Ensemble Learning for Spatial Modeling of Icing Fields from Multi-Source Remote Sensing Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Geographic and Climatic Features of the YGGG Region
2.2. Data Source and Data Preprocessing
2.2.1. Microtopography, Icing Grade, NDVI, LULC, and Elevation Data
2.2.2. Meteorological and Icing-Monitored Data
2.2.3. Evaluation Indicators
2.2.4. Proposed Icing-Gridded Algorithms
3. Results
3.1. Optimal Parameters Selection for EBKI
3.2. Evaluation of the Proposed Models on the Training Set, Validation Set, and Testing Set
3.3. Spatial–Temporal Variations in the Best Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, Z.; Han, Y.; Liu, Y. Occurrence of Warm Freezing Rain: Observation and Modeling Study. JGR Atmos. 2022, 127, e2021JD036242. [Google Scholar] [CrossRef]
- Shen, H.; Wan, B.; Zhou, S.; Kang, J.; Chen, H.; Gao, Z. The Synoptic Characteristics of Icing Events on Transmission Lines in Southern China. Atmosphere 2023, 14, 1789. [Google Scholar] [CrossRef]
- Ma, T.; Niu, D.; Fu, M. Icing Forecasting for Power Transmission Lines Based on a Wavelet Support Vector Machine Optimized by a Quantum Fireworks Algorithm. Appl. Sci. 2016, 6, 54. [Google Scholar] [CrossRef]
- Liao, Z.; Zhai, P.; Chen, Y.; Lu, H. Differing Mechanisms for the 2008 and 2016 Wintertime Cold Events in Southern China. Int. J. Climatol. 2020, 40, 4944–4955. [Google Scholar] [CrossRef]
- Zhou, B.; Gu, L.; Ding, Y.; Shao, L.; Wu, Z.; Yang, X.; Li, C.; Li, Z.; Wang, X.; Cao, Y.; et al. The Great 2008 Chinese Ice Storm: Its Socioeconomic–Ecological Impact and Sustainability Lessons Learned. Bull. Amer. Meteor. Soc. 2011, 92, 47–60. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, Q.; Yang, G.; Wang, X.; Zhao, L.; Yang, X.; Wu, H.; Wang, Z.; Kang, Z.M.; Mao, D.Y. Disasters and Its Impact of a Severe Snow Storm and Freezing Rain over Southern China in January 2008. Clim. Environ. Res. 2008, 13, 556–566. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Z.; Zhang, W.; Lu, Z.; Cheng, Y.; Qu, X.; Gul, C.; Yang, Y. The Causes and Forecasting of Icing Events on Power Transmission Lines in Southern China: A Review and Perspective. Atmosphere 2023, 14, 1815. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, K.; Liu, B.; Li, X.; Chen, Q.; Yin, Q.; Si, J.; Gao, Z. Method for the Development of Ice Thickness Distribution Maps for Power Transmission Infrastructures in China. J. Cold Reg. Eng. 2015, 29, 06014004. [Google Scholar] [CrossRef]
- Musilek, P.; Arnold, D.; Lozowski, E.P. An Ice Accretion Forecasting System (IAFS) for Power Transmission Lines Using Numerical Weather Prediction. SOLA 2009, 5, 25–28. [Google Scholar] [CrossRef]
