IUR-Net: A Multi-Stage Framework for Label Refinement Tasks in Noisy Remote Sensing Samples
Abstract
:1. Introduction
- (1)
- Firstly, we propose a label refinement method for the semantic segmentation of remote sensing images based on IUR-Net. This method integrates newly acquired remote sensing imagery with existing noisy labels to automatically identify, update, and refine erroneous regions within the labels.
- (2)
- Secondly, this study designs a plug-and-play Ms-EALM aimed at capturing inconsistencies between remote sensing images and noisy labels, thereby enabling the more-precise localization of erroneous label regions in multidimensional feature space.
- (3)
- Lastly, we have released two benchmark datasets for the label refinement task, WHU-LR and EVLAB-LR, which are not only suitable for research on learning from noisy samples but also applicable to fields such as the automatic updating of land cover changes, the tracking of urban architectural changes, and the fine-tuning of foundation models.
2. Related Work
2.1. Based on Robust Architecture and Regularization
2.2. Based on Robust Loss Functions and Adjustments
2.3. Based on Sample Selection
3. Methodology
3.1. Overview
3.2. Identify, Update, and Refine Architecture
3.3. Multi-Scale, Error-Aware Localization Module
3.4. Explored Architectures
3.5. Implementation Details
4. Experiments and Results
4.1. Dataset
4.2. Label Refinement Results
4.3. Comparison with Recent Methods
4.4. Ablation Study
4.5. Effectiveness of the Three-Stage Sub-Tasks
4.6. Effectiveness of the Ms-EALM
5. Discussion
5.1. Analysis of Label Noise Ratio
5.2. Applications in Foundation Model Fine-Tuning
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, B.; Zhu, J.; Su, H. Toward the Third Generation Artificial Intelligence. Sci. China Inf. Sci. 2023, 66, 121101. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, S.; Ouyang, C.; Chen, M.; Liu, C.; Zhang, J.; Yu, L.; Wang, F.; Xie, Y.; Li, J.; et al. Artificial Intelligence for Geoscience: Progress, Challenges, and Perspectives. Innovation 2024, 5, 100691. [Google Scholar] [CrossRef] [PubMed]
- Osco, L.P.; Wu, Q.; De Lemos, E.L.; Gonçalves, W.N.; Ramos, A.P.M.; Li, J.; Marcato, J. The Segment Anything Model (SAM) for Remote Sensing Applications: From Zero to One Shot. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103540. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep Learning in Environmental Remote Sensing: Achievements and Challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Wuit Yee Kyaw, H.; Chatzidimitriou, A.; Hellwig, J.; Bühler, M.; Hawlik, J.; Herrmann, M. Multifactorial Evaluation of Spatial Suitability and Economic Viability of Light Green Bridges Using Remote Sensing Data and Spatial Urban Planning Criteria. Remote Sens. 2023, 15, 753. [Google Scholar] [CrossRef]
- Naushad, R.; Kaur, T.; Ghaderpour, E. Deep Transfer Learning for Land Use and Land Cover Classification: A Comparative Study. Sensors 2021, 21, 8083. [Google Scholar] [CrossRef]
- Song, H.; Kim, M.; Park, D.; Shin, Y.; Lee, J.-G. Learning from Noisy Labels with Deep Neural Networks: A Survey 2022. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 8135–8153. [Google Scholar] [CrossRef]
