Mechanisms Driving the Nonlinear Relationship Between Soil Freeze–Thaw Cycles and NDVI from Remotely Sensed Data in the Eastern Tibetan Plateau
Abstract
1. Introduction
2. Data and Methods
2.1. Spatial Distribution and Temporal Trends of Soil Freeze–Thaw
2.2. Investigate the Partial Correlation Between Soil Freeze–Thaw Status and Vegetation
2.3. Investigate the Nonlinear Relationship Between Soil Freeze–Thaw Status and Vegetation
2.4. Investigate the Contributions of Soil Freeze–Thaw and Meteorological Factors to NDVI
3. Results
3.1. Spatial Distribution and Temporal Trends of Different Stages of Soil Freeze–Thaw
3.2. The Distribution of the Partial Correlation Coefficients Between Soil Freeze–Thaw and NDVI
3.3. The Nonlinear Response of NDVI to Soil Freeze–Thaw Dynamics
3.3.1. The Nonlinear Response of NDVI to the Onset Dates of Soil Freeze–Thaw Dynamics
3.3.2. The Nonlinear Response of NDVI to the Duration of Soil Freeze–Thaw Dynamics
3.4. The Combined Impact of Soil Freeze–Thaw Dynamics and Meteorological Factors on NDVI
3.4.1. Sensitivities
3.4.2. Dominant Factors
3.4.3. Absolute Contribution Amounts
4. Discussion
4.1. Discussing the Nonlinear Response Mechanisms of NDVI to Freeze–Thaw Dynamics and Their Ecological Significance
4.2. Analyzing How Temperature and Precipitation Regulate the Relationships Between NDVI and Various Factors
4.3. Comparing the Eastern Tibetan Plateau and the Northeast Region
4.4. Strengths, Weaknesses, and Future Prospects
5. Conclusions
- (1)
- The spatial distribution differences in soil freeze–thaw status in the eastern Tibetan Plateau are quite pronounced, with a difference of 100 days between the regions where soil freeze–thaw begins the earliest and the latest. In terms of trends, the onset dates of the SFTTP and the CFP have significantly advanced in over half of the regions. The onset date of the AFTTP has significantly advanced in the southern regions but has been delayed in the northwestern regions. Regarding the duration, the CTP has significantly increased in 62.42% of the regions, while the CFP has significantly decreased in 75.43% of the regions. The trends in the freeze–thaw transition period are relatively weaker.
- (2)
- In terms of partial correlation, the earlier the onset date and the longer the duration of the SFTTP and the CTP, the more beneficial it is for vegetation growth, with this effect being most pronounced in the early and mid-growing seasons. For the AFTTP, a later onset date is more conducive to vegetation growth in the early growing season but less favorable in the late growing season. A later onset date of the CFP has a positive effect on vegetation growth throughout the year.
- (3)
- In terms of nonlinear relationships, the onset dates of the SFTTP and the CFP showed a positive correlation with NDVI during the peak growing season (June-September). However, when the SFTTP is delayed to 90 days and the CTP to approximately 110 days, the correlation abruptly turns negative. For the AFTTP, the onset date showed a positive correlation with NDVI in the early (January to May) and late growing seasons (October to December), but a negative correlation during the peak growing season (June to September). When the onset date reaches around 300 days, the positive correlation reaches its maximum value, and the negative correlation also significantly intensifies. In terms of duration, the SFTTP remains positively correlated with the period from January to April. However, the positive correlation from May to July abruptly turns into a negative correlation when the duration increases to 20–30 days. The influence coefficient of the CTP duration on NDVI during the growing season (July to September) rapidly shifts from positive to negative around 190 days. The duration of the CFP is positively correlated with NDVI from June to September, but it also drops significantly when exceeding 120 days.
- (4)
- Temperature and the CTP are the main drivers of NDVI changes. The driving effect of the freeze–thaw transition period on NDVI showed obvious temporal and spatial differences: the onset date of the SFTTP has a stronger driving force on NDVI than its duration, while the AFTTP is the opposite. Precipitation and the CFP have the weakest dominance over NDVI in the region. In terms of the regulation of temperature and precipitation, cold and dry areas are more susceptible to the positive effects of the SFTTP, the CTP, and the AFTTP, while hot and rainy areas are more susceptible to the positive effects of the CFP. Areas with moderate precipitation are the least susceptible to the disturbances of freeze–thaw.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Henry, H.A.L. Soil freeze–thaw cycle experiments: Trends, methodological weaknesses and suggested improvements. Soil Biol. Biochem. 2007, 39, 977–986. [Google Scholar] [CrossRef]
- Schimel, J.P.; Clein, J.S. Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biol. Biochem. 1996, 28, 1061–1066. [Google Scholar] [CrossRef]
- Hänninen, H.; Tanino, K. Tree seasonality in a warming climate. Trends Plant Sci. 2011, 16, 412–416. [Google Scholar] [CrossRef]
- Musa, A.; Ya, L.; Anzhi, W.; Cunyang, N. Characteristics of soil freeze–thaw cycles and their effects on water enrichment in the rhizosphere. Geoderma 2016, 264, 132–139. [Google Scholar] [CrossRef]
- Man, Z.; Weng, B.; Yang, Y.; Gong, X.; Li, M.; Yu, Z. Effects of the Freezing–Thawing Cycle Mode on Alpine Vegetation in the Nagqu River Basin of the Qinghai–Tibet Plateau. Water 2019, 11, 2122. [Google Scholar] [CrossRef]
