A Multi-Feature Fusion Approach for Sea Fog Detection Under Complex Background
Abstract
1. Introduction
- (1)
- We construct a sea fog dataset covering the Yellow Sea and Bohai Sea, comprehensively considering the spectral, motion, and spatiotemporal texture features. Sea fog pixels occluded by clouds are labeled as a new category, named “cloud–fog mixed”.
- (2)
- A dual-branch encoder network incorporating a multi-scale self-attention mechanism is designed to effectively extract spatial correlations of sea fog regions in the case of cloud coexistence or occlusion.
- (3)
- The loss function integrates total variation loss, focal loss, and dice loss to address the class imbalance problem and ensures the spatial consistency of sea fog regions.
2. Study Area and Data
2.1. Study Area
2.2. Himawari-8 Standard Data
2.3. Multiple Feature Representation
2.3.1. Spectral Feature
2.3.2. Motion Feature
2.3.3. Spatiotemporal Texture Consistency Feature
2.4. Construction of Dataset
3. Methodology
3.1. Encoder Component
3.2. Decoder Component
3.3. Loss Function
4. Results
4.1. Implementation Details and Evaluation Metric
4.2. Ablation Study on Feature Components and Temporal Intervals
4.3. Comparison with Other Methods
4.4. Cases of Low Cloud Interference and High Cloud Occlusion
4.5. Sea Fog Detection in Continuous Observations
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koračin, D.; Dorman, C.E.; Lewis, J.M.; Hudson, J.G.; Wilcox, E.M.; Torregrosa, A. Marine Fog: A Review. Atmos. Res. 2014, 143, 142–175. [Google Scholar] [CrossRef]
- Xu, M.; Wu, M.; Guo, J.; Zhang, C.; Wang, Y.; Ma, Z. Sea Fog Detection Based on Unsupervised Domain Adaptation. Chin. J. Aeronaut. 2022, 35, 415–425. [Google Scholar] [CrossRef]
- Kim, S.-H.; Suh, M.-S.; Han, J.-H. Development of Fog Detection Algorithm during Nighttime Using Himawari-8/AHI Satellite and Ground Observation Data. Asia-Pac. J. Atmos. Sci. 2019, 55, 337–350. [Google Scholar] [CrossRef]
- Wu, D.; Lu, B.; Zhang, T.; Yan, F. A Method of Detecting Sea Fogs Using CALIOP Data and Its Application to Improve MODIS-Based Sea Fog Detection. J. Quant. Spectrosc. Radiat. Transf. 2015, 153, 88–94. [Google Scholar] [CrossRef]
- Hunt, G.E. Radiative Properties of Terrestrial Clouds at Visible and Infra-red Thermal Window Wavelengths. Q. J. R. Meteorol. Soc. 1973, 99, 346–369. [Google Scholar] [CrossRef]
- Zhang, Y.; Pulliainen, J.; Koponen, S.; Hallikainen, M. Detection of Sea Surface Temperature (SST) Using Infrared Band Data of Advanced Very High Resolution Radiometer (AVHRR) in the Gulf of Finland. Int. J. Infrared Millim. Waves 2002, 23, 195–9271. [Google Scholar] [CrossRef]
- Cermak, J.; Bendix, J. A Novel Approach to Fog/Low Stratus Detection Using Meteosat 8 Data. Atmos. Res. 2008, 87, 279–292. [Google Scholar] [CrossRef]
- Cermak, J.; Bendix, J. Dynamical Nighttime Fog/Low Stratus Detection Based on Meteosat SEVIRI Data: A Feasibility Study. Pure Appl. Geophys. 2007, 164, 1179–1192. [Google Scholar] [CrossRef]