- Albert, P.; Ortego, D.; Arazo, E.; O’Connor, N.E.; McGuinness, K. Addressing Out-of-Distribution Label Noise in Webly-Labelled Data. In Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2022; pp. 392–401. [Google Scholar]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Spatiotemporal Ecological Vulnerability Analysis with Statistical Correlation Based on Satellite Remote Sensing in Samara, Russia. J. Environ. Manag. 2021, 285, 112138. [Google Scholar] [CrossRef]
- Zorzi, S.; Bittner, K.; Fraundorfer, F. Map-Repair: Deep Cadastre Maps Alignment and Temporal Inconsistencies Fix in Satellite Images. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 1829–1832. [Google Scholar]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.-Y.; et al. Segment Anything. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; pp. 3992–4003. [Google Scholar]
- Xiong, Y.; Zhou, Y.; Wang, F.; Wang, S.; Wang, Z.; Ji, J.; Wang, J.; Zou, W.; You, D.; Qin, G. A Novel Intelligent Method Based on the Gaussian Heatmap Sampling Technique and Convolutional Neural Network for Landslide Susceptibility Mapping. Remote Sens. 2022, 14, 2866. [Google Scholar] [CrossRef]
- Zhou, W.; Yue, Y.; Fang, M.; Qian, X.; Yang, R.; Yu, L. BCINet: Bilateral Cross-Modal Interaction Network for Indoor Scene Understanding in RGB-D Images. Inf. Fusion 2023, 94, 32–42. [Google Scholar] [CrossRef]
- Xiao, T.; Xia, T.; Yang, Y.; Huang, C.; Wang, X. Learning from Massive Noisy Labeled Data for Image Classification. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 2691–2699. [Google Scholar]
- Song, H.; Kim, M.; Lee, J.-G. SELFIE: Refurbishing Unclean Samples for Robust Deep Learning. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 5907–5915. [Google Scholar]
- Hao, X.; Liu, L.; Yang, R.; Yin, L.; Zhang, L.; Li, X. A Review of Data Augmentation Methods of Remote Sensing Image Target Recognition. Remote Sens. 2023, 15, 827. [Google Scholar] [CrossRef]
- Nusrat, I.; Jang, S.-B. A Comparison of Regularization Techniques in Deep Neural Networks. Symmetry 2018, 10, 648. [Google Scholar] [CrossRef]
- Karimi, D.; Dou, H.; Warfield, S.K.; Gholipour, A. Deep Learning with Noisy Labels: Exploring Techniques and Remedies in Medical Image Analysis. Med. Image Anal. 2020, 65, 101759. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Brousse, O.; Esau, I.; Meier, F. Hyperlocal Mapping of Urban Air Temperature Using Remote Sensing and Crowdsourced Weather Data. Remote Sens. Environ. 2020, 242, 111791. [Google Scholar] [CrossRef]
- Manas, O.; Lacoste, A.; Giro-i-Nieto, X.; Vazquez, D.; Rodriguez, P. Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021; pp. 9394–9403. [Google Scholar]
- Moselhi, O.; Bardareh, H.; Zhu, Z. Automated Data Acquisition in Construction with Remote Sensing Technologies. Appl. Sci. 2020, 10, 2846. [Google Scholar] [CrossRef]
- Duan, P.; Kang, X.; Ghamisi, P. Hyperspectral Remote Sensing Benchmark Database for Oil Spill Detection with an Isolation Forest-Guided Unsupervised Detector. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–11. [Google Scholar] [CrossRef]