- Yang, J.; Wu, G.; Jiao, J.; Dyck, M.; He, H. Freeze-thaw induced landslides on grasslands in cold regions. CATENA 2022, 219, 106650. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, L.; Qiu, Y.; Ji, L.; Tian, F.; Wang, C.; Wang, Z. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau. Int. J. Digit. Earth 2015, 8, 58–75. [Google Scholar] [CrossRef]
- Revuelto, J.; Gómez, D.; Alonso-González, E.; Vidaller, I.; Rojas-Heredia, F.; Deschamps-Berger, C.; García-Jiménez, J.; Rodríguez-López, G.; Sobrino, J.; Montorio, R.; et al. Intermediate snowpack melt-out dates guarantee the highest seasonal grasslands greening in the Pyrenees. Sci. Rep. 2022, 12, 18328. [Google Scholar] [CrossRef]
- Song, Y.; Zou, Y.; Wang, G.; Yu, X. Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: A meta-analysis. Soil Biol. Biochem. 2017, 109, 35–49. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Ma, Z.; Lv, M. Response mechanism of soil structural heterogeneity in permafrost active layer to freeze–thaw action and vegetation degradation. CATENA 2023, 230, 107250. [Google Scholar] [CrossRef]
- Oztas, T.; Fayetorbay, F. Effect of freezing and thawing processes on soil aggregate stability. CATENA 2003, 52, 1–8. [Google Scholar] [CrossRef]
- Dong, C.; Gu, Y.; Jia, Y.; Wei, P.; Jin, J.; Deng, Y.; Yang, P.; Chen, S. Effects of freeze-thaw cycles on the size distribution and stability of soil aggregate in the permafrost regions of the Qinghai-Tibetan Plateau. Environ. Res. Commun. 2023, 5, 095008. [Google Scholar] [CrossRef]
- Yu, F.L.; Zhi, Q.X. The harm of low temperature to plants and the cold resistance of plants. Anim. Husb. Feed Sci. 2009, 30, 190. [Google Scholar] [CrossRef]
- Li, T.; Fu, B.; Lü, Y.; Du, C.; Zhao, Z.; Wang, F.; Gao, G.; Wu, X. Soil freeze–thaw cycles affect spring phenology by changing phenological sensitivity in the Northern Hemisphere. Sci. Total Environ. 2024, 914, 169963. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Zuo, Z.; Xiao, D.; You, Q. Soil moisture associated with freeze–thaw process modulated growing-season temperature rise in the Tibetan Plateau. Clim. Dyn. 2023, 61, 3619–3631. [Google Scholar] [CrossRef]
- Bo, L.; Li, Z.; Li, P.; Xu, G.; Xiao, L.; Ma, B. Soil Freeze-Thaw and Water Transport Characteristics Under Different Vegetation Types in Seasonal Freeze-Thaw Areas of the Loess Plateau. Front. Earth Sci. 2021, 9, 704901. [Google Scholar] [CrossRef]
- Cogato, A.; Meggio, F.; Collins, C.; Marinello, F. Medium-Resolution Multispectral Data from Sentinel-2 to Assess the Damage and the Recovery Time of Late Frost on Vineyards. Remote Sens. 2020, 12, 1896. [Google Scholar] [CrossRef]
- Deng, G.; Zhang, H.; Yang, L.; Zhao, J.; Guo, X.; Ying, H.; Rihan, W.; Guo, D. Estimating Frost during Growing Season and Its Impact on the Velocity of Vegetation Greenup and Withering in Northeast China. Remote Sens. 2020, 12, 1355. [Google Scholar] [CrossRef]
- Wang, C.; Li, K.; Chen, Q.; Ren, J.; He, X.; Li, S. Revealing the freezing-thawing hysteretic mechanisms of soil–water system based on soil microstructure. Geoderma 2024, 449, 116986. [Google Scholar] [CrossRef]
- Grable, A.R. Soil Aeration and Plant Growth. Adv. Agron. 1966, 18, 57–106. [Google Scholar] [CrossRef]
- Du, Z.; Cai, Y.; Wang, X.; Yan, Y.; Lu, X.; Liu, S. Research progress on the effects of soil freeze-thaw on plant physiology and ecology. Chin. J. Eco-Agric. 2014, 22, 1–9. [Google Scholar] [CrossRef]
- Zhang, T.; Barry, R.G.; Knowles, K.; Heginbottom, J.A.; Brown, J. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr. 1999, 23, 132–154. [Google Scholar] [CrossRef]
- Tian, X.H.; Zhang, L.F.; Zhang, X.; Chen, Z.G.; Zhao, L.; Li, Q.; Tang, Y.H.; Gu, S. Evapotranspiration characteristics of degraded meadow and effects of freeze-thaw changes in the Three-River Source Region. Acta Ecol. Sin. 2020, 40, 5649–5662. [Google Scholar] [CrossRef]
- Fu, C.; Hu, Z.; Yang, Y.; Deng, M.; Yu, H.; Lu, S.; Wu, D.; Fan, W. Responses of Soil Freeze–Thaw Processes to Climate on the Tibetan Plateau from 1980 to 2016. Remote Sens. 2022, 14, 5907. [Google Scholar] [CrossRef]
- Jia, G.J.; Zhou, Y.B.; Dai, L.M.; Zhou, W.M. Effects of freeze-thaw on soil carbon and nitrogen mineralization in Changbai Mountain forest. J. Environ. Ecol. Sci. 2012, 21, 624–628. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Z.; Zhang, K. Responses of soil aggregates to freeze-thaw cycles under simulated experiments in typical black soils of Northeast China. J. Soils Sediments 2025, 25, 1100–1114. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Y.; Xu, J.; Li, Y.; Zhao, Y.; Wei, S.; Liu, B.; Zhang, X.; Lei, H.; Shao, S. Impact of freeze–thaw cycling on the stability and turnover of black soil aggregates. Geoderma 2024, 449, 117004. [Google Scholar] [CrossRef]
- Jin, W.P.; Fan, H.M.; Liu, B.; Jiang, Y.Z.; Jiang, Y.; Ma, R.M. Effects of freeze-thaw alternation on the stability of black soil aggregates. Chin. J. Appl. Ecol. 2019, 30, 4195–4201. [Google Scholar] [CrossRef]
- Chen, L.F.; He, Z.B.; Ming, J.; Du, J.; Lin, P.F.; Zhu, X. Review of the effects of freeze-thaw processes on soil respiration. Arid Zone Res. 2020, 37, 917–924. [Google Scholar]
- Han, C.-L.; Gu, Y.-J.; Kong, M.; Hu, L.-W.; Jia, Y.; Li, F.-M.; Sun, G.-J.; Siddique, K.H.M. Responses of soil microorganisms, carbon and nitrogen to freeze–thaw cycles in diverse land-use types. Appl. Soil Ecol. 2018, 124, 211–217. [Google Scholar] [CrossRef]
