Prediction of Canopy Cover Loss in German Spruce Forests Using a Spatio-Temporal Approach
Abstract
1. Introduction
1.1. Forests in Germany
1.2. Earth Observation of Forests
1.3. Forecasting of Forests
1.4. Objectives of the Research
- Can the spatio-temporal matrix method be adapted to predict future spruce canopy cover loss using past spruce canopy-cover-loss data?
- What other important predictors can improve prediction of spruce canopy cover loss?
- Which model best captures spatio-temporal variations?
- Are there regional variations in accuracy of predictions?
2. Materials and Methods
2.1. Study Area
2.2. Data and Tools
2.2.1. German Canopy-Cover-Loss Dataset (2018–2024)
2.2.2. Dominant Tree Species for Germany 2018
2.2.3. Hydrometeorological Raster Datasets (HYRAS)
2.2.4. Copernicus Digital Elevation Model GLO-30
2.2.5. European Soil Data Centre (ESDAC)—Soil Texture
2.2.6. Surface Soil Moisture 2014-Present (Raster 1 km), Europe, Daily
2.2.7. Landsat 8-9 OLI/TIRS Collection 2 Level-2
2.3. Pre-Processing and Parameterization
2.3.1. Data Initialization
2.3.2. Spatio-Temporal Matrix
2.3.3. Adapting the STM Method to the Canopy-Cover-Loss Dataset
2.3.4. Addition of Environmental Parameters from the Previous Years
2.4. Model Training and Evaluation
2.4.1. Models Used
2.4.2. Validation
3. Results
3.1. Performance Across Different Regions in Germany
3.2. Model Performance
3.3. Performance Across Different Temporal Periods
3.4. Predictor Performance
3.5. Independent Field Data Validation
4. Discussion
4.1. Prediction Results
4.2. Importance of Environmental Factors for the Prediction
4.3. Regional Spatial Heterogeneity
4.4. Use and Transferability
4.5. Limitations
5. Conclusions
- The approach is able to generate good probability forecasts for all regions with AUC values of 81% for Frankenwald, 82% for Harz and 82.1% for Siegen. The cross-validation of the models shows how they can be generalized spatially. The lower AUC for the Frankenwald region could be attributed to external factors such as heterogenous conditions in the site, for example, geologic and topographic complexity in the site.
- The use of a combined CNN-ANN approach improved the model performance in comparison to MLP and RF. The CNN-ANN model is tailor-made for canopy-cover-loss forecasting by allowing it to extract more spatio-temporal information while dealing with class imbalance issues and removing the need for calibration.
- The model results for prediction in different temporal periods, 2022 and 2023, were good, with AUC values of 81% and 78.7%, respectively. This proves the effectiveness of the model across different years.
- Incorporating additional time-lagged environmental factors, such as temperature and availability of water, improved the model’s performance, generating the best AUC of 82.3%. However, adding more variables did not always lead to a better result, as seen when adding time-lagged soil moisture information.