- Podolskiy, E.A.; Nygaard, B.E.K.; Nishimura, K.; Makkonen, L.; Lozowski, E.P. Study of Unusual Atmospheric Icing at Mount Zao, Japan, Using the Weather Research and Forecasting Model. J. Geophys. Res. 2012, 117, D12. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, S.; Zhang, H.; Su, H.; Zheng, W. Prediction of Conductor Icing Thickness Based on Random Forest and WRF Models. In Proceedings of the 2021 International Conference on Intelligent Computing, Automation and Applications (ICAA), Nanjing, China, 25–27 June 2021; pp. 959–962. [Google Scholar]
- Lenhard, R.W. An Indirect Method for Estimating the Weight of Glaze on Wires. Bull. Am. Meteorol. Soc. 1955, 36, 1–5. [Google Scholar] [CrossRef]
- Makkonen, L. Modeling Power Line Icing in Freezing Precipitation. Atmos. Res. 1998, 46, 131–142. [Google Scholar] [CrossRef]
- Makkonen, L. Models for the Growth of Rime, Glaze, Icicles and Wet Snow on Structures. Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Eng. Sci. 2000, 358, 2913–2939. [Google Scholar] [CrossRef]
- Jones, K.F. A Simple Model for Freezing Rain Ice Loads. Atmos. Res. 1998, 46, 87–97. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, W. Research on Automatic Drawing Method of Power Grid Icing Area Distribution Map Based on ArcGIS. Electr. Power Inf. Commun. Technol. 2018, 16, 44–48. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Zhang, W. Exploring Spatiotemporal Patterns of PM2.5 in China Based on Ground-Level Observations for 190 Cities. Environ. Pollut. 2016, 216, 559–567. [Google Scholar] [CrossRef]
- Mao, F.; Hong, J.; Min, Q.; Gong, W.; Zang, L.; Yin, J. Estimating Hourly Full-Coverage PM2.5 over China Based on TOA Reflectance Data from the Fengyun-4A Satellite. Environ. Pollut. 2021, 270, 116119. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Ji, D.; Xia, Z.; Nan, P.; Zhang, J.; Li, K.; Qi, B.; Du, R.; Sun, Y.; et al. Explainable Ensemble Machine Learning Revealing the Effect of Meteorology and Sources on Ozone Formation in Megacity Hangzhou, China. Sci. Total Environ. 2024, 922, 171295. [Google Scholar] [CrossRef]
- Minár, J.; Evans, I.S. Elementary Forms for Land Surface Segmentation: The Theoretical Basis of Terrain Analysis and Geomorphological Mapping. Geomorphology 2008, 95, 236–259. [Google Scholar] [CrossRef]
- Wu, J.; Wen, Y.; Zhang, Q.; He, J.; Zhang, H.; Gong, B. GIS based classification and extraction algorithm of ice-prone micro-terrain and its 3D application. High Volt. Technol. 2023, 49, 1–5. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, S.; Gao, C.Y.; Duan, Z.; Xi, X.; Li, Y. A Robust Error Correction Method for Numerical Weather Prediction Wind Speed Based on Bayesian Optimization, Variational Mode Decomposition, Principal Component Analysis, and Random Forest: VMD-PCA-RF (Version 1.0.0). Geosci. Model Dev. 2023, 16, 6247–6266. [Google Scholar] [CrossRef]