- Schimel, J.P.; Mikan, C. Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle. Soil Biol. Biochem. 2005, 37, 1411–1418. [Google Scholar] [CrossRef]
- Urakawa, R.; Shibata, H.; Kuroiwa, M.; Inagaki, Y.; Tateno, R.; Hishi, T.; Fukuzawa, K.; Hirai, K.; Toda, H.; Oyanagi, N.; et al. Effects of freeze–thaw cycles resulting from winter climate change on soil nitrogen cycling in ten temperate forest ecosystems throughout the Japanese archipelago. Soil Biol. Biochem. 2014, 74, 82–94. [Google Scholar] [CrossRef]
- Kreyling, J.; Beierkuhnlein, C.; Jentsch, A. Effects of soil freeze–thaw cycles differ between experimental plant communities. Basic Appl. Ecol. 2010, 11, 65–75. [Google Scholar] [CrossRef]
- Ren, J.Q.; Wang, D.N.; Liu, Y.X.; Li, J.P.; Guo, C.M.; Li, Q. Daily changes in soil freeze-thaw and their relationship with air and ground temperatures in Jilin Province. J. Glaciol. Geocryol. 2019, 41, 10. [Google Scholar]
- Wu, Y.; Ouyang, W.; Hao, Z.; Lin, C.; Liu, H.; Wang, Y. Assessment of soil erosion characteristics in response to temperature and precipitation in a freeze-thaw watershed. Geoderma 2018, 328, 56–65. [Google Scholar] [CrossRef]
- Dong, Q.X.; Luo, S.Q.; Wen, X.H.; Wang, J.Y.; Li, W.J. Changes in precipitation over the past 60 years in Southeast Tibet and their impact on soil temperature and freeze-thaw processes. Plateau Meteorol. 2022, 41, 404–419. [Google Scholar] [CrossRef]
- Li, X.; Jin, R.; Pan, X.; Zhang, T.; Guo, J. Changes in the near-surface soil freeze–thaw cycle on the Qinghai-Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinf. 2012, 17, 33–42. [Google Scholar] [CrossRef]
- Yang, S.H.; Wu, T.H.; Li, R.; Zhu, X.F.; Wang, W.H.; Yu, W.J.; Qian, Y.H.; Hao, J.M. Spatial-temporal changes of the near-surface soil freeze-thaw status over the Qinghai-Tibetan Plateau. Plateau Meteorol. 2018, 37, 43–53. [Google Scholar] [CrossRef]
- Xue, H.Z.; Jin, L.; Dong, G.T.; Zhang, H.J.; Li, Z.C. Characteristics of surface soil freeze-thaw status changes in the Hexi Corridor over the past 40 years. J. Soil Water Conserv. 2023, 37, 65–73+82. [Google Scholar] [CrossRef]
- Song, C.; Dai, C.; Wang, C.; Yu, M.; Gao, Y.; Tu, W. Characteristic Analysis of the Spatio-Temporal Distribution of Key Variables of the Soil Freeze–Thaw Processes over Heilongjiang Province, China. Water 2022, 14, 2573. [Google Scholar] [CrossRef]
- Liu, W.H.; Wen, J.; Chen, J.L.; Wang, Z.L.; Lu, X.C.; Wu, Y.Y.; Jiang, Y.Q. Analysis of the spatial and temporal distribution characteristics of key parameters in the soil freeze-thaw process on the Tibetan Plateau. Plateau Meteorol. 2022, 41, 11–23. [Google Scholar]
- Liu, J.H.; Cui, J.F.; Guo, X.J.; Tang, X.Y. Bibliometric analysis of the impact of plant roots on soil water movement. Chin. J. Soil Sci. 2024, 55, 1163–1173. [Google Scholar] [CrossRef]
- Lai, X.; Yao, S.; Cen, S.; Zhang, G.; Zhang, Z.; Zhang, S. Changes in the spatiotemporal distribution of the timing and duration of the soil freeze–thaw status from 1979 to 2018 over the Tibetan Plateau. Int. J. Climatol. 2024, 44, 4963–4983. [Google Scholar] [CrossRef]
- Shi, F.X.; Qin, J.; Han, T.D.; Cui, J.H.; Ding, Y.J.; Cheng, P.; You, Y.H. Changes in seasonal frozen soil freeze-thaw characteristic parameters and their influencing factors in cold mountainous areas: A case study of the southern slope of the Tianshan Mountains. J. Glaciol. Geocryol. 2024, 46, 89–100. [Google Scholar]
- Ravindra, K.; Rattan, P.; Mor, S.; Aggarwal, A.N. Generalized additive models: Building evidence of air pollution, climate change and human health. Environ. Int. 2019, 132, 104987. [Google Scholar] [CrossRef] [PubMed]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Meng, B.; Liang, T.; Yi, S.; Yin, J.; Cui, X.; Ge, J.; Hou, M.; Lv, Y.; Sun, Y. Modeling Alpine Grassland Above Ground Biomass Based on Remote Sensing Data and Machine Learning Algorithm: A Case Study in East of the Tibetan Plateau, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2986–2995. [Google Scholar] [CrossRef]
- Zhou, D.; Tang, M.; Li, H. Investigating the nonlinear effects of climate change on agricultural green total factor productivity: Findings from the PSTR approach. Environ. Dev. Sustain. 2024, 26, 24453–24471. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Q.; Yuan, Z.; Kang, H. Soil respiration of alpine meadow is controlled by freeze–thaw processes of active layer in the permafrost region of the Qinghai–Tibet Plateau. Cryosphere 2020, 14, 2835–2848. [Google Scholar] [CrossRef]
- Boli, C.; Siqiong, L.; Shihua, L.; Yu, Z.; Di, M. Effects of the soil freeze-thaw process on the regional climate of the Qinghai-Tibet Plateau. Clim. Res. 2014, 59, 243–257. [Google Scholar] [CrossRef]
- Feng, Y.Q.; Liang, S.H.; Wu, Q.B.; Chen, J.W.; Tian, X.; Wu, P. Changes in vegetation cover during permafrost degradation. J. Beijing Norm. Univ. (Nat. Sci.) 2016, 52, 311–316. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Wang, T. Permafrost Degradation Induces the Abrupt Changes of Vegetation NDVI in the Northern Hemisphere. Earth’s Future 2024, 12, e2023EF004309. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, F.; Sun, J.; Ding, L.; Wang, Y.; Wang, H. Effect of seasonal freeze–thaw process on spatial and temporal distribution of soil water and its infiltration to recharge groundwater. Hydrol. Process. 2024, 38, e15110. [Google Scholar] [CrossRef]
