Multi-Band Differential SAR Interferometry for Snow Water Equivalent Retrieval over Alpine Mountains
Abstract
1. Introduction
2. DInSAR-Based SWE Retrieval
3. Performance Analysis
4. Data Selection and DInSAR Processing
4.1. Test Sites and Data Selection
4.2. DInSAR Processing
5. Results and Discussion
5.1. Val Senales Test Site
5.2. Valle d’Aosta Test Site
5.3. Final Remarks
6. Conclusions
- Ad hoc MTInSAR processing is tailored to minimize processing errors and optimize critical steps such as atmospheric phase correction, performed via model zenith delay maps obtained from the GACOS service and phase unwrapping.
- The methodology involves the masking of areas exhibiting insufficient coherence as well as spring–summer acquisitions, which are irrelevant to SWE retrieval.
- Several assumptions are involved in the estimation of the SWE values from the DInSAR phase; some of these assumptions, such as the state of snow (dry/wet) and its homogeneity, are not verifiable a priori on the ground over large areas, especially in steep topography conditions.
- In spite of the ad hoc procedure, some processing errors, such as those involved in spatial and temporal phase unwrapping or in the modeling and compensation of atmospheric phase artifacts, are difficult to quantify or predict.
- Retrieval over only relevant areas, i.e., those covered by snow in winter periods, is still plagued by generally low-coherence conditions.
- Including SAR sensors operating at different wavelengths will probably give more insight into some of the critical issues discussed in the present work. To this aim, a relevant role should be played by future missions such as ROSE-L [48], which will acquire L-band data in combination with S1, or the NISAR mission, which will operate in the L- and S-bands [49]. Both these missions will provide acquisitions at different wavelengths with a short revisit time.
- The integration of other techniques is expected to bring some benefit. For instance, the identification of areas suitable (in terms of snow coverage and status) for DInSAR-based SWE retrieval through optical or other passive sensors may help focus processing on cases where the assumptions needed by the DInSAR-based approach are likely fulfilled, thus constraining efforts and reducing inaccuracies. Also, SWE estimations obtained by exploiting X-band SAR intensity, rather than phase [28,50], may be adopted in DInSAR-based SWE retrieval to better support phase unwrapping and the evaluation of absolute SWE values.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, J.; Rind, D. The effect of snow cover on climate. J. Clim. 1991, 4, 689–706. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Schilling, S.; Dietz, A.; Kuenzer, C. Snow Water Equivalent Monitoring—A Review of Large-Scale Remote Sensing Applications. Remote Sens. 2024, 16, 1085. [Google Scholar] [CrossRef]
- Lliainen, J.; Luojus, K.; Derksen, C.; Mudryk, L.; Lemmetyinen, J.; Salminen, M.; Ikonen, J.; Takala, M.; Cohen, J.; Smolander, T.; et al. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature 2020, 581, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Luojus, K.; Pulliainen, J.; Takala, M.; Lemmetyinen, J.; Mortimer, C.; Derksen, C.; Venäläinen, P. GlobSnow v3. 0 Northern Hemisphere snow water equivalent dataset. Sci. Data 2021, 8, 163. [Google Scholar] [CrossRef] [PubMed]
- Rutter, N.; Cline, D.; Li, L. Evaluation of the NOHRSC Snow Model (NSM) in a One-Dimensional Mode. J. Hydrometeorol. 2008, 9, 695–711. [Google Scholar] [CrossRef]
- Beaudoin-Galaise, M.; Jutras, S. Comparison of Manual Snow Water Equivalent (SWE) Measurements: Seeking the Reference for a True SWE Value in a Boreal Biome. Cryosphere 2022, 16, 3199–3214. [Google Scholar] [CrossRef]
- Smith, C.D.; Kontu, A.; Laffin, R.; Pomeroy, J.W. An Assessment of Two Automated Snow Water Equivalent Instruments during the WMO Solid Precipitation Intercomparison Experiment. Cryosphere 2017, 11, 101–116. [Google Scholar] [CrossRef]