- Zhang, S.; Yi, L. A Comprehensive Dynamic Threshold Algorithm for Daytime Sea Fog Retrieval over the Chinese Adjacent Seas. Pure Appl. Geophys. 2013, 170, 1931–1944. [Google Scholar] [CrossRef]
- Lee, H.-B.; Heo, J.-H.; Sohn, E.-H. Korean Fog Probability Retrieval Using Remote Sensing Combined with Machine-Learning. Remote Sens. 2021, 58, 1434–1457. [Google Scholar] [CrossRef]
- Kim, D.; Park, M.-S.; Park, Y.-J.; Kim, W. Geostationary Ocean Color Imager (GOCI) Marine Fog Detection in Combination with Himawari-8 Based on the Decision Tree. Remote Sens. 2020, 12, 149. [Google Scholar] [CrossRef]
- Shin, D.; Kim, J.-H. A New Application of Unsupervised Learning to Nighttime Sea Fog Detection. Asia-Pac. J. Atmos. Sci. 2018, 54, 527–544. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, Z.; Zhao, D.; Ali, M.A.; Hu, C.; Zhang, Y.; Liao, K. Automatic Detection of Daytime Sea Fog Based on Supervised Classification Techniques for FY-3D Satellite. Remote Sens. 2023, 15, 2283. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, M.; Guo, J.; Zhang, C.; Xu, M. A Correlation Context-Driven Method for Sea Fog Detection in Meteorological Satellite Imagery. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1003105. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, P.; Zhou, Z.; Zhao, X. Daytime Sea Fog Detection Based on a Two-Stage Neural Network. Remote Sens. 2022, 14, 5570. [Google Scholar] [CrossRef]
- Yi, L.; Li, M.; Liu, S.; Shi, X.; Li, K.-F.; Bendix, J. Detection of Dawn Sea Fog/Low Stratus Using Geostationary Satellite Imagery. Remote Sens. Environ. 2023, 294, 113622. [Google Scholar] [CrossRef]
- Guo, X.; Wan, J.; Liu, S.; Xu, M.; Sheng, H.; Yasir, M. A scSE-LinkNet Deep Learning Model for Daytime Sea Fog Detection. Remote Sens. 2021, 13, 5163. [Google Scholar] [CrossRef]
- Lu, H.; Ma, Y.; Zhang, S.; Yu, X.; Zhang, J. Daytime Sea Fog Identification Based on Multi-Satellite Information and the ECA-TransUnet Model. Remote Sens. 2023, 15, 3949. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, J.; Liu, S.; Sheng, S.; Xiao, Y. Sea Fog Detection Using U-Net Deep Learning Model Based on Modis Data. In Proceedings of the 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 September 2019; IEEE: Amsterdam, The Netherlands, 2019; pp. 1–5. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Advances in Neural Information Processing Systems 30 (NIPS 2017), Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30, pp. 5998–6008. [Google Scholar]
- Yan, H.; Su, S.; Wu, M.; Xu, M.; Zuo, Y.; Zhang, C.; Huang, B. SeaMAE: Masked Pre-Training with Meteorological Satellite Imagery for Sea Fog Detection. Remote Sens. 2023, 15, 4102. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, M.; Xu, M.; Zhu, X.; Zhang, C.; Zhang, B. MoANet: A Motion Attention Network for Sea Fog Detection in Time Series Meteorological Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 1976–1987. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Fu, G.; Sun, J.; Zhang, S. Assimilating MTSAT-Derived Humidity in Nowcasting Sea Fog over the Yellow Sea. Weather Forecast. 2014, 29, 205–225. [Google Scholar] [CrossRef]