- He, Y.Y.; Peng, Q.L.; Wang, L.; Wang, S.M.; Er, L.; Xu, Y.; Lv, Y.; Chen, Y.; Zhang, X.W. Pore characteristics and permeability of peat soil in seasonal frozen zones: A study based on multiple microscopic methods. Rock Soil Mech. 2025, 46, 110–122. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Chen, P.; Han, J.J.; Meng, Z.X.; Wang, Y.N.; Lin, J.X.; Wang, J.H. Advances in the effects of freeze-thaw cycles on soil aggregates and microbial properties. J. Jiangsu Agric. Sci. 2023, 39, 1080–1088. [Google Scholar] [CrossRef]
- Du, Z.Y. Effects of freeze-thaw cycles on the physical, chemical, and biological properties of alpine meadow soils. J. Environ. Ecol. Sci. 2020, 29, 1054–1061. [Google Scholar] [CrossRef]
- Feng, X.; Nielsen, L.L.; Simpson, M.J. Responses of soil organic matter and microorganisms to freeze–thaw cycles. Soil Biol. Biochem. 2007, 39, 2027–2037. [Google Scholar] [CrossRef]
- Shi, G.; Hou, R.; Li, T.; Fu, Q.; Wang, J.; Zhou, W.; Su, Z.; Shen, W.; Wang, Y. Effects of biochar and freeze–thaw cycles on the bacterial community and multifunctionality in a cold black soil area. J. Environ. Manag. 2023, 342, 118302. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Wang, J.; Pomeroy, J.W.; Lyu, S. Freeze–Thaw Changes of Seasonally Frozen Ground on the Tibetan Plateau from 1960 to 2014. J. Clim. 2020, 33, 9427–9446. [Google Scholar] [CrossRef]
- Peng, X.; Frauenfeld, O.W.; Cao, B.; Wang, K.; Wang, H.; Su, H.; Huang, Z.; Yue, D.; Zhang, T. Response of changes in seasonal soil freeze/thaw state to climate change from 1950 to 2010 across China. J. Geophys. Res. Earth Surf. 2016, 121, 1984–2000. [Google Scholar] [CrossRef]
- Zhao, L.; Zou, D.; Hu, G.; Du, E.; Pang, Q.; Xiao, Y.; Li, R.; Sheng, Y.; Wu, X.; Sun, Z.; et al. Changing climate and the permafrost environment on the Qinghai–Tibet (Xizang) plateau. Permafr. Periglac. Process. 2020, 31, 396–405. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, C.P.; Wu, L.; Xu, X.L.; Ouyang, H. A study on the dry and wet conditions of the Tibetan Plateau over the past 10 years and their relationship with vegetation changes. J. Arid Land Geogr. 2013, 36, 49–56. Available online: https://www.webofscience.com/wos/alldb/full-record/CSCD:4781398 (accessed on 25 April 2025).
- Wu, Y.; Li, F.; Zhang, J.; Liu, Y.; Li, H.; Zhou, B.; Shen, B.; Hou, L.; Xu, D.; Ding, L.; et al. Spatial and temporal patterns of above- and below- ground biomass over the Tibet Plateau grasslands and their sensitivity to climate change. Sci. Total Environ. 2024, 919, 170900. [Google Scholar] [CrossRef]
- Xu, R.; Wang, Z.; Zhu, J. Effects of Climate Change and Nitrogen Addition on Carbon Loss in Alpine Wetland of Qinghai–Tibet Plateau. Atmosphere 2023, 14, 1342. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189–190, 11–18. [Google Scholar] [CrossRef]
- Song, C.; Wang, G.; Sun, X.; Hu, Z. River runoff components change variably and respond differently to climate change in the Eurasian Arctic and Qinghai-Tibet Plateau permafrost regions. J. Hydrol. 2021, 601, 126653. [Google Scholar] [CrossRef]
- Shan, S.; Shen, R.; Shi, C.; Bai, L.; Sun, S. Evaluation of land surface temperature and 2 m air temperature from five reanalyses datasets across North China in Winter. Plateau Meteorol. 2020, 39, 37–47. [Google Scholar]
- Apaydin, H.; Kemal Sonmez, F.; Yildirim, Y.E. Spatial interpolation techniques for climate data in the GAP region in Turkey. Clim. Res. 2004, 28, 31–40. [Google Scholar] [CrossRef]
- Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 1153–1160. [Google Scholar] [CrossRef]
- Yang, M.; Yao, T.; Gou, X.; Hirose, N.; Fujii, H.Y.; Hao, L.; Levia, D.F. Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau. Chin. Sci. Bull. 2006, 51, 1974–1976. [Google Scholar] [CrossRef]
- Yue, S.P.; Yan, Y.C.; Zhang, S.W.; Yang, J.C.; Wang, W.J. Spatiotemporal variations of soil freeze-thaw state in Northeast China based on the ERA5-LAND dataset. Acta Geogr. Sin. 2021, 76, 2765–2779. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Li, H.; Cao, Y.; Xiao, J.; Yuan, Z.; Hao, Z.; Bai, X.; Wu, Y.; Liu, Y. A daily gap-free normalized difference vegetation index dataset from 1981 to 2023 in China. Sci. Data 2024, 11, 527. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Li, C.; Wu, F.; Yang, Z. Spatiotemporal analysis of temperature trends under climate change in the source region of the Yellow River, China. Theor. Appl. Clim. 2015, 119, 123–133. [Google Scholar] [CrossRef]
- Yang, X.; Xie, X.; Liu, D.L.; Ji, F.; Wang, L. Spatial interpolation of daily rainfall data for local climate impact assessment over greater sydney region. Adv. Meteorol. 2015, 2015, 563629. [Google Scholar] [CrossRef]
- Qi, H.Q.; Chen, M. The non-linear characteristics of the impact of environmental regulation on China’s green economic efficiency. J. Quant. Econ. 2018, 9, 61–77. [Google Scholar] [CrossRef]
- Gong, F.; Wang, Z.; Yu, J.L. Population aging, intergenerational balance, and public welfare expenditure. Econ. Res. J. 2019, 54, 103–119. [Google Scholar]
- Qi, H.Q.; Yan, H.C. Does population aging inhibit China’s economic growth? Econ. Rev. 2018, 6, 28–40. [Google Scholar] [CrossRef]
- Gonzalez, A.; Terasvirta, T.; Dijk, D.V. Panel Smooth Transition Regression Models; Research Paper; Stockholm School of Economics: Stockholm, Sweden, 2005. [Google Scholar]
- Colletaz, G.; Hurlin, C. Threshold Effects of the Public Capital Productivity: An International Panel Smooth Transition Approach. Leo Working Papers/DR LEO. 2006. Available online: https://shs.hal.science/halshs-00008056 (accessed on 25 April 2025).