- Kelly, R.E.J.; Chang, A.T.C.; Tsang, L.; Foster, J.L. A Prototype AMSR-E Global Snow Area and Snow Depth Algorithm. IEEE Trans. Geosci. Remote Sens. 2003, 41, 230–242. [Google Scholar] [CrossRef]
- Lievens, H.; Demuzere, M.; Marshall, H.P.; Reichle, R.H.; Brucker, L.; Brangers, I.; de Rosnay, P.; Dumont, M.; Girotto, M.; Immerzeel, W.W.; et al. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun. 2019, 10, 4629. [Google Scholar] [CrossRef] [PubMed]
- Tsang, L.; Durand, M.; Derksen, C.; Barros, A.P.; Kang, D.H.; Lievens, H.; Marshall, H.P.; Zhu, J.; Johnson, J.; King, J.; et al. Review Article: Global Monitoring of Snow Water Equivalent Using High Frequency Radar Remote Sensing. Cryosphere 2022, 16, 3531–3573. [Google Scholar] [CrossRef]
- Guneriussen, T.; Hogda, K.A.; Johnson, H.; Lauknes, I. InSAR for estimating changes in snow water equivalent of dry snow. IEEE Trans. Geosci. Rem. Sens. 2001, 39, 2101–2108. [Google Scholar] [CrossRef]
- Ruiz, J.J.; Lemmetyinen, J.; Kontu, A.; Tarvainen, R.; Vehmas, R.; Pulliainen, J.; Praks, J. Investigation of environmental effects on coherence loss in SAR interferometry for Snow Water Equivalent retrieval. IEEE Trans. Geosci. Rem. Sens. 2022, 60, 4306715. [Google Scholar]
- Belinska, K.; Fischer, G.; Parrella, G.; Hajnsek, I. The Potential of Multifrequency Spaceborne DInSAR Measurements for the Retrieval of Snow Water Equivalent. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 2950–2962. [Google Scholar] [CrossRef]
- Conde, V.; Nico, G.; Mateus, P.; Catalão, J.; Kontu, A.; Gritsevich, M. On the Estimation of Temporal Changes of Snow Water Equivalent by Spaceborne SAR Interferometry: A New Application for the Sentinel-1 Mission. J. Hydrol. Hydromech. 2019, 67, 93–100. [Google Scholar] [CrossRef]
- Oveisgharan, S.; Zinke, R.; Hoppinen, Z.; Marshall, H.P. Snow Water Equivalent Retrieval over Idaho—Part 1: Using Sentinel-1 Repeat-Pass Interferometry. Cryosphere 2024, 18, 559–574. [Google Scholar] [CrossRef]
- Matzler, C. Microwave permittivity of dry snow. IEEE Trans. Geosci. Rem. Sens. 1996, 34, 573–581. [Google Scholar] [CrossRef]
- Leinss, S.; Wiesmann, A.; Lemmetyinen, J.; Hajnsek, I. Snow Water Equivalent of Dry Snow Measured by Differential Interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3773–3790. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Mateus, P.; Nico, G.; Catalao, J. Uncertainty assessment of the estimated atmospheric delay obtained by a Numerical Weather Model (NMW). IEEE Trans. Geosci. Rem. Sens. 2015, 53, 6710–6717. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T.; Crippa, P. Generic atmospheric correction model for interferometric synthetic aperture radar observations. J. Geophys. Res. Solid. Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Li, Z.W.; Cao, Y.M.; Wei, J.C.; Duan, M.; Wu, L.X.; Hou, J.X.; Zhu, J.J. Time-series InSAR ground deformation monitoring: Atmospheric delay modeling and estimating. Earth Sci. Rev. 2019, 192, 258–284. [Google Scholar] [CrossRef]
- Fattahi, H.; Amelung, F. InSAR uncertainty due to orbital errors. Geophys. J. Int. 2014, 199, 549–560. [Google Scholar] [CrossRef]
- Delgado, F.; Shreve, T.; Borgstrom, S.; León-Ibanez, P.; Poland, M. A global assessment of SAOCOM-1 L-band stripmap data for InSAR characterization of volcanic, tectonic, cryospheric, and anthropogenic deformation. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5216821. [Google Scholar] [CrossRef]
- De Luca, C.; Roa, Y.L.B.; Bonano, M.; Casu, F.; Euillades, P.A.; Euillades, L.D.; Franzese, M.; Manunta, M.; Yasir, M.; Onorato, G.; et al. SAOCOM-1 L-Band DInSAR Time Series Generation Through the P-SBAS Approach: Algorithm Extension and Products Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2025, 18, 2680–2703. [Google Scholar] [CrossRef]