- The use of different probability thresholds, such as best AUC for a bolder prediction and best accuracy for a more conservative prediction, gives us more information on spruce forest canopy-cover-loss risk.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Variable Collinearity Analysis
Median Temperature 1 Year Prior | Median NDMI 1 Year Prior | Median NMDI 1 Year Prior | Median Temperature 2 Year Prior | Median NDMI 2 Year Prior | Median NMDI 2 Year Prior | Total Precipitation 1 Year Prior | Total Precipitation 2 Year Prior | Median SSM 1 Year Prior | Soil Texture | Median SSM 2 Year Prior | Elevation | |
Median Temperature 1 year prior | 1.000 | −0.053 | −0.077 | 0.295 | −0.148 | −0.158 | 0.029 | −0.098 | −0.007 | 0.010 | −0.007 | −0.172 |
Median NDMI 1 year prior | −0.053 | 1.000 | 0.900 | −0.154 | 0.657 | 0.618 | −0.109 | −0.055 | 0.050 | −0.104 | 0.019 | −0.046 |
Median NMDI 1 year prior | −0.077 | 0.900 | 1.000 | −0.219 | 0.652 | 0.698 | −0.026 | 0.063 | 0.036 | −0.092 | 0.023 | 0.064 |
Median Temperature 2 year prior | 0.295 | −0.154 | −0.219 | 1.000 | −0.219 | −0.293 | −0.337 | −0.514 | 0.035 | −0.032 | −0.086 | −0.501 |
Median NDMI 2 year prior | −0.148 | 0.657 | 0.652 | −0.219 | 1.000 | 0.898 | −0.148 | −0.108 | 0.008 | −0.113 | −0.018 | −0.067 |
Median NMDI 2 year prior | −0.158 | 0.618 | 0.698 | −0.293 | 0.898 | 1.000 | −0.034 | 0.048 | 0.009 | −0.089 | −0.005 | 0.048 |
Total precipitation 1 year prior | 0.029 | −0.109 | −0.026 | −0.337 | −0.148 | −0.034 | 1.000 | 0.726 | −0.071 | 0.066 | 0.084 | 0.698 |
Total precipitation 2 year prior | −0.098 | −0.055 | 0.063 | −0.514 | −0.108 | 0.048 | 0.726 | 1.000 | −0.052 | 0.051 | 0.095 | 0.826 |
Median SSM 1 year prior | −0.007 | 0.050 | 0.036 | 0.035 | 0.008 | 0.009 | −0.071 | −0.052 | 1.000 | −0.100 | 0.748 | −0.115 |
Soil texture | 0.010 | −0.104 | −0.092 | −0.032 | −0.113 | −0.089 | 0.066 | 0.051 | −0.100 | 1.000 | −0.052 | 0.055 |
Median SSM 2 year prior | −0.007 | 0.019 | 0.023 | −0.086 | −0.018 | −0.005 | 0.084 | 0.095 | 0.748 | −0.052 | 1.000 | 0.045 |
Elevation | −0.172 | −0.046 | 0.064 | −0.501 | −0.067 | 0.048 | 0.698 | 0.826 | −0.115 | 0.055 | 0.045 | 1.000 |
Median Temperature 1 Year Prior | Median NDMI 1 Year Prior | Median NMDI 1 Year Prior | Median Temperature 2 Year Prior | Median NDMI 2 Year Prior | Median NMDI 2 Year Prior | Total Precipitation 1 Year Prior | Total Precipitation 2 Year Prior | Median SSM 1 Year Prior | Soil Texture | Median SSM 2 Year Prior | Elevation | |
Median Temperature 1 year prior | 1.000 | 0.026 | 0.018 | 0.174 | −0.124 | −0.127 | −0.149 | −0.166 | 0.000 | −0.010 | −0.016 | −0.167 |
Median NDMI 1 year prior | 0.026 | 1.000 | 0.954 | −0.139 | 0.535 | 0.470 | 0.000 | −0.138 | 0.131 | −0.013 | 0.079 | −0.224 |
Median NMDI 1 year prior | 0.018 | 0.954 | 1.000 | −0.165 | 0.537 | 0.521 | 0.026 | −0.085 | 0.109 | −0.016 | 0.055 | −0.146 |
Median Temperature 2 year prior | 0.174 | −0.139 | −0.165 | 1.000 | −0.343 | −0.364 | −0.289 | −0.265 | −0.033 | −0.043 | −0.115 | −0.222 |
Median NDMI 2 year prior | −0.124 | 0.535 | 0.537 | −0.343 | 1.000 | 0.941 | 0.096 | −0.020 | 0.080 | 0.033 | 0.134 | −0.051 |