- Fu, G.; Song, Y. Climatic Characteristics of the Occurrence Frequency of Sea Fog in the North Pacific. J. Ocean Univ. China (Nat. Sci. Ed.) 2014, 44, 35–41. (In Chinese) [Google Scholar]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Farnebäck, G. Two-Frame Motion Estimation Based on Polynomial Expansion. In Image Analysis; Bigun, J., Gustavsson, T., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2749, pp. 363–370. ISBN 978-3-540-40601-3. [Google Scholar]
- Derin, H.; Elliott, H. Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields. IEEE Trans. Pattern Anal. Mach. Intell. 1987, PAMI-9, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Rellier, G.; Descombes, X.; Falzon, F.; Zerubia, J. Texture Feature Analysis Using a Gauss-Markov Model in Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1543–1551. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhao, Y.; Song, C.; Zhang, K.; Xiang, X. Graph Wavelet Transform for Image Texture Classification. IET Image Process. 2021, 15, 2372–2383. [Google Scholar] [CrossRef]
- Iqbal, N.; Mumtaz, R.; Shafi, U.; Zaidi, S.M.H. Gray Level Co-Occurrence Matrix (GLCM) Texture Based Crop Classification Using Low Altitude Remote Sensing Platforms. PeerJ Comput. Sci. 2021, 7, e536. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, M.; Jiang, X.; Li, J.; Xu, M.; Zhang, C.; Guo, J. Weakly Supervised Sea Fog Detection in Remote Sensing Images via Prototype Learning. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4106713. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, K.; Li, X. Dual-Branch Neural Network for Sea Fog Detection in Geostationary Ocean Color Imager. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4208617. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar] [CrossRef]
- Yi, L.; Zhang, S.P.; Thies, B.; Shi, X.M.; Trachte, K.; Bendix, J. Spatio-Temporal Detection of Fog and Low Stratus Top Heights over the Yellow Sea with Geostationary Satellite Data as a Precondition for Ground Fog Detection—A Feasibility Study. Atmos. Res. 2015, 151, 212–223. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley, J.A., Jr.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. A Global 3D View of Aerosols and Clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1230. [Google Scholar] [CrossRef]
Band | Band Type | Wavelength (μm) | Spatial Resolution (km) | Detection Category |
---|---|---|---|---|
01 | VIS | 0.47 | 1 | Vegetation, aerosol |
02 | VIS | 0.51 | 1 | Vegetation, aerosol |
03 | VIS | 0.64 | 0.5 | Low cloud (fog) |
04 | NIR | 0.86 | 1 | Vegetation, aerosol |
05 | NIR | 1.6 | 2 | Cloud phase recognition |
06 | NIR | 2.3 | 2 | Cloud droplet effective radius |
07 | IR | 3.9 | 2 | Low cloud (fog), natural disaster |
08 | IR | 6.2 | 2 | Water vapor density from troposphere to mesosphere |
09 | IR | 6.9 | 2 | Water vapor density in the mesosphere |
10 | IR | 7.3 | 2 | Water vapor density in the mesosphere |
11 | IR | 8.6 | 2 | Cloud phase discrimination, sulfur dioxide |
12 | IR | 9.6 | 2 | Ozone content |
13 | IR | 10.4 | 2 | Cloud image, cloud top |
14 | IR | 11.2 | 2 | Cloud image, sea surface temperature |
