Int. J. Remote Sens. 2020, 41, 3761–3783. [Google Scholar] [CrossRef]
- Liang, S.; Yi, Q.; Liu, J. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 2015, 58, 64–76. [Google Scholar] [CrossRef]
- Ning, L.; Peng, W.; Yu, Y.; Xiang, J.; Wang, Y. Quantifying vegetation change and driving mechanism analysis in Sichuan from 2000 to 2020. Front. Environ. Sci. 2023, 11, 1261295. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Q.; Liu, Y.; Zeng, H. Exploring the impact of natural and human activities on vegetation changes: An integrated analysis framework based on trend analysis and machine learning. J. Environ. Manag. 2025, 374, 124092. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Liu, M.; Guo, Q.; Wu, G.; Wang, W.; Li, S. Diverse responses of gross primary production and leaf area index to drought on the Mongolian Plateau. Sci. Total Environ. 2023, 902, 166507. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, X.; Xiao, X.; Zhao, B.; Dong, J.; Kou, W.; Qin, Y.; Yang, C.; Wu, Z.; Sun, R.; et al. Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 117–130. [Google Scholar] [CrossRef]
- Guo, Y.; Cheng, L.; Ding, A.; Yuan, Y.; Li, Z.; Hou, Y.; Ren, L.; Zhang, S. Geodetector model-based quantitative analysis of vegetation change characteristics and driving forces: A case study in the Yongding River basin in China. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104027. [Google Scholar] [CrossRef]
- Guo, D.; Song, X.; Hu, R.; Ma, R.; Zhang, Y.; Gao, L.; Zhu, X.; Kardol, P. Spatio-temporal variation in leaf area index in the Yan Mountains over the past 40 years and its relationship to hydrothermal conditions. Ecol. Indic. 2023, 157, 111291. [Google Scholar] [CrossRef]
- Pennino, M.G.; Bellido, J.M.; Conesa, D.; Coll, M.; Tortosa-Ausina, E. The analysis of convergence in ecological indicators: An application to the Mediterranean fisheries. Ecol. Indic. 2017, 78, 449–457. [Google Scholar] [CrossRef]
- Stokes, E.C.; Seto, K.C. Characterizing urban infrastructural transitions for the Sustainable Development Goals using multi-temporal land, population, and nighttime light data. Remote Sens. Environ. 2019, 234, 111430. [Google Scholar] [CrossRef]
- Li, C.; Jin, Z.; Gou, L.F.; Xu, Y.; Deng, L. Hydrological regulation of seasonal Mg isotopic variation in the upper Jinsha River draining the eastern Tibetan Plateau. Chem. Geol. 2025, 684, 122773. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Liu, S.Y.; Ma, K.; Zhang, X.; Yang, Y.; Cui, F. Runoff simulation of the upper Jinsha River Basin based on LSTM driven by elevation dependent climatic forcing. Prog. Geogr. 2023, 42, 1139–1152. [Google Scholar] [CrossRef]
- An, N.; Zhang, H.; Xu, Y.; Liu, H.; Sun, J. Spatiotemporal evolution characteristics of meteorological and agricultural droughts in Jinsha River Basin. Res. Soil Water Conserv. 2025, 32, 176–188. [Google Scholar]
- Lv, H.; Gao, Z.; Yan, D.; Shang, W.; Zheng, X. Ecological flow research in response to hydrological variation: A case study of the Jinsha River Basin, China. Desalination Water Treat. 2024, 320, 100777. [Google Scholar] [CrossRef]
- Gao, F.; Pan, J.; Gong, Z. Detection of spatial and temporal variation characteristics of vegetation cover in the Lower Mekong region and the influencing factors. Sci. Rep. 2024, 14, 26673. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Cheruiyot, K. Detecting spatial economic clusters using kernel density and global and local Moran’s I analysis in Ekurhuleni metropolitan municipality, South Africa. Reg. Sci. Policy Pract. 2022, 14, 307–328. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, X.; Bian, D.; Chen, Y.; Li, Y.; Yuan, Z.; Wang, K. A novel approach for quantifying water resource spatial equilibrium based on the regional evaluation, spatiotemporal heterogeneity and geodetector analysis integrated model. J. Clean. Prod. 2023, 424, 138791. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Zhao, H. Identifying spatial influence of urban elements on road-deposited sediment and the associated phosphorus by coupling Geodetector and Bayesian Networks. J. Environ. Manag. 2022, 315, 115170. [Google Scholar] [CrossRef]
- Siddique, M.A.B.; Mahalder, B.; Haque, M.M.; Ahammad, A.K.S. Forecasting air temperature and rainfall in Mymensingh, Bangladesh with ARIMA: Implications for aquaculture management. Egypt. J. Aquat. Res. 2025, 1687–4285. [Google Scholar] [CrossRef]
- Juraphanthong, W.; Kesorn, K. Autoregressive integrated moving average with semantic information: An efficient technique for intelligent prediction of dengue cases. Eng. Appl. Artif. Intell. 2025, 143, 109985. [Google Scholar] [CrossRef]
- Wang, X.; Kang, Y.; Hyndman, R.J.; Li, F. Distributed ARIMA models for ultra-long time series. Int. J. Forecast. 2023, 39, 1163–1184. [Google Scholar] [CrossRef]