Median NMDI 2 year prior | −0.127 | 0.470 | 0.521 | −0.364 | 0.941 | 1.000 | 0.146 | 0.061 | 0.061 | 0.032 | 0.115 | 0.050 |
Total precipitation 1 year prior | −0.149 | 0.000 | 0.026 | −0.289 | 0.096 | 0.146 | 1.000 | 0.771 | 0.167 | 0.130 | 0.111 | 0.511 |
Total precipitation 2 year prior | −0.166 | −0.138 | −0.085 | −0.265 | −0.020 | 0.061 | 0.771 | 1.000 | −0.041 | 0.134 | −0.067 | 0.769 |
Median SSM 1 year prior | 0.000 | 0.131 | 0.109 | −0.033 | 0.080 | 0.061 | 0.167 | −0.041 | 1.000 | 0.104 | 0.844 | −0.222 |
Soil texture | −0.010 | −0.013 | −0.016 | −0.043 | 0.033 | 0.032 | 0.130 | 0.134 | 0.104 | 1.000 | 0.079 | 0.116 |
Median SSM 2 year prior | −0.016 | 0.079 | 0.055 | −0.115 | 0.134 | 0.115 | 0.111 | −0.067 | 0.844 | 0.079 | 1.000 | −0.162 |
Elevation | −0.167 | −0.224 | −0.146 | −0.222 | −0.051 | 0.050 | 0.511 | 0.769 | −0.222 | 0.116 | −0.162 | 1.000 |
Median Temperature 1 Year Prior | Median NDMI 1 Year Prior | Median NMDI 1 Year Prior | Median Temperature 2 Year Prior | Median NDMI 2 Year Prior | Median NMDI 2 Year Prior | Total Precipitation 1 Year Prior | Total Precipitation 2 Year Prior | Median SSM 1 Year Prior | Soil Texture | Median SSM 2 Year Prior | Elevation | |
Median Temperature 1 year prior | 1.000 | −0.055 | −0.018 | 0.015 | −0.026 | 0.017 | −0.229 | −0.073 | −0.076 | −0.396 | 0.067 | 0.350 |
Median NDMI 1 year prior | −0.055 | 1.000 | 0.953 | −0.241 | 0.541 | 0.525 | 0.075 | 0.118 | 0.060 | −0.194 | 0.130 | 0.190 |
Median NMDI 1 year prior | −0.018 | 0.953 | 1.000 | −0.256 | 0.560 | 0.595 | 0.069 | 0.125 | 0.047 | −0.230 | 0.139 | 0.247 |
Median Temperature 2 year prior | 0.015 | −0.241 | −0.256 | 1.000 | −0.426 | −0.423 | −0.034 | −0.077 | 0.143 | 0.260 | −0.265 | −0.478 |
Median NDMI 2 year prior | −0.026 | 0.541 | 0.560 | −0.426 | 1.000 | 0.933 | 0.068 | 0.132 | −0.017 | −0.164 | 0.112 | 0.174 |
Median NMDI 2 year prior | 0.017 | 0.525 | 0.595 | −0.423 | 0.933 | 1.000 | 0.077 | 0.145 | −0.020 | −0.196 | 0.123 | 0.238 |
Total precipitation 1 year prior | −0.229 | 0.075 | 0.069 | −0.034 | 0.068 | 0.077 | 1.000 | 0.844 | 0.236 | 0.202 | 0.245 | 0.072 |
Total precipitation 2 year prior | −0.073 | 0.118 | 0.125 | −0.077 | 0.132 | 0.145 | 0.844 | 1.000 | 0.177 | 0.043 | 0.272 | 0.211 |
Median SSM 1 year prior | −0.076 | 0.060 | 0.047 | 0.143 | −0.017 | −0.020 | 0.236 | 0.177 | 1.000 | 0.020 | 0.372 | −0.236 |
Soil texture | −0.396 | −0.194 | −0.230 | 0.260 | −0.164 | −0.196 | 0.202 | 0.043 | 0.020 | 1.000 | −0.191 | −0.514 |
Median SSM 2 year prior | 0.067 | 0.130 | 0.139 | −0.265 | 0.112 | 0.123 | 0.245 | 0.272 | 0.372 | −0.191 | 1.000 | 0.280 |
Elevation | 0.350 | 0.190 | 0.247 | −0.478 | 0.174 | 0.238 | 0.072 | 0.211 | −0.236 | −0.514 | 0.280 | 1.000 |
References
- Riedel, T. Kohlenstoffinventur 2017—Wälder in Deutschland sind eine wichtige Kohlenstoffsenke. AFZ-DerWald 2019, 14, 14–18. [Google Scholar]
- Acharya, R.P.; Maraseni, T.; Cockfield, G. Global Trend of Forest Ecosystem Services Valuation—An Analysis of Publications. Ecosyst. Serv. 2019, 39, 100979. [Google Scholar] [CrossRef]