- Bamler, R.; Hartl, P. Synthetic Aperture Radar Interferometry. Inverse Probl. 1998, 14, R1–R54. [Google Scholar] [CrossRef]
- Bovenga, F.; Belmonte, A.; Refice, A.; Argentiero, I. Differential SAR Interferometry for Snow Water Equivalent Estimation over Alpine Mountains. In Proceedings of the SPIE Remote Sensing 2023—Microwave Remote Sensing: Data Processing and Applications II, Amsterdam, The Netherlands, 3–6 September 2023. [Google Scholar]
- Bovenga, F.; Belmonte, A.; Refice, A.; Argentiero, I.; Pettinato, S.; Santi, E.; Paloscia, S. Multi-Band SAR Interferometry for Snow Water Equivalent Estimation over Alpine Mountains. In Proceedings of the 12th International Workshop on “Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR”—FRINGE 2023, Leeds, UK, 11–15 September 2023. [Google Scholar]
- Ghiglia, D.C.; Pritt, M.D. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software; Wiley: New York, NY, USA, 1998; ISBN 9780471249351. [Google Scholar]
- Pettinato, S.; Bovenga, F.; Santi, E.; Paloscia, S.; Baroni, F.; Belmonte, A.; Refice, A.; Argentiero, I.; Colombo, R.; Di Mauro, B.; et al. Monitoring of Snow Water Equivalent and Snowmelt Through Space-Borne Synthetic Aperture Radar Techniques. In Proceedings of the 2022 52nd European Microwave Conference (EuMC), Milan, Italy, 27–29 September 2022; pp. 91–94. [Google Scholar]
- Eppler, J.; Rabus, B.; Morse, P. Snow Water Equivalent Change Mapping from Slope-Correlated Synthetic Aperture Radar Interferometry (InSAR) Phase Variations. Cryosphere 2022, 16, 1497–1521. [Google Scholar] [CrossRef]
- Bovenga, F.; Rana, F.M.; Refice, A.; Veneziani, N. Multichromatic Analysis of Satellite Wideband SAR Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1767–1771. [Google Scholar] [CrossRef]
- Engen, G.; Guneriussen, T.; Overrein, Y. Delta-K Interferometric SAR Technique for Snow Water Equivalent (SWE) Retrieval. IEEE Geosci. Remote Sens. Lett. 2004, 1, 57–61. [Google Scholar] [CrossRef]
- Pettinato, S.; Santi, E.; Paloscia, S.; Baroni, F.; Pilia, S.; Santurri, L.; Palchetti, E.; Bovenga, F.; Belmonte, A.; Refice, A.; et al. Multi-Frequency SAR Images for Investigations of the Cryosphere: Preliminary Results of Criosar Project. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023. [Google Scholar]
- Kirui, P.K.; Reinosch, E.; Isya, N.; Riedel, B.; Gerke, M. Mitigation of Atmospheric Artefacts in Multi-Temporal InSAR: A Review. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2021, 89, 251–272. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A Review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Toolbox for Reducing Atmospheric InSAR Noise–TRAIN. Available online: https://github.com/dbekaert/TRAIN (accessed on 15 July 2025).
- Bekaert, D.P.S.; Walters, R.J.; Wright, T.J.; Hooper, A.J.; Parker, D.J. Statistical Comparison of InSAR Tropospheric Correction Techniques. Remote Sens. Environ. 2015, 170, 40–47. [Google Scholar] [CrossRef]
- Generic Atmospheric Correction Online Service for InSAR–GACOS. Available online: http://www.gacos.net (accessed on 31 March 2025).
- Chen, C.W.; Zebker, H.A. Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized Network Models. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1709–1719. [Google Scholar] [CrossRef]
- Bovenga, F.; Argentiero, I.; Belmonte, A.; Refice, A.; Cuozzo, G.; Heredia, M.S.; Callegari, M.; Notarnicola, C.; Nitti, D.O.; Nutricato, R. Assessing Rock Glacier Activity in Val Senales by Exploiting Multiband SAR Data Through Differential SAR Interferometry and Offset Tracking. In Proceedings of the 12th International Workshop on “Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR”—FRINGE 2023, Leeds, UK, 11–15 September 2023. [Google Scholar]
- Braun, A.; Veci, L. Sentinel-1 Toolbox TOPS Interferometry Tutorial. 2021. 25p. Available online: https://pdf4pro.com/amp/view/sentinel-1-toolbox-tops-interferometry-tutorial-7363e6.html (accessed on 25 June 2025).