- Fouquau, J.; Hurlin, C.; Rabaud, I. The Feldstein-Horioka Puzzle: A Panel Smooth Transition Regression Approach. Econ. Model. 2007, 2, 284–299. [Google Scholar]
- Zhao, Y.; Chen, Y.; Wu, C.; Li, G.; Ma, M.; Fan, L.; Zheng, H.; Song, L.; Tang, X. Exploring the contribution of environmental factors to evapotranspiration dynamics in the Three-River-Source region, China. J. Hydrol. 2023, 626, 130222. [Google Scholar] [CrossRef]
- Wang, T.; Yang, D.; Zheng, G.; Shi, R. Possible negative effects of earlier thaw onset and longer thaw duration on vegetation greenness over the Tibetan Plateau. Agric. For. Meteorol. 2022, 326, 109192. [Google Scholar] [CrossRef]
- Wang, Z.; Sha, Z.J.; Ma, Y.J.; Hu, J.F.; Zhai, Y.L.; Ma, H.Y. Spatial distribution characteristics and intensity of soil freeze-thaw erosion in alpine meadow regions based on GIS. J. Earth Environ. 2017, 8, 55–64. [Google Scholar]
- Yang, L.; Cui, G.S.; Xia, C.X.; Lamu, A.; Sun, J.; Wang, J.N.; Luo, D.L.; Zhang, L. The ecological responses and adaptability of alpine shrubs to global warming. Pratacultural Sci. 2023, 40, 378–393. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, F.; Li, H.; Cheng, D.; Sun, B. The Influence Mechanism of Freeze-Thaw on Soil Erosion: A Review. Water 2021, 13, 1010. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, H.; Zhou, L.; Lewis, B.J.; Ye, Y.; Tian, J.; Li, G.; Dai, L. Effect of freezing-thawing on nitrogen mineralization in vegetation soils of four landscape zones of Changbai Mountain. Ann. For. Sci. 2011, 68, 943–951. [Google Scholar] [CrossRef]
- Xu, L.; Myneni, R.B.; Chapin, F.S., III; Callaghan, T.V.; Pinzon, J.E.; Tucker, C.J.; Zhu, Z.; Bi, J.; Ciais, P.; Tømmervik, H.; et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Change 2013, 3, 581–586. [Google Scholar] [CrossRef]
- Wipf, S.; Rixen, C. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res. 2010, 29, 95–109. [Google Scholar] [CrossRef]
- Richardson, A.D.; Hufkens, K.; Milliman, T.; Aubrecht, D.M.; Furze, M.E.; Seyednasrollah, B.; Krassovski, M.B.; Latimer, J.M.; Nettles, W.R.; Heiderman, R.R.; et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 2018, 560, 368–371. [Google Scholar] [CrossRef]
- Hu, J.; Moore, D.J.P.; Burns, S.P.; Monson, R.K. Longer growing seasons lead to less carbon sequestration by a subalpine forest. Glob. Change Biol. 2010, 16, 771–783. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, X.; Wang, J.; Liu, J.; Zhao, X.; Li, H.; Wang, R.; Luo, X.; Xing, L.; Wang, C.; et al. Spatial and temporal distribution and environmental determinants of freeze-thaw erosion intensity in Qiangtang grasslands, China. Soil Res. 2024, 62, SR23216. [Google Scholar] [CrossRef]
- Sun, B.Y.; Li, Z.B.; Xiao, J.B.; Zhang, L.T.; Ma, B.; Li, J.M.; Cheng, D.B. Advances in the effects of freeze-thaw cycles on soil physical and chemical properties and wind-water erosion. Chin. J. Appl. Ecol. 2019, 30, 337–347. [Google Scholar] [CrossRef]
- Li, N.; Cuo, L.; Zhang, Y. On the freeze–thaw cycles of shallow soil and connections with environmental factors over the Tibetan Plateau. Clim. Dyn. 2021, 57, 3183–3206. [Google Scholar] [CrossRef]
- Wang, G.; Hu, H.; Li, T. The influence of freeze–thaw cycles of active soil layer on surface runoff in a permafrost watershed. J. Hydrol. 2009, 375, 438–449. [Google Scholar] [CrossRef]
- Zheng, D.; van der Velde, R.; Su, Z.; Wen, J.; Wang, X.; Yang, K. Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan rivers. J. Hydrol. 2018, 563, 382–394. [Google Scholar] [CrossRef]
- Jing, G.C.; Ren, X.P.; Liu, X.J.; Liu, B.Y.; Zhang, L.H.; Yang, Y.J.; Wang, Y.J. Relationship between freeze-thaw cycles and soil moisture in the Northeast Black Soil Region. Chin. J. Soil Water Conserv. 2008, 2008, 32–36. [Google Scholar] [CrossRef]
- Wang, L.; Liao, D.; Rengel, Z.; Shen, J. Soil–plant–microbe interactions in the rhizosphere: Incremental amplification induced by localized fertilization. Front. Agric. Sci. Eng. 2025, 12, 57–68. [Google Scholar] [CrossRef]
- Yang, K.; Wang, C. Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations. Agric. For. Meteorol. 2019, 265, 280–294. [Google Scholar] [CrossRef]
- Yu, X.; Zou, Y.; Jiang, M.; Lu, X.; Wang, G. Response of soil constituents to freeze–thaw cycles in wetland soil solution. Soil Biol. Biochem. 2011, 43, 1308–1320. [Google Scholar] [CrossRef]
- Groffman, P.M.; Driscoll, C.T.; Fahey, T.J.; Hardy, J.P.; Fitzhugh, R.D.; Tierney, G.L. Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry 2001, 56, 191–213. [Google Scholar] [CrossRef]
- Brooks, P.D.; Williams, M.W.; Schmidt, S.K. Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt. Biogeochemistry 1998, 43, 1–15. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Euskirchen, E.S.; McGuire, A.D.; Kicklighter, D.W.; Zhuang, Q.; Lein, J.S.C.; Dargaville, R.J.; Dye, D.G.; Kimball, J.S.; McDonald, K.C.; Melillo, J.M.; et al. Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Glob. Change Biol. 2006, 12, 731–750. [Google Scholar] [CrossRef]
- Yu, Z.J.; Yang, P. Climate change in the Beijing-Tianjin-Hebei region over the past 50 years and its impact on soil moisture. Guizhou Agric. Sci. 2019, 47, 144–149. [Google Scholar] [CrossRef]
- Zhu, C.J.; Gao, J.X. A review of factors influencing soil evaporation and its suppression methods. Environ. Prot. Sci. 2024, 50, 19–26. [Google Scholar] [CrossRef]
- Sun, M.X.; Zhang, Y.; Xin, Y.; Zhong, D.J.; Yang, C.J. Vegetation phenology changes and their responses to climate change on the Western Sichuan Plateau over the past 20 years. Ecol. Environ. Sci. 2022, 31, 1326–1339. [Google Scholar] [CrossRef]