- Chiabai, A.; Travisi, C.M.; Markandya, A.; Ding, H.; Nunes, P.A.L.D. Economic Assessment of Forest Ecosystem Services Losses: Cost of Policy Inaction. Environ. Resour. Econ. 2011, 50, 405–445. [Google Scholar] [CrossRef]
- Bundesministerium für Ernährung und Landwirtschaft (BMEL). Der Wald in Deutschland—Ausgewählte Ergebnisse der Vierten Bundeswaldinventur; Bundesministerium für Ernährung und Landwirtschaft (BMEL): Bonn, Germany, 2024. [Google Scholar]
- Holzwarth, S.; Thonfeld, F.; Kacic, P.; Abdullahi, S.; Asam, S.; Coleman, K.; Eisfelder, C.; Gessner, U.; Huth, J.; Kraus, T.; et al. Earth-Observation-Based Monitoring of Forests in Germany—Recent Progress and Research Frontiers: A Review. Remote Sens. 2023, 15, 4234. [Google Scholar] [CrossRef]
- De Brito, M.M. Compound and Cascading Drought Impacts Do Not Happen by Chance: A Proposal to Quantify Their Relationships. Sci. Total Environ. 2021, 778, 146236. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R. Persistent Impacts of the 2018 Drought on Forest Disturbance Regimes in Europe. Biogeosciences 2021, 18, 5223–5230. [Google Scholar] [CrossRef]
- Bastos, A.; Orth, R.; Reichstein, M.; Ciais, P.; Viovy, N.; Zaehle, S.; Anthoni, P.; Arneth, A.; Gentine, P.; Joetzjer, E.; et al. Vulnerability of European Ecosystems to Two Compound Dry and Hot Summers in 2018 and 2019. Earth Syst. Dyn. 2021, 12, 1015–1035. [Google Scholar] [CrossRef]
- Forzieri, G.; Girardello, M.; Ceccherini, G.; Spinoni, J.; Feyen, L.; Hartmann, H.; Beck, P.S.A.; Camps-Valls, G.; Chirici, G.; Mauri, A.; et al. Emergent Vulnerability to Climate-Driven Disturbances in European Forests. Nat. Commun. 2021, 12, 1081. [Google Scholar] [CrossRef] [PubMed]
- Forzieri, G.; Dakos, V.; McDowell, N.G.; Ramdane, A.; Cescatti, A. Emerging Signals of Declining Forest Resilience under Climate Change. Nature 2022, 608, 534–539. [Google Scholar] [CrossRef]
- Moravec, V.; Markonis, Y.; Rakovec, O.; Svoboda, M.; Trnka, M.; Kumar, R.; Hanel, M. Europe under Multi-Year Droughts: How Severe Was the 2014–2018 Drought Period? Environ. Res. Lett. 2021, 16, 034062. [Google Scholar] [CrossRef]
- Rakovec, O.; Samaniego, L.; Hari, V.; Markonis, Y.; Moravec, V.; Thober, S.; Hanel, M.; Kumar, R. The 2018–2020 Multi-Year Drought Sets a New Benchmark in Europe. Earths Future 2022, 10, e2021EF002394. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest Disturbances under Climate Change. Nat. Clim. Change 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Thonfeld, F.; Gessner, U.; Holzwarth, S.; Kriese, J.; Da Ponte, E.; Huth, J.; Kuenzer, C. A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years. Remote Sens. 2022, 14, 562. [Google Scholar] [CrossRef]
- Bundesministerium für Ernährung und Landwirtschaft (BMEL). Ergebnisse der Waldzustandserhebung 2023; Bundesministerium für Ernährung und Landwirtschaft (BMEL): Bonn, Germany, 2023. [Google Scholar]
- Thünen-Institut für Waldökosysteme Ergebnisse der Bundesweiten Waldzustandserhebung. Available online: https://wo-apps.thuenen.de/apps/wze/ (accessed on 1 February 2025).