- Zylshal, Z.; Bayanuddin, A.A.; Sartika, S.; Pratiwiet, J.I.; Setyoko, A.; Arief, R.; Khomarudin, M.R. Evaluating Digital Elevation Model Generation from Sentinel-1 SAR Data in Challenging Tropical Environments. Model. Earth Syst. Environ. 2024, 10, 7359–7382. [Google Scholar] [CrossRef]
- Chindo, M.M.; Hashim, M.; Rasib, A.W. Challenges of InSAR DEM Derivation with Sentinel-1 SAR in Densely Vegetated Humid Tropical Environment. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2023, XLVIII-4/W6-2022, 93–98. [Google Scholar] [CrossRef]
- Lodigiani, M.; Marin, C.; Pasian, M. Mixed Analytical-Numerical Modeling of Radar Backscattering for Seasonal Snowpacks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 3461–3471. [Google Scholar] [CrossRef]
- Bartelt, P.; Lehning, M. A Physical SNOWPACK Model for the Swiss Avalanche Warning: Part I: Numer Model. Cold Reg. Sci. Technol. 2002, 35, 123–145. [Google Scholar] [CrossRef]
- Lehning, M.; Bartelt, P.; Brown, B.; Fierz, C.; Satyawali, P. A Physical SNOWPACK Model for the Swiss Avalanche Warning: Part II. Snow Microstructure. Cold Reg. Sci. Technol. 2002, 35, 147–167. [Google Scholar] [CrossRef]
- Petrolati, D.; Gebert, N.; Geudtner, D.; Bollian, T.; Osborne, S.; Cesa, M.; Simonini, A.; Davidson, M.; Iannini, L.; Cosimo, G.D. An Overview of the Copernicus Rose-L SAR Instrument. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 4310–4313. [Google Scholar] [CrossRef]
- Chapman, B.; Anconitano, G.; Borsa, A.; Christensen, A.; Cushman, K.C.; Das, A.; Donnellan, A.; Downs, B.; Fielding, E.; Holt, B.; et al. The NASA ISRO SAR (NISAR) Mission—Validation of Science Measurement Requirements. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 6623–6627. [Google Scholar] [CrossRef]
- Santi, E.; De Gregorio, L.; Pettinato, S.; Cuozzo, G.; Jacob, A.; Notarnicola, C.; Gunther, D.; Strasser, U.; Cigna, F.; Tapete, D.; et al. On the Use of COSMO-SkyMed X-Band SAR for Estimating Snow Water Equivalent in Alpine Areas: A Retrieval Approach Based on Machine Learning and Snow Models. IEEE Trans. Geosci. Rem. Sens. 2022, 60, 4305419. [Google Scholar] [CrossRef]
Val Senales: Sentinel-1 (Ascending/Orb.117) | |||||
---|---|---|---|---|---|
# | Satellite | Date 1 (ddmmyyyy) | Date 2 (ddmmyyyy) | Bt (Days) | Season * |
1 | S1A/S1B | 20072021 | 26072021 | 6 | S/S |
2 | S1B/S1A | 26072021 | 01082021 | 6 | S/S |
3 | S1A/S1B | 01082021 | 07082021 | 6 | S/S |
4 | S1B/S1A | 07082021 | 13082021 | 6 | S/S |
5 | S1A/S1B | 13082021 | 31082021 | 18 | S/S |
6 | S1B/S1A | 31082021 | 06092021 | 6 | S/S |
7 | S1A/S1B | 06092021 | 12092021 | 6 | S/S |
8 | S1B/S1A | 12092021 | 18092021 | 6 | S/S |
9 | S1A/S1B | 18092021 | 24092021 | 6 | S/A |
10 | S1B/S1A | 24092021 | 30092021 | 6 | A/A |
11 | S1A/S1B | 30092021 | 06102021 | 6 | A/A |
12 | S1B/S1A | 06102021 | 12102021 | 6 | A/A |
13 | S1A/S1A | 12102021 | 24102021 | 6 | A/A |
14 | S1A/S1B | 24102021 | 30102021 | 6 | A/A |