- Lu, J.; Li, J.; Fu, H.; Zou, W.; Kang, J.; Yu, H.; Lin, X. Estimation of rice yield using multi-source remote sensing data combined with crop growth model and deep learning algorithm. Agric. For. Meteorol. 2025, 370, 110600. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, W.; Yao, Y.; Pereira, P. The rising human footprint in the Tibetan Plateau threatens the effectiveness of ecological restoration on vegetation growth. J. Environ. Manag. 2024, 351, 119963. [Google Scholar] [CrossRef] [PubMed]
- Nizamani, M.M.; Hughes, A.C.; Wang, Y.; Zhang, H.L.; Lai, Z. Climate extremes and socioeconomic impact of El Niño and La Niña events. Environ. Dev. 2025, 56, 101276. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, C.; Wang, T.; Liu, Z.; Ding, L.; Mao, X. Natural and anthropogenic influences on short-term forest growth status: Evidence and mechanisms from China. J. Environ. Manag. 2025, 389, 126084. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Q.; Liu, N.; Sun, Y.; Guo, H.; Song, X. The impact of LUCC on the spatial pattern of ecological network during urbanization: A case study of Jinan City. Ecol. Indic. 2023, 155, 111004. [Google Scholar] [CrossRef]
- Gong, D.; Huang, M.; Ge, Y.; Zhu, D.; Chen, J.; Chen, Y.; Zhang, L.; Hu, B.; Lai, S.; Lin, H. Revolutionizing ecological security pattern with multi-source data and deep learning: An adaptive generation approach. Ecol. Indic. 2025, 173, 113315. [Google Scholar] [CrossRef]
- Mohammadreza, B.; Behnood, H.R.; Forward, S.; Andersson, J. A tree-based extended model to predict intention to speed for taxi drivers. Transp. Res. Part F Traffic Psychol. Behav. 2024, 103, 190–200. [Google Scholar]
- Zeng, W.; Wan, X.; Lei, M.; Gu, G.; Chen, T. Influencing factors and prediction of arsenic concentration in Pteris vittata: A combination of geodetector and empirical models. Environ. Pollut. 2022, 292, 118240. [Google Scholar] [CrossRef]
- Mazy, F.-R.; Longaretti, P.-Y. Towards a generic theoretical framework for pattern-based LUCC modeling: An accurate and powerful calibration–estimation method based on kernel density estimation. Environ. Model. Softw. 2022, 158, 105551. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, C.; Liu, Z.; Wen, J.; Zhu, J.; Xu, L.; Wang, F. Tailoring an economic-ecological-tourism coupling framework for arid-region ski resorts: A PSR model-based case study of Xinjiang, China. Ecol. Indic. 2025, 178, 113881. [Google Scholar] [CrossRef]
Data | Data Source |
---|---|
MODIS LAI | https://search.earthdata.nasa.gov/ |
Average annual temperature | https://earthengine.google.com/ |
Total annual precipitation | https://earthengine.google.com/ |
Elevation | http://srtm.csi.cgiar.org/ |
Slope | http://srtm.csi.cgiar.org/ |
Land use type | https://zenodo.org/records/8239305 |
Population density | https://github.com |
Basis of Judgment | Interactions |
---|---|
q(X1 ⋂X2) < min [q(X1), q(X2)] | Nonlinear weakening |
min [q (X1), q (X2)] < q(X1 ⋂X2) < max [q (X1), q (X2)] | Single-factor nonlinear attenuation |
q(X1 ⋂X2) > max [q (X1), q (X2)] | Two-factor enhancement |
q (X1 ⋂X2) = q (X1) + q (X2) | Independence |
q (X1 ⋂X2) > q (X1) + q (X2) | Nonlinear enhancement |
Dimensionality | Index Type | Classification Method and Quantity |
---|---|---|
Landform | Elevation | Fractile, 5 classes |
Slope | Fractile, 5 classes | |
Climate | Average annual temperature | Natural interval, 5 classes |
Total annual precipitation | Geometric spacing, 5 classes | |
Human activity | Population density | Geometric spacing, 5 classes |
Land use type | Manual operation, 13 classes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, R.; Luan, J.; Yang, J.; Xu, Z.; Xu, L.; Tian, J.; Lv, Z.; Chen, X.; Bai, Y. Spatiotemporal Dynamics and Multiple Drivers of Vegetation Cover in the Jinsha River Basin: A Geodetector-Based Analysis. Remote Sens. 2025, 17, 2783. https://doi.org/10.3390/rs17162783
Zhai R, Luan J, Yang J, Xu Z, Xu L, Tian J, Lv Z, Chen X, Bai Y. Spatiotemporal Dynamics and Multiple Drivers of Vegetation Cover in the Jinsha River Basin: A Geodetector-Based Analysis. Remote Sensing. 2025; 17(16):2783. https://doi.org/10.3390/rs17162783
Chicago/Turabian StyleZhai, Ran, Jun Luan, Juanru Yang, Zhi Xu, Liwen Xu, Jin Tian, Zhenyu Lv, Xiao Chen, and Yuping Bai. 2025. "Spatiotemporal Dynamics and Multiple Drivers of Vegetation Cover in the Jinsha River Basin: A Geodetector-Based Analysis" Remote Sensing 17, no. 16: 2783. https://doi.org/10.3390/rs17162783
APA StyleZhai, R., Luan, J., Yang, J., Xu, Z., Xu, L., Tian, J., Lv, Z., Chen, X., & Bai, Y. (2025). Spatiotemporal Dynamics and Multiple Drivers of Vegetation Cover in the Jinsha River Basin: A Geodetector-Based Analysis. Remote Sensing, 17(16), 2783. https://doi.org/10.3390/rs17162783