- Bundesministerium für Ernährung und Landwirtschaft (BMEL). Ergebnisse der Bundeswaldinventur; Bundesministerium für Ernährung und Landwirtschaft (BMEL): Bonn, Germany, 2012. [Google Scholar]
- World Meteorological Organization (WMO); United Nations Environment Programme (UNEP); International Science Council (ISC); Intergovernmental Oceanographic Commission of the United Nations Educational, Scientific and Cultural Organization (IOC-UNESCO). The 2022 GCOS ECVs Requirements (GCOS 245); GCOS; World Meteorological Organization (WMO): Geneva, Switzerland, 2022; p. 244. [Google Scholar]
- U.S. Geological Survey. Landsat—Earth Observation Satellites (Ver. 1.4, August 2022); Fact Sheet; U.S. Geological Survey: Washington, DC, USA, 2015. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA) MODIS Moderate Resolution Imaging Spectroradiometer. Available online: https://modis.gsfc.nasa.gov/about/ (accessed on 24 February 2025).
- Brooks, E.B.; Wynne, R.H.; Thomas, V.A.; Blinn, C.E.; Coulston, J.W. On-the-Fly Massively Multitemporal Change Detection Using Statistical Quality Control Charts and Landsat Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3316–3332. [Google Scholar] [CrossRef]
- Verbesselt, J.; Zeileis, A.; Herold, M. Near Real-Time Disturbance Detection Using Satellite Image Time Series. Remote Sens. Environ. 2012, 123, 98–108. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Olofsson, P. Continuous Monitoring of Forest Disturbance Using All Available Landsat Imagery. Remote Sens. Environ. 2012, 122, 75–91. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous Change Detection and Classification of Land Cover Using All Available Landsat Data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Pickens, A.; Hernandez-Serna, A.; Tyukavina, A.; Turubanova, S.; Zalles, V.; Li, X.; Khan, A.; Stolle, F.; et al. The Global 2000-2020 Land Cover and Land Use Change Dataset Derived from the Landsat Archive: First Results. Front. Remote Sens. 2022, 3, 856903. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Hansen, M.C.; Krylov, A.; Tyukavina, A.; Potapov, P.V.; Turubanova, S.; Zutta, B.; Ifo, S.; Margono, B.; Stolle, F.; Moore, R. Humid Tropical Forest Disturbance Alerts Using Landsat Data. Environ. Res. Lett. 2016, 11, 034008. [Google Scholar] [CrossRef]
- Reiche, J.; Mullissa, A.; Slagter, B.; Gou, Y.; Tsendbazar, N.-E.; Odongo-Braun, C.; Vollrath, A.; Weisse, M.J.; Stolle, F.; Pickens, A.; et al. Forest Disturbance Alerts for the Congo Basin Using Sentinel-1. Environ. Res. Lett. 2021, 16, 024005. [Google Scholar] [CrossRef]
- Pickens, A.H.; Hansen, M.C.; Adusei, B.; Potapov, P.V. Sentinel-2 Forest Loss Alert (GLAD-S2) 2020. Available online: http://glad.earthengine.app/view/s2-forest-alert (accessed on 8 February 2025).