- Rehman, A.; Zhovmer, A.; Sato, R.; Mukouyama, Y.; Chen, J.; Rissone, A.; Puertollano, R.; Liu, J.; Vishwasrao, H.D.; Shroff, H.; et al. Convolutional Neural Network Transformer (CNNT) for Fluorescence Microscopy Image Denoising with Improved Generalization and Fast Adaptation. Sci. Rep. 2024, 14, 18184. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S. Ensemble Learning for Spatial Modeling of Icing Fields from Multi-Source Remote Sensing Data: Partial Data and Training Code [Dataset]. Zenodo 2025. [Google Scholar] [CrossRef]
- Chai, H.; Zhang, H.; Wang, Q.; Su, H.; Yang, Y.; Gao, Z. Spatial and Temporal Distribution Characteris—Tics, Numerical Simulation and Weather Science Causes of a Large Scale Icing Process on UHV Transmission Lines in Yunnan-Guizhou Plateau. Plateau Meteorol. 2023, 42, 359–373. (In Chinese) [Google Scholar] [CrossRef]
- Deng, F.; Kang, L.; Jiang, Y.; Chu, J.; Liu, Y. An Hourly Stand. Ice Thickness Model Using Conventional Meteorological Data with Its Validation. J. Appl. Meteorol. Sci. 2017, 28, 142–156. [Google Scholar]
- He, Z.; Yang, Y.; Fang, R.; Zhou, S.; Zhao, W.; Bai, Y.; Li, J.; Wang, B. Integration of Shapley Additive Explanations with Random Forest Model for Quantitative Precipitation Estimation of Mesoscale Convective Systems. Front. Environ. Sci. 2023, 10, 1057081. [Google Scholar] [CrossRef]
- Fikke, S.; Ronsten, G.; Heimo, A.; Kunz, S.; Ostrozlik, M.; Persson, P.-E.; Sabata, J.; Wareing, B.; Wichura, B.; Chum, J.; et al. COST-727: Atmospheric Icing on Structures Measurements and Data Collection on Icing: State of the Art. Publ. MeteoSwiss 2006, 75, 110. [Google Scholar]
Model | Training Set | Validation Set | Testing Set | ||||||
---|---|---|---|---|---|---|---|---|---|
R | RMSE (mm) | CSI | R | RMSE (mm) | CSI | R | RMSE (mm) | CSI | |
EBKI | 0.834 | 2.224 | 0.580 | 0.574 | 3.602 | 0.477 | 0.851 | 3.315 | 0.668 |
lightGBM | 0.984 | 0.708 | 0.903 | 0.630 | 3.435 | 0.504 | 0.883 | 2.949 | 0.774 |
XGBoost | 0.986 | 0.659 | 0.920 | 0.618 | 3.477 | 0.501 | 0.887 | 3.016 | 0.758 |
RF | 0.988 | 0.609 | 0.969 | 0.630 | 3.417 | 0.511 | 0.883 | 2.951 | 0.767 |
stacking | 0.987 | 0.661 | 0.933 | 0.634 | 3.424 | 0.514 | 0.893 | 2.834 | 0.774 |
CNNT | 0.965 | 1.069 | 0.821 | 0.559 | 3.775 | 0.453 | 0.859 | 3.469 | 0.713 |
Model | Training Set | Validation Set | Testing Set | ||||||
---|---|---|---|---|---|---|---|---|---|
MAR | FAR | fbias | MAR | FAR | fbias | MAR | FAR | fbias | |
EBKI | 0.205 | 0.318 | 1.166 | 0.295 | 0.404 | 1.183 | 0.080 | 0.291 | 1.297 |
lightGBM | 0.074 | 0.026 | 0.951 | 0.324 | 0.336 | 1.017 | 0.096 | 0.157 | 1.072 |
XGBoost | 0.059 | 0.023 | 0.963 | 0.328 | 0.337 | 1.014 | 0.107 | 0.166 | 1.07 |
RF | 0.020 | 0.012 | 0.993 | 0.313 | 0.334 | 1.032 | 0.094 | 0.166 | 1.086 |
stacking | 0.048 | 0.022 | 0.974 | 0.309 | 0.332 | 1.034 | 0.091 | 0.161 | 1.084 |
CNNT | 0.128 | 0.067 | 0.934 | 0.405 | 0.346 | 0.910 | 0.170 | 0.165 | 0.994 |
Stacking on Validation Set | (0, 5] | (5, 10] | (10, 15] | (15, 20] | (20, 30] | (30, 40] | (40, ∞) | Sum |