- Misra, D.; Dutta, W.; Jha, G.; Ray, P. Interactions and Regulatory Functions of Phenolics in Soil-Plant-Climate Nexus. Agronomy 2023, 13, 280. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Huang, Y.; Shi, Z.; Yao, H. Mechanisms of plant phenolic compounds affecting soil nitrogen transformation. Alex. Eng. J. 2025, 120, 173–184. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, F.H.; Wu, Z.F.; Li, M.W.; Zhang, X.; Fu, Y.S. Response of vegetation phenology to extreme climate and its mechanism. Acta Geogr. Sin. 2023, 78, 2241–2255. [Google Scholar] [CrossRef]
- Pang, B.; Hong, J.; Ma, X.; Qin, X.; Wang, X. Nitrogen absorption strategy of Stipa purpurea, a typical species in alpine grassland during freeze-thaw cycle. Acta Ecol. Sin. 2023, 43, 1147–1155. [Google Scholar] [CrossRef]
- Lin, S.; Li, H.Y.; Huang, P.C.; Duan, X.Y. Characteristics of high temperature, drought and circulation situation in summer 2022 in China. J. Arid Meteorol. 2022, 40, 748–763. [Google Scholar]
- Liu, D.; He, Y.H.; Zhang, L.L.; Li, J.M. Effects of freeze-thaw cycles on soil structure under different conditions. J. Northeast Agric. Univ. 2023, 54, 58–72. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, W.; Li, S. Effects of Freeze–Thaw Cycles on Uptake Preferences of Plants for Nutrient: A Review. Plants 2025, 14, 1122. [Google Scholar] [CrossRef] [PubMed]
- Körner, C. Plant Ecology at High Elevations. In Alpine Plant Life; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 1–22. [Google Scholar] [CrossRef]
- Zhang, K.-L.; Leng, Y.-N.; Hao, R.-R.; Zhang, W.-Y.; Li, H.-F.; Chen, M.-X.; Zhu, F.-Y. Adaptation of High-Altitude Plants to Harsh Environments: Application of Phenotypic-Variation-Related Methods and Multi-Omics Techniques. Int. J. Mol. Sci. 2024, 25, 12666. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Chen, R.S.; Liu, J.F.; Wang, X.Q.; Zhang, B.G.; Liu, G.H. Variation of snow cover and its influence on spring runoff in the source region of the Yellow River. Plateau Meteorol. 2020, 39, 226–233. [Google Scholar] [CrossRef]
- Rixen, C.; Høye, T.T.; Macek, P.; Aerts, R.; Alatalo, J.M.; Anderson, J.T.; Arnold, P.A.; Barrio, I.C.; Bjerke, J.W.; Björkman, M.P.; et al. Winters are changing: Snow effects on Arctic and alpine tundra ecosystems. Arct. Sci. 2022, 8, 572–608. [Google Scholar] [CrossRef]
- Wang, F.; Lai, H.; Li, Y.; Feng, K.; Zhang, Z.; Tian, Q.; Zhu, X.; Yang, H. Dynamic variation of meteorological drought and its relationships with agricultural drought across China. Agric. Water Manag. 2022, 261, 107301. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Jin, K.; Wang, F.; Han, J.Q.; Shi, S.Y.; Ding, W.B. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982–2015. Acta Geogr. Sin. 2020, 75, 961–974. [Google Scholar] [CrossRef]
- Chen, J.H.; Lu, Q.; Liu, Y.Q.; He, C.Y.; Yan, F. Distribution and influencing factors of freeze-thaw desertification degradation areas on the Tibetan Plateau. Res. Soil Water Conserv. 2023, 30, 103–110+120. [Google Scholar] [CrossRef]
- Geng, Q.L.; Chen, X.Q.; He, X.H.; Tian, Z.H. Vegetation dynamics and its response to climate change and human activities based on different vegetation types in China. Acta Ecol. Sin. 2022, 38, 63–72. [Google Scholar] [CrossRef]
- Yang, T.; Cong, N. Response of spring vegetation phenology to soil freeze–thaw state in the Northern Hemisphere from 2016 to 2022. Front. For. Glob. Change 2023, 6, 1332734. [Google Scholar] [CrossRef]
- Jia, D.; Liu, M.; Li, K.; Wang, X.; Wang, Z.; Wen, J.; Lai, X. Variations in the top-layer soil freezing/thawing process from 2009 to 2018 in the Maqu area of the Tibetan Plateau. Theor. Appl. Climatol. 2021, 143, 21–32. [Google Scholar] [CrossRef]
- Shao, W.W.; Zhang, T.J. Comparison and analysis of the near-surface soil freeze/thaw status datasets obtained by passive microwave remote sensing. J. Glaciol. Geocryol. 2021, 43, 285–295. [Google Scholar] [CrossRef]
- Qin, X.; Nie, X.; Wang, X.; Hong, J. Freeze-thaw process induced by increased precipitation affects root growth of alpine steppe on the Tibetan Plateau. J. Mt. Sci. 2023, 20, 3010–3017. [Google Scholar] [CrossRef]
- Xu, H.; Wang, F.; Li, T.; Wu, X. A review of freezing-thawing cycle effects on key processes of soil nitrogen cycling and the underlying mechanisms. Acta Ecol. Sin. 2020, 40, 3168–3182. [Google Scholar] [CrossRef]
- Dai, L.C.; Ke, X.; Zhang, F.W.; Du, Y.G.; Li, Y.K.; Guo, X.W.; Li, Q.; Lin, L.; Cao, G.M. Characteristics of hydro-thermal coupling during soil freezing-thawing process in seasonally frozen soil regions on the Tibetan Plateau. J. Glaciol. Geocryol. 2020, 42, 390–398. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Yin, B.F.; Tao, Y.; Zhou, X.B.; Zhang, Y.M. Effects of freeze-thaw processes on the germination of desert ephemeral plant seeds. Chin. J. Ecol. 2021, 40, 301–312. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Karimi, M.; Venditti, A.; Zahra, N.; Siddique, K.H.M.; Farooq, M. Plant Adaptation to Drought Stress: The Role of Anatomical and Morphological Characteristics in Maintaining the Water Status. J. Soil Sci. Plant Nutr. 2025, 25, 409–427. [Google Scholar] [CrossRef]
- Maeght, J.-L.; Rewald, B.; Pierret, A. How to study deep roots—And why it matters. Front. Plant Sci. 2013, 4, 299. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J. Impact of temperature on the biological properties of soil. Int. Agrophysics 2016, 30, 1–8. [Google Scholar] [CrossRef]
- Knight, C.G.; Nicolitch, O.; Griffiths, R.I.; Goodall, T.; Jones, B.; Weser, C.; Langridge, H.; Davison, J.; Dellavalle, A.; Eisenhauer, N.; et al. Soil microbiomes show consistent and predictable responses to extreme events. Nature 2024, 636, 690–696. [Google Scholar] [CrossRef]
- Fromin, N. Impacts of soil storage on microbial parameters. SOIL 2025, 11, 247–265. [Google Scholar] [CrossRef]
- Hetherington, A.; Woodward, F. The role of stomata in sensing and driving environmental change. Nature 2003, 424, 901–908. [Google Scholar] [CrossRef]