- Wu, C.-E.; Tian, Y.; Yu, H.; Wang, H.; Morgado, P.; Hu, Y.H.; Yang, L. Why Is Prompt Tuning for Vision-Language Models Robust to Noisy Labels? In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; pp. 15442–15451. [Google Scholar]
- Wang, X.; Chen, L.; Ban, T.; Lyu, D.; Guan, Y.; Wu, X.; Zhou, X.; Chen, H. Accurate Label Refinement from Multiannotator of Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4700413. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Hu, X.; Zhang, M.; Zhu, D. On the Automatic Quality Assessment of Annotated Sample Data for Object Extraction from Remote Sensing Imagery. ISPRS J. Photogramm. Remote Sens. 2023, 201, 153–173. [Google Scholar] [CrossRef]
- Cheng, S.; Li, B.; Sun, L.; Chen, Y. HRRNet: Hierarchical Refinement Residual Network for Semantic Segmentation of Remote Sensing Images. Remote Sens. 2023, 15, 1244. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Ren, H.; Hu, J.; Zou, L.; Wang, X. Multi-Level Feature-Refinement Anchor-Free Framework with Consistent Label-Assignment Mechanism for Ship Detection in SAR Imagery. Remote Sens. 2024, 16, 975. [Google Scholar] [CrossRef]
- Guo, H.; Du, B.; Zhang, L.; Su, X. A Coarse-to-Fine Boundary Refinement Network for Building Footprint Extraction from Remote Sensing Imagery. ISPRS J. Photogramm. Remote Sens. 2022, 183, 240–252. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, Y.; Tian, S.; Wang, J.; Ma, A.; Zhong, Y. Weakly Supervised Semantic Change Detection via Label Refinement Framework. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 2066–2069. [Google Scholar]
- Huang, J.; Zhang, X.; Sun, Y.; Xin, Q. Attention-Guided Label Refinement Network for Semantic Segmentation of Very High Resolution Aerial Orthoimages. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4490–4503. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, R.; Xu, J.; Hu, C.; Mao, Y. A Neural Expectation-Maximization Framework for Noisy Multi-Label Text Classification. IEEE Trans. Knowl. Data Eng. 2023, 35, 10992–11003. [Google Scholar] [CrossRef]
- Krogh, A.; Hertz, J.A. A Simple Weight Decay Can Improve Generalization. In Proceedings of the Neural Information Processing Systems (NIPS 1991), San Francisco, CA, USA, 2–5 December 1991; 1992; pp. 950–957. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 11–16 July 2015; pp. 448–456. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Xiong, Y.; Zhou, Y.; Wang, F.; Wang, S.; Wang, J.; Ji, J.; Wang, Z. Landslide Susceptibility Mapping Using Ant Colony Optimization Strategy and Deep Belief Network in Jiuzhaigou Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11042–11057. [Google Scholar] [CrossRef]
- Xu, J.; Quek, T.Q.S.; Chong, K.F.E. Training Classifiers That Are Universally Robust to All Label Noise Levels. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [Google Scholar]
- Jiang, H.; Gao, M.; Hu, Y.; Ren, Q.; Xie, Z.; Liu, J. Label-Noise-Tolerant Medical Image Classification via Self-Attention and Self-Supervised Learning. arXiv 2023, arXiv:2306.09718. [Google Scholar]