---|---|---|---|---|---|---|---|---|
CSI | 0.188 | 0.359 | 0.245 | 0.146 | 0.174 | 0.000 | 0.000 | 0.229 |
FAR | 74.38% | 26.11% | 30.46% | 23.23% | 0.00% | / | / | 60.43% |
MAR | 58.41% | 58.83% | 72.51% | 84.69% | 82.58% | 100.00% | 100.00% | 64.87% |
fbias | 1.623 | 0.557 | 0.395 | 0.199 | 0.174 | 0.000 | 0.000 | 0.888 |
RMSE (mm) | 1.91 | 4.44 | 7.30 | 10.63 | 16.04 | 23.33 | 29.00 | 3.424 |
RF on validation set | (0, 5] | (5, 10] | (10, 15] | (15, 20] | (20, 30] | (30, 40] | (40, ∞) | sum |
CSI | 0.188 | 0.374 | 0.245 | 0.136 | 0.038 | 0.000 | 0.000 | 0.226 |
FAR | 74.27% | 22.53% | 23.72% | 19.27% | 0.00% | / | / | 59.95% |
MAR | 58.91% | 58.04% | 73.50% | 85.90% | 96.21% | 100.00% | 100.00% | 65.79% |
fbias | 1.597 | 0.542 | 0.347 | 0.175 | 0.038 | 0.000 | 0.000 | 0.854 |
RMSE (mm) | 1.85 | 4.42 | 7.24 | 10.51 | 16.40 | 24.19 | 29.27 | 3.417 |
stacking on testing set | (0, 5] | (5, 10] | (10, 15] | (15, 20] | (20, 30] | (30, 40] | (40, ∞) | sum |
CSI | 0.354 | 0.631 | 0.557 | 0.498 | 0.608 | 0.562 | 0.052 | 0.480 |
FAR | 58.05% | 20.49% | 22.54% | 20.92% | 8.26% | 6.65% | 0.00% | 37.95% |
MAR | 30.65% | 24.58% | 33.54% | 42.65% | 35.65% | 41.42% | 94.81% | 32.11% |
fbias | 1.653 | 0.949 | 0.858 | 0.725 | 0.701 | 0.628 | 0.052 | 1.094 |
RMSE (mm) | 1.69 | 3.67 | 4.24 | 5.13 | 6.89 | 8.63 | 25.77 | 2.834 |
RF on testing set | (0, 5] | (5, 10] | (10, 15] | (15, 20] | (20, 30] | (30, 40] | (40, ∞) | sum |
CSI | 0.356 | 0.606 | 0.526 | 0.437 | 0.526 | 0.396 | 0.017 | 0.456 |
FAR | 57.53% | 19.38% | 20.07% | 14.73% | 6.01% | 8.87% | 0.00% | 37.78% |
MAR | 31.23% | 29.12% | 39.35% | 52.73% | 45.62% | 58.80% | 98.27% | 37.03% |
fbias | 1.619 | 0.879 | 0.759 | 0.554 | 0.579 | 0.452 | 0.017 | 1.012 |
RMSE (mm) | 1.64 | 3.55 | 4.30 | 5.39 | 7.55 | 10.64 | 28.26 | 2.951 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Gao, Z.; Gong, B.; Zhang, H.; Zhang, H.; He, J.; Xi, X. Ensemble Learning for Spatial Modeling of Icing Fields from Multi-Source Remote Sensing Data. Remote Sens. 2025, 17, 2155. https://doi.org/10.3390/rs17132155
Zhou S, Gao Z, Gong B, Zhang H, Zhang H, He J, Xi X. Ensemble Learning for Spatial Modeling of Icing Fields from Multi-Source Remote Sensing Data. Remote Sensing. 2025; 17(13):2155. https://doi.org/10.3390/rs17132155
Chicago/Turabian StyleZhou, Shaohui, Zhiqiu Gao, Bo Gong, Hourong Zhang, Haipeng Zhang, Jinqiang He, and Xingya Xi. 2025. "Ensemble Learning for Spatial Modeling of Icing Fields from Multi-Source Remote Sensing Data" Remote Sensing 17, no. 13: 2155. https://doi.org/10.3390/rs17132155
APA StyleZhou, S., Gao, Z., Gong, B., Zhang, H., Zhang, H., He, J., & Xi, X. (2025). Ensemble Learning for Spatial Modeling of Icing Fields from Multi-Source Remote Sensing Data. Remote Sensing, 17(13), 2155. https://doi.org/10.3390/rs17132155