- Gampe, D.; Zscheischler, J.; Reichstein, M.; O’Sullivan, M.; Smith, W.K.; Sitch, S.; Buermann, W. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 2021, 11, 772–779. [Google Scholar] [CrossRef]
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Chen, J.Z.; Zhao, C.S.; Zhang, X.Z. Changes in vegetation growing season and active accumulated temperature in circum-Arctic region under 21st century climate change scenario. Clim. Environ. Res. 2020, 25, 543–554. [Google Scholar] [CrossRef]
- Jiang, M.; Li, H.; Zhang, W.; Liu, J.; Zhang, Q. Effects of climate change and grazing on the soil organic carbon stock of alpine wetlands on the Tibetan Plateau from 2000 to 2018. CATENA 2024, 238, 107870. [Google Scholar] [CrossRef]
- Li, Z.; Qu, H.; Li, L.; Zheng, J.; Wei, D.; Wang, F. Effects of climate change on vegetation dynamics of the Qinghai-Tibet Plateau, a causality analysis using empirical dynamic modeling. Heliyon 2023, 9, e16001. [Google Scholar] [CrossRef]
- Xiang, H.T.; Zheng, D.F.; He, N.; Li, W.; Wang, M.L.; Wang, S.Y. Research progress on the physiological response of plants to low temperature and the amelioration effectiveness of exogenous ABA. Acta Prataculturae Sin. 2021, 30, 208–219. [Google Scholar]
- Li, Z.H.; Li, J.Y.; Wang, F.; Xin, Y.L. Advances in the response mechanisms of plants to low-temperature stress. Agric. Technol. 2024, 44, 134–138. [Google Scholar] [CrossRef]
- Sun, S.K.; Liu, X.K.; Zhu, X.Y.; Duan, X.H.; Han, H.F. Advances in the migration and leaching of soil dissolved organic carbon and nitrogen. Shanxi Agric. Sci. 2022, 50, 1158–1167. [Google Scholar]
- Li, M.H.; Du, J.K.; Li, W.T.; Li, R.J.; Wang, S.Y.; Wang, S.S. Global vegetation changes and their relationships with temperature and precipitation from 1982 to 2015. J. Geogr. Sci. 2020, 40, 823–832. [Google Scholar] [CrossRef]
- Li, S.C.; Li, D.L.; Zhao, P.; Zhang, G.Q. The climatic characteristics of vapor transportation in rainy season of the origin area of three rivers in Qinghai-Xizang Plateau. Acta Meteorol. Sin. 2009, 4, 591–598. [Google Scholar] [CrossRef]
- He, W.; Bu, R.C.; Xiong, Z.P.; Hu, Y.M. Characteristics of temperature and precipitation in Northeastern China from 1961 to 2005. Acta Ecol. Sin. 2013, 33, 519–531. [Google Scholar] [CrossRef]
- Wang, N. Simulation Research on Snow Melting Process in Spring. Open J. Nat. Sci. 2022, 10, 138–145. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, Y.; Wang, X.; Kang, S.; Chen, A.; Mao, W.; Zhong, X. Snow cover controls seasonally frozen ground regime on the southern edge of Altai Mountains. Agric. For. Meteorol. 2021, 297, 108271. [Google Scholar] [CrossRef]
- Feng, X.L.; Li, H.M.; Luo, S.Q.; Bai, W.R.; Wen, T.T. Freeze-Thaw Characteristics of Seasonally Frozen Ground in the Three River Source Region from 1961 to 2020. Plateau Meteorol. 2022, 41, 295–305. [Google Scholar] [CrossRef]
- Shen, Q.K.; Liu, X.G.; Zhou, X.; Zhang, Z.J.; Chen, Q.H. Spatio-temporal variation patterns of diurnal freeze-thaw cycles of the near-surface soil on the Qinghai-Tibet Plateau between 2002 and 2020. Acta Geogr. Sin. 2023, 78, 587–603. [Google Scholar] [CrossRef]
- Zhu, Y.; Fan, G.Z.; Hua, W.; Wang, Q.R. Spatiotemporal variation characteristics of surface temperature on the Tibetan Plateau from 1981 to 2015. J. Southwest Univ. (Nat. Sci. Ed.) 2018, 40, 127–140. [Google Scholar] [CrossRef]
- Wei, Y.; Li, X.; Gu, L.; Zheng, Z.; Zheng, X.; Jiang, T. Significant decreasing trends in snow cover and duration in Northeast China during the past 40 years from 1980 to 2020. J. Hydrol. 2023, 626, 130318. [Google Scholar] [CrossRef]
- Tong, Y.; Sorokin, A. What Are Black Soils and Why Are Black Soils Important in Multiregional Aspects? Mosc. Univ. Soil Sci. Bull. 2024, 79, 603–607. [Google Scholar] [CrossRef]
- Gu, Z.K.; Du, G.Z.; Zhu, W.X.; Suo, N.J.; Zhang, S.H. Distribution patterns of soil nutrients in different grassland types in eastern Tibetan Plateau. Pratacultural Sci. 2012, 29, 507–512. [Google Scholar]
- Pei, L.-L.; Feng, J.-L.; Zhang, W.; Lin, Y.-C.; Hu, H.-P.; Wang, K.-Y.; Chen, Y.-Y.; Zhang, Q. Anomalous water retention capacity of alpine meadow soil with eolian dust accretion on the Tibetan Plateau. CATENA 2022, 213, 106159. [Google Scholar] [CrossRef]
- Hu, G.; Zhao, L.; Li, R.; Wu, X.; Wu, T.; Xie, C.; Zhu, X.; Su, Y. Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products. Geoderma 2019, 337, 893–905. [Google Scholar] [CrossRef]
- Chang, X.; Jin, H.; Zhang, Y.; He, R.; Luo, D.; Wang, Y.; Lü, L.; Zhang, Q. Thermal Impacts of Boreal Forest Vegetation on Active Layer and Permafrost Soils in Northern da Xing’Anling (Hinggan) Mountains, Northeast China. Arct. Antarct. Alp. Res. 2015, 47, 267–279. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J.; Ma, B.; Du, W. Assessing the ecological vulnerability of the upper reaches of the Minjiang River. PLoS ONE 2017, 12, e0181825. [Google Scholar] [CrossRef]
- Xia, M.; Jia, K.; Zhao, W.; Liu, S.; Wei, X.; Wang, B. Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau. Ecol. Indic. 2021, 123, 107274. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, S.; Shen, H.; Xiao, J.; Li, S.; Gao, X.; Wu, S. Degradation significantly decreased the ecosystem multifunctionality of three alpine grasslands: Evidences from a large-scale survey on the Qinghai-Tibetan Plateau. J. Mt. Sci. 2021, 18, 357–366. [Google Scholar] [CrossRef]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Xiao, R.B.; Ouyang, Z.Y.; Li, W.F.; Zhang, Z.M.; Tarver, G., Jr.; Wang, X.K.; Miao, H. Ecological and environmental effects of urban heat islands. Acta Ecol. Sin. 2005, 25, 2055–2060. Available online: https://www.webofscience.com/wos/alldb/full-record/CSCD:2102076 (accessed on 25 April 2025).