15 | S1B/S1A | 30102021 | 05112021 | 6 | A/A |
16 | S1A/S1B | 05112021 | 11112021 | 6 | A/A |
17 | S1B/S1A | 11112021 | 17112021 | 6 | A/A |
18 | S1A/S1B | 17112021 | 23112021 | 6 | A/A |
19 | S1B/S1A | 23112021 | 29112921 | 6 | A/A |
20 | S1A/S1B | 29112021 | 05122021 | 6 | A/A |
21 | S1B/S1A | 05122021 | 11122021 | 6 | A/A |
22 | S1A/S1B | 11122021 | 17122021 | 6 | A/A |
23 | S1B/S1A | 17122021 | 23122021 | 6 | A/W |
24 | S1A/S1A | 23122021 | 04012022 | 12 | W/W |
25 | S1A/S1A | 04012022 | 16012022 | 12 | W/W |
26 | S1A/S1A | 16012022 | 28012022 | 12 | W/W |
27 | S1A/S1A | 28012022 | 09022022 | 12 | W/W |
28 | S1A/S1A | 09022022 | 21022022 | 12 | W/W |
29 | S1A/S1A | 21022022 | 05032022 | 12 | W/W |
30 | S1A/S1A | 05032022 | 17032022 | 12 | W/W |
31 | S1A/S1A | 17032022 | 29032022 | 12 | W/SP |
Val Senales: SAOCOM (Ascending/VV) | |||||
---|---|---|---|---|---|
# | Beam–Path/Row | Date 1 (ddmmyyyy) | Date 2 (ddmmyyyy) | Bt (Days) | Season * |
1 | S5–214/527 | 23112020 | 27022021 | 96 | A/W |
2 | S5–214/527 | 27022021 | 16042021 | 48 | W/SP |
3 | S5–214/527 | 16042021 | 03062021 | 48 | SP/SP |
4 | S5–214/527 | 03062021 | 21072021 | 48 | SP/S |
5 | S5–214/527 | 21072021 | 07092021 | 48 | S/S |
6 | S5–214/527 | 07092021 | 02032022 | 176 | S/W |
7 | S5–214/527 | 02032022 | 19042022 | 48 | W/SP |
8 | S3–213/528 | 27102020 | 31012021 | 96 | A/W |
9 | S3–213/528 | 31012021 | 20032021 | 48 | W/SP |
10 | S3–213/528 | 20032021 | 07052021 | 48 | SP/SP |
11 | S3–213/528 | 07052021 | 24062021 | 48 | SP/S |
12 | S3–213/528 | 24062021 | 28092021 | 96 | S/A |
Valle d’Aosta: Sentinel-1 (Ascending/Orb.88) | |||||
---|---|---|---|---|---|
# | Satellite | Date 1 (ddmmyyyy) | Date 2 (ddmmyyyy) | Bt (Days) | Season * |
1 | S1A/S1A | 24062021 | 06072021 | 12 | S/S |
2 | S1A/S1B | 06072021 | 12072021 | 6 | S/S |
3 | S1B/S1A | 12072021 | 18072021 | 6 | S/S |
4 | S1A/S1B | 18072021 | 24072021 | 6 | S/S |
5 | S1B/S1A | 24072021 | 30072021 | 6 | S/S |
6 | S1A/S1B | 30072021 | 05082021 | 6 | S/S |
7 | S1B/S1A | 05082021 | 11082021 | 6 | S/S |
8 | S1A/S1B | 11082021 | 17082021 | 6 | S/S |
9 | S1B/S1A | 17082021 | 23082021 | 6 | S/S |
10 | S1A/S1B | 23082021 | 29082021 | 6 | S/S |
11 | S1B/S1A | 29082021 | 04092021 | 6 | S/S |
12 | S1A/S1B | 04092021 | 10092021 | 6 | S/S |
13 | S1B/S1A | 10092021 | 16092021 | 6 | S/S |
14 | S1A/S1B | 16092021 | 22092021 | 6 | S/A |
15 | S1B/S1A | 22092021 | 28092021 | 6 | A/A |
16 | S1A/S1B | 28092021 | 04102021 | 6 | A/A |
17 | S1B/S1A | 04102021 | 10102021 | 6 | A/A |
18 | S1A/S1B | 10102021 | 16102021 | 6 | A/A |
19 | S1B/S1A | 16102021 | 22102021 | 6 | A/A |
20 | S1A/S1B | 22102021 | 28102021 | 6 | A/A |
21 | S1B/S1A | 28102021 | 03112021 | 6 | A/A |
22 | S1A/S1B | 03112021 | 09112021 | 6 | A/A |
23 | S1B/S1A | 09112021 | 15112021 | 6 | A/A |
24 | S1A/S1B | 15112021 | 21112021 | 6 | A/A |
25 | S1B/S1A | 21112021 | 27112021 | 6 | A/A |