- Yao, Y.; Liu, T.; Han, B.; Gong, M.; Deng, J.; Niu, G.; Sugiyama, M. Dual T: Reducing Estimation Error for Transition Matrix in Label-Noise Learning. Adv. Neural Inf. Process. Syst. 2020, 33, 7260–7271. [Google Scholar]
- Feng, L.; Shu, S.; Lin, Z.; Lv, F.; Li, L.; An, B. Can Cross Entropy Loss Be Robust to Label Noise? In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, 11–17 July 2020; pp. 2206–2212. [Google Scholar]
- Zhou, W.; Dong, S.; Lei, J.; Yu, L. MTANet: Multitask-Aware Network with Hierarchical Multimodal Fusion for RGB-T Urban Scene Understanding. IEEE Trans. Intell. Veh. 2023, 8, 48–58. [Google Scholar] [CrossRef]
- Arazo, E.; Ortego, D.; Albert, P.; O’Connor, N.E.; McGuinness, K. Unsupervised Label Noise Modeling and Loss Correction. In Proceedings of the International Conference on Machine Learning, ICML, Long Beach, CA, USA, 9–15 June 2019; pp. 312–321. [Google Scholar]
- Zhang, H.; Xing, X.; Liu, L. DualGraph: A Graph-Based Method for Reasoning about Label Noise. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 9649–9658. [Google Scholar]
- Chen, P.; Ye, J.; Chen, G.; Zhao, J.; Heng, P.-A. Beyond Class-Conditional Assumption: A Primary Attempt to Combat Instance-Dependent Label Noise. AAAI 2021, 35, 11442–11450. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, G.; Hu, Q. Training Noise-Robust Deep Neural Networks via Meta-Learning. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 16–18 June 2020; pp. 4523–4532. [Google Scholar]
- Shi, X.; Guo, Z.; Li, K.; Liang, Y.; Zhu, X. Self-Paced Resistance Learning against Overfitting on Noisy Labels. Pattern Recognit. 2023, 134, 109080. [Google Scholar] [CrossRef]
- Jeong, H.; Chung, H.W. Rethinking Self-Distillation: Label Averaging and Enhanced Soft Label Refinement with Partial Labels. arXiv 2024, arXiv:2402.10482. [Google Scholar]
- Gidaris, S.; Komodakis, N. Detect, Replace, Refine: Deep Structured Prediction for Pixel Wise Labeling. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7187–7196. [Google Scholar]
- Misra, D.; Nalamada, T.; Arasanipalai, A.U.; Hou, Q. Rotate to Attend: Convolutional Triplet Attention Module. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021; pp. 3138–3147. [Google Scholar]
- Klingner, M.; Bar, A.; Fingscheidt, T. Improved Noise and Attack Robustness for Semantic Segmentation by Using Multi-Task Training with Self-Supervised Depth Estimation. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 1299–1309. [Google Scholar]
Water Bodies | Forest | Buildings | Land Reclamation | Roads | |
---|---|---|---|---|---|
Area (km2) | 628.4 | 409.2 | 114.7 | 270.1 | 543.3 |
Sample size (512 × 512) | 4545 | 4491 | 1323 | 2302 | 3806 |
Percent conversion | 7.3 | 11.0 | 11.5 | 8.5 | 7.0 |
Dataset | EVLAB-LR | WHU-LR | |||||
---|---|---|---|---|---|---|---|
Index | Water Bodies | Forest | Buildings | Land Reclamation | Roads | Buildings | |
Noisy label | IoU (%) | 71.22 | 90.15 | 81.55 | 49.09 | 58.41 | 73.27 |
F1 Score (%) | 83.19 | 94.82 | 89.84 | 65.85 | 73.74 | 84.57 | |
Refined label | IoU (%) | 93.38 | 94.03 | 94.47 | 72.46 | 85.74 | 95.69 |
F1 Score (%) | 96.58 | 96.92 | 97.15 | 84.30 | 92.32 | 97.80 |
Index | IoU (%) | Precision (%) | Recall (%) | F1 Score (%) | Kappa (%) | |
---|---|---|---|---|---|---|