- Wang, D.; Ding, W. Grazing led to an increase in the root: Shoot ratio and a shallow root system in an alpine meadow of the Tibetan plateau. Front. Environ. Sci. 2024, 12, 1348220. [Google Scholar] [CrossRef]
- Long, R.J.; Ding, L.M.; Shang, Z.H.; Guo, X.H. The yak grazing system on the Qinghai-Tibetan plateau and its status. Rangel. J. 2008, 30, 241. [Google Scholar] [CrossRef]
- Liu, S.; Dong, Y.; Sun, Y.; Wang, Q. Multi-Scale Ecological Restoration Strategies to Enhance Water Conservation in Ruoergai on the Qinghai–Tibet Plateau. Plants 2025, 14, 1085. [Google Scholar] [CrossRef]
- Yu, L.; Li, K.R.; Tao, B.; Xu, M. Adaptation of vegetation geographical distribution to climate change. Prog. Geogr. 2010, 29, 1326–1332. Available online: https://www.webofscience.com/wos/alldb/full-record/CSCD:4051259 (accessed on 25 April 2025).
- Peng, Z.Y.; Huang, J.S.; Zeng, W.Z.; Guo, H. Water movement regularities of seasonal freezing-thawing soil. Eng. J. Wuhan University. Eng. Ed. 2011, 44, 696–700. [Google Scholar]
- Yergeau, E.; Kowalchuk, G.A. Responses of Antarctic soil microbial communities and associated functions to temperature and freeze–thaw cycle frequency. Environ. Microbiol. 2008, 10, 2223–2235. [Google Scholar] [CrossRef]
- Nuralykyzy, B.; Nurzhan, A.; Li, N.; Huang, Q.; Zhu, Z.; An, S. Influence of land use types on soil carbon fractions in the Qaidam Basin of the Qinghai-Tibet Plateau. CATENA 2023, 231, 107273. [Google Scholar] [CrossRef]
- Sarady, M.; Sahlin, E.A.U. The influence of snow cover on ground freeze-thaw frequency, intensity, and duration: An experimental study conducted in coastal northern Sweden. Nor. Geogr. Tidsskr.-Nor. J. Geogr. 2016, 70, 82–94. [Google Scholar] [CrossRef]
Test Type | Hypothesis Condition | Test Statistic | m = 1 | m = 2 |
---|---|---|---|---|
Linear Test | H0: r = 0 H1: r ≥ 1 | LM | 38.616 (0.000) | 96.279 (0.000) |
LMF | 12.682 (0.000) | 16.052 (0.000) | ||
LRT | 38.822 (0.000) | 97,572 (0.000) | ||
Nonlinear Test | H0: r = 1 H1: r ≥ 2 | LM | 13.384 (0.004) | 4.598 (0.596) |
LMF | 4.358 (0.005) | 0.746 (0.612) | ||
LRT | 13.409 (0.004) | 4.601 (0.596) | ||
AIC | −4.938 | −4.943 | ||
BIC | −4.924 | −4.928 |
Variable | Linear Part | Nonlinear Part |
---|---|---|
onset date of SFTTP | 0.0453 *** (3.6115) | −0.1128 *** (−5.8358) |
temperature | 0.1700 *** (12.2719) | −0.1886 *** (−8.0776) |
precipitation | −0.0194 (−1.6369) | 0.0019 (0.0946) |
location parameter | 0.1544, 0.1545 | |
smoothing coefficient | 0.3060 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yuan, Q.; Ren, P. Mechanisms Driving the Nonlinear Relationship Between Soil Freeze–Thaw Cycles and NDVI from Remotely Sensed Data in the Eastern Tibetan Plateau. Remote Sens. 2025, 17, 2192. https://doi.org/10.3390/rs17132192
Wang Y, Yuan Q, Ren P. Mechanisms Driving the Nonlinear Relationship Between Soil Freeze–Thaw Cycles and NDVI from Remotely Sensed Data in the Eastern Tibetan Plateau. Remote Sensing. 2025; 17(13):2192. https://doi.org/10.3390/rs17132192
Chicago/Turabian StyleWang, Yixuan, Quanzhi Yuan, and Ping Ren. 2025. "Mechanisms Driving the Nonlinear Relationship Between Soil Freeze–Thaw Cycles and NDVI from Remotely Sensed Data in the Eastern Tibetan Plateau" Remote Sensing 17, no. 13: 2192. https://doi.org/10.3390/rs17132192
APA StyleWang, Y., Yuan, Q., & Ren, P. (2025). Mechanisms Driving the Nonlinear Relationship Between Soil Freeze–Thaw Cycles and NDVI from Remotely Sensed Data in the Eastern Tibetan Plateau. Remote Sensing, 17(13), 2192. https://doi.org/10.3390/rs17132192