15 | IR | 12.4 | 2 | Cloud image, sea surface temperature |
16 | IR | 13.3 | 2 | Cloud height |
Year | Time Period | Samples | Train/Test Partition |
---|---|---|---|
2018 | 12 March–8 June | 64 | 51/13 |
2019 | 22 February–4 June | 103 | 82/21 |
2020 | 23 January–2 July, 28 December | 216 | 173/43 |
Spectral | Motion | STCF | T = 1 | T = 3 | T = 6 | mIoU |
---|---|---|---|---|---|---|
√ | 0.838 | |||||
√ | √ | √ | 0.853 | |||
√ | √ | √ | 0.841 | |||
√ | √ | √ | √ | 0.953 | ||
√ | √ | √ | √ | 0.94 | ||
√ | √ | √ | √ | 0.938 |
FAR | Recall | CSI | Precision | Accuracy | KSS | mIoU | F1 | |
---|---|---|---|---|---|---|---|---|
Threshold | 0.14 | 0.725 | 0.427 | 0.509 | 0.838 | 0.585 | 0.621 | 0.598 |
MLP + CNN | 0.049 | 0.822 | 0.455 | 0.504 | 0.943 | 0.773 | 0.698 | 0.625 |
U-Net | 0.011 | 0.946 | 0.904 | 0.947 | 0.982 | 0.935 | 0.941 | 0.946 |
FCN | 0.012 | 0.938 | 0.893 | 0.939 | 0.98 | 0.926 | 0.934 | 0.938 |
FCN + CRF | 0.012 | 0.949 | 0.909 | 0.949 | 0.981 | 0.938 | 0.943 | 0.949 |
Ours | 0.008 | 0.964 | 0.934 | 0.965 | 0.987 | 0.957 | 0.959 | 0.964 |
FAR | Recall | CSI | Precision | Accuracy | KSS | mIoU | F1 | |
---|---|---|---|---|---|---|---|---|
Threshold | 0.097 | 0.571 | 0.42 | 0.614 | 0.832 | 0.474 | 0.615 | 0.592 |
MLP + CNN | 0.020 | 0.905 | 0.842 | 0.923 | 0.964 | 0.885 | 0.899 | 0.914 |
U-Net | 0.013 | 0.931 | 0.885 | 0.933 | 0.979 | 0.918 | 0.930 | 0.932 |
FCN | 0.032 | 0.917 | 0.82 | 0.886 | 0.957 | 0.885 | 0.884 | 0.901 |
FCN + CRF | 0.007 | 0.969 | 0.943 | 0.971 | 0.990 | 0.962 | 0.965 | 0.969 |
Ours | 0.007 | 0.973 | 0.949 | 0.973 | 0.991 | 0.966 | 0.969 | 0.973 |
FAR | Recall | CSI | Precision | Accuracy | KSS | mIoU | F1 | |
---|---|---|---|---|---|---|---|---|
Threshold | 0.045 | 0.891 | 0.6 | 0.648 | 0.949 | 0.845 | 0.773 | 0.75 |
MLP + CNN | 0.028 | 0.681 | 0.470 | 0.603 | 0.955 | 0.653 | 0.712 | 0.640 |
U-Net | 0.013 | 0.883 | 0.776 | 0.865 | 0.988 | 0.870 | 0.876 | 0.874 |
FCN | 0.011 | 0.831 | 0.742 | 0.874 | 0.975 | 0.820 | 0.858 | 0.852 |
FCN + CRF | 0.011 | 0.940 | 0.898 | 0.942 | 0.981 | 0.929 | 0.936 | 0.941 |
Ours | 0.004 | 0.959 | 0.913 | 0.950 | 0.992 | 0.955 | 0.952 | 0.954 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Tang, Y.; Zhou, Z.; Zhao, X.; Yang, P.; Hu, Y.; Bo, R. A Multi-Feature Fusion Approach for Sea Fog Detection Under Complex Background. Remote Sens. 2025, 17, 2409. https://doi.org/10.3390/rs17142409
Yang S, Tang Y, Zhou Z, Zhao X, Yang P, Hu Y, Bo R. A Multi-Feature Fusion Approach for Sea Fog Detection Under Complex Background. Remote Sensing. 2025; 17(14):2409. https://doi.org/10.3390/rs17142409
Chicago/Turabian StyleYang, Shuyuan, Yuzhu Tang, Zeming Zhou, Xiaofeng Zhao, Pinglv Yang, Yangfan Hu, and Ran Bo. 2025. "A Multi-Feature Fusion Approach for Sea Fog Detection Under Complex Background" Remote Sensing 17, no. 14: 2409. https://doi.org/10.3390/rs17142409
APA StyleYang, S., Tang, Y., Zhou, Z., Zhao, X., Yang, P., Hu, Y., & Bo, R. (2025). A Multi-Feature Fusion Approach for Sea Fog Detection Under Complex Background. Remote Sensing, 17(14), 2409. https://doi.org/10.3390/rs17142409