Model | ||||||
RoG | 77.93 ± 0.45 | 94.75 ± 0.32 | 81.44 ± 0.56 | 87.59 ± 0.48 | 85.09 ± 0.43 | |
SEAL | 79.01 ± 0.41 | 95.54 ± 0.30 | 82.03 ± 0.48 | 88.27 ± 0.42 | 85.90 ± 0.40 | |
O2U-Net | 92.63 ± 0.26 | 95.87 ± 0.19 | 96.32 ± 0.23 | 96.13 ± 0.21 | 95.23 ± 0.25 | |
CBR-Net | 93.78 ± 0.22 | 96.72 ± 0.17 | 96.86 ± 0.19 | 96.79 ± 0.18 | 96.08 ± 0.20 | |
Ours (ViT-B/16) | 92.89 ± 0.18 | 96.21 ± 0.14 | 96.41 ± 0.15 | 96.31 ± 0.15 | 95.49 ± 0.17 | |
Ours (ResNet-50) | 95.70 ± 0.15 | 97.89 ± 0.11 | 97.72 ± 0.13 | 97.81 ± 0.12 | 97.32 ± 0.14 |
Method | IoU (%) | Precision (%) | Recall (%) | F1 Score (%) | Kappa (%) |
---|---|---|---|---|---|
Baseline | 83.89 | 86.43 | 96.59 | 91.23 | 90.30 |
Baseline + I + E | 87.74 | 91.49 | 95.53 | 93.47 | 92.80 |
Baseline + R + M | 90.57 | 95.80 | 94.32 | 95.05 | 94.56 |
Baseline + I + M + E | 88.27 | 93.24 | 94.31 | 93.77 | 93.15 |
Baseline + I + R + E | 88.50 | 92.07 | 95.80 | 93.90 | 93.28 |
Baseline + M + R + E | 89.74 | 94.78 | 94.41 | 94.60 | 94.06 |
Baseline + M + R + I | 91.15 | 97.08 | 93.72 | 95.37 | 94.92 |
Baseline + I + M + R + E | 93.38 | 96.72 | 96.44 | 96.58 | 96.24 |
Index | IoU (%) | Precision (%) | Recall (%) | F1 Score (%) | Kappa (%) | |
---|---|---|---|---|---|---|
Model | ||||||
Baseline | 73.27 | 77.93 | 92.45 | 84.57 | 81.49 | |
Identify | 93.81 | 97.79 | 95.84 | 96.80 | 96.10 | |
Identify +Refine | 94.28 | 98.08 | 96.05 | 97.05 | 96.41 | |
Identify + Update | 95.50 | 97.72 | 97.68 | 97.70 | 97.19 | |
Identify + Update + Refine-1iter | 95.69 | 97.66 | 97.94 | 97.80 | 97.31 | |
Identify + Update + Refine-2iter | 95.58 | 98.07 | 97.41 | 97.74 | 97.24 | |
Identify + Update + Refine-3iter | 95.70 | 97.89 | 97.72 | 97.81 | 97.32 |
Method | Backbone | Parameters (M) | FLOPs (G) | IoU (%) | F1 Score (%) |
---|---|---|---|---|---|
Baseline | ResNet-50 | 60.59 | 260.57 | 92.36 | 95.10 |
+CBAM | 65.62 | 260.66 | 93.11 | 95.27 | |
+scSE | 65.64 | 260.67 | 93.05 | 95.14 | |
+EALM | 60.59 | 260.58 | 94.55 | 97.07 | |
+Ms-EALM (Ours) | 65.77 | 102.89 | 95.70 | 97.81 | |
+CBAM | ViT-B/16 | 97.81 | 351.81 | 89.27 | 94.05 |
+scSE | 97.84 | 351.83 | 89.90 | 94.22 | |
+EALM | 86.40 | 351.79 | 91.21 | 95.42 | |
+Ms-EALM (Ours) | 93.59 | 191.63 | 92.89 | 96.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Hu, X.; Geng, X.; Lei, L.; Liang, A. IUR-Net: A Multi-Stage Framework for Label Refinement Tasks in Noisy Remote Sensing Samples. Remote Sens. 2025, 17, 2125. https://doi.org/10.3390/rs17132125
Xiong Y, Hu X, Geng X, Lei L, Liang A. IUR-Net: A Multi-Stage Framework for Label Refinement Tasks in Noisy Remote Sensing Samples. Remote Sensing. 2025; 17(13):2125. https://doi.org/10.3390/rs17132125
Chicago/Turabian StyleXiong, Yibing, Xiangyun Hu, Xin Geng, Lizhen Lei, and Aokun Liang. 2025. "IUR-Net: A Multi-Stage Framework for Label Refinement Tasks in Noisy Remote Sensing Samples" Remote Sensing 17, no. 13: 2125. https://doi.org/10.3390/rs17132125
APA StyleXiong, Y., Hu, X., Geng, X., Lei, L., & Liang, A. (2025). IUR-Net: A Multi-Stage Framework for Label Refinement Tasks in Noisy Remote Sensing Samples. Remote Sensing, 17(13), 2125. https://doi.org/10.3390/rs17132125