26 | S1A/S1B | 27112021 | 03122021 | 6 | A/A |
27 | S1B/S1A | 03122021 | 09122021 | 6 | A/A |
28 | S1A/S1B | 09122021 | 15122021 | 6 | A/A |
29 | S1B/S1A | 15122021 | 21122021 | 6 | A/A |
30 | S1A/S1A | 21122021 | 02012022 | 12 | A/W |
31 | S1A/S1A | 02012022 | 20220114 | 12 | W/W |
32 | S1B/S1A | 14012022 | 26022022 | 12 | W/W |
33 | S1A/S1A | 26022022 | 07022022 | 12 | W/W |
34 | S1A/S1A | 07022022 | 19022022 | 12 | W/W |
35 | S1B/S1A | 19022022 | 03032022 | 12 | W/W |
36 | S1A/S1A | 03032022 | 25032022 | 12 | W/W |
37 | S1A/S1A | 25032022 | 27032022 | 12 | W/SP |
Valle d’Aosta: SAOCOM (VV) | |||||
---|---|---|---|---|---|
# | Beam–Path/Row | Date 1 (ddmmyyyy) | Date 2 (ddmmyyyy) | Bt (Days) | Season * |
Ascending | |||||
1 | S4–216/527 | 13112020 | 31122020 | 48 | A/W |
2 | S4–216/527 | 31122020 | 17022021 | 48 | W/W |
3 | S4–216/527 | 17022021 | 06042021 | 48 | W/SP |
4 | S4–216/527 | 06042021 | 24052021 | 48 | SP/SP |
5 | S4–216/527 | 24052021 | 11072021 | 48 | SP/S |
6 | S4–216/527 | 11072021 | 28082021 | 48 | S/S |
7 | S4–216/527 | 28082021 | 15102021 | 48 | SP/A |
8 | S4–216/527 | 15102021 | 04022022 | 112 | A/W |
9 | S4–216/527 | 04022022 | 24032022 | 48 | W/SP |
10 | S4–216/527 | 24032022 | 11052022 | 48 | SP/SP |
11 | S4–216/527 | 11052022 | 14072022 | 64 | SP/S |
12 | S4–216/527 | 14072022 | 08092022 | 56 | S/S |
13 | S4–216/527 | 08092022 | 10102022 | 32 | S/A |
Descending | |||||
1 | S4–113/75 | 23032021 | 10052021 | 48 | SP/SP |
2 | S4–113/75 | 10052021 | 27062021 | 48 | SP/S |
3 | S4–113/75 | 27062021 | 14082021 | 48 | S/S |
4 | S4–113/75 | 14082021 | 01102021 | 48 | S/A |
5 | S4–113/75 | 01102021 | 17102021 | 16 | A/A |
6 | S4–113/75 | 17102021 | 13052022 | 208 | A/SP |
7 | S4–113/75 | 13052022 | 30062022 | 48 | SP/S |
8 | S4–113/75 | 30062022 | 18092022 | 80 | S/S |
9 | S4–113/75 | 18092022 | 20102022 | 32 | S/A |
10 | S4–113/75 | 20102022 | 05112022 | 16 | A/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bovenga, F.; Belmonte, A.; Refice, A.; Argentiero, I. Multi-Band Differential SAR Interferometry for Snow Water Equivalent Retrieval over Alpine Mountains. Remote Sens. 2025, 17, 2479. https://doi.org/10.3390/rs17142479
Bovenga F, Belmonte A, Refice A, Argentiero I. Multi-Band Differential SAR Interferometry for Snow Water Equivalent Retrieval over Alpine Mountains. Remote Sensing. 2025; 17(14):2479. https://doi.org/10.3390/rs17142479
Chicago/Turabian StyleBovenga, Fabio, Antonella Belmonte, Alberto Refice, and Ilenia Argentiero. 2025. "Multi-Band Differential SAR Interferometry for Snow Water Equivalent Retrieval over Alpine Mountains" Remote Sensing 17, no. 14: 2479. https://doi.org/10.3390/rs17142479
APA StyleBovenga, F., Belmonte, A., Refice, A., & Argentiero, I. (2025). Multi-Band Differential SAR Interferometry for Snow Water Equivalent Retrieval over Alpine Mountains. Remote Sensing, 17(14), 2479. https://doi.org/10.3390/rs17142479