- Viana-Soto, A.; Senf, C. The European Forest Disturbance Atlas: A Forest Disturbance Monitoring System Using the Landsat Archive. Earth Syst. Sci. Data Discuss. 2024; in review. [Google Scholar] [CrossRef]
- Diniz, C.G.; Souza, A.A.D.A.; Santos, D.C.; Dias, M.C.; Luz, N.C.D.; Moraes, D.R.V.D.; Maia, J.S.A.; Gomes, A.R.; Narvaes, I.D.S.; Valeriano, D.M.; et al. DETER-B: The New Amazon Near Real-Time Deforestation Detection System. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3619–3628. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Roy, D.P.; Wulder, M.A.; Anderson, M.; Cook, B.; Crawford, C.J.; Friedl, M.; Gao, F.; Gorelick, N.; Hansen, M.; et al. Need and Vision for Global Medium-Resolution Landsat and Sentinel-2 Data Products. Remote Sens. Environ. 2024, 300, 113918. [Google Scholar] [CrossRef]
- Durieux, A.M.; Rustowicz, R.; Sharma, N.; Schatz, J.; Calef, M.T.; Ren, C.X. Expanding SAR-Based Probabilistic Deforestation Detections Using Machine-Learning. In Proceedings of the Applications of Machine Learning 2021; Zelinski, M.E., Taha, T.M., Howe, J., Eds.; SPIE: San Diego, CA, USA, 2021; p. 6. [Google Scholar]
- Doblas, J.; Reis, M.S.; Belluzzo, A.P.; Quadros, C.B.; Moraes, D.R.V.; Almeida, C.A.; Maurano, L.E.P.; Carvalho, A.F.A.; Sant’Anna, S.J.S.; Shimabukuro, Y.E. DETER-R: An Operational Near-Real Time Tropical Forest Disturbance Warning System Based on Sentinel-1 Time Series Analysis. Remote Sens. 2022, 14, 3658. [Google Scholar] [CrossRef]
- Pišl, J.; Rußwurm, M.; Haydn Hughes, L.; Lenczner, G.; See, L.; Dirk Wegner, J.; Tuia, D. Mapping Drivers of Tropical Forest Loss with Satellite Image Time Series and Machine Learning. Environ. Res. Lett. 2024, 19, 064053. [Google Scholar] [CrossRef]
- Wu, Z.; Yan, S.; He, L.; Shan, Y. Spatiotemporal Changes in Forest Loss and Its Linkage to Burned Areas in China. J. For. Res. 2020, 31, 2525–2536. [Google Scholar] [CrossRef]
- Holzwarth, S.; Thonfeld, F.; Abdullahi, S.; Asam, S.; Da Ponte Canova, E.; Gessner, U.; Huth, J.; Kraus, T.; Leutner, B.; Kuenzer, C. Earth Observation Based Monitoring of Forests in Germany: A Review. Remote Sens. 2020, 12, 3570. [Google Scholar] [CrossRef]
- Lange, M.; Preidl, S.; Reichmuth, A.; Heurich, M.; Doktor, D. A Continuous Tree Species-Specific Reflectance Anomaly Index Reveals Declining Forest Condition between 2016 and 2022 in Germany. Remote Sens. Environ. 2024, 312, 114323. [Google Scholar] [CrossRef]
- Gnilke, A.; Sanders, T.G.M. Distinguishing Abrupt and Gradual Forest Disturbances With MODIS-Based Phenological Anomaly Series. Front. Plant Sci. 2022, 13, 863116. [Google Scholar] [CrossRef]
- Buras, A.; Rammig, A.; Zang, C.S. The European Forest Condition Monitor: Using Remotely Sensed Forest Greenness to Identify Hot Spots of Forest Decline. Front. Plant Sci. 2021, 12, 689220. [Google Scholar] [CrossRef] [PubMed]
- Koehler, J.; Kuenzer, C. Forecasting Spatio-Temporal Dynamics on the Land Surface Using Earth Observation Data—A Review. Remote Sens. 2020, 12, 3513. [Google Scholar] [CrossRef]
- Norris, J.R. Markov Chains, 1st ed.; Cambridge University Press: Cambridge, UK, 1997; ISBN 978-0-521-48181-6. [Google Scholar]
- Nay, J.; Burchfield, E.; Gilligan, J. A Machine-Learning Approach to Forecasting Remotely Sensed Vegetation Health. Int. J. Remote Sens. 2018, 39, 1800–1816. [Google Scholar] [CrossRef]
- Tadesse, T.; Wardlow, B.D.; Hayes, M.J.; Svoboda, M.D.; Brown, J.F. The Vegetation Outlook (VegOut): A New Method for Predicting Vegetation Seasonal Greenness. GIScience Remote Sens. 2010, 47, 25–52. [Google Scholar] [CrossRef]
- Wu, T.; Feng, F.; Lin, Q.; Bai, H. A Spatio-Temporal Prediction of NDVI Based on Precipitation: An Application for Grazing Management in the Arid and Semi-Arid Grasslands. Int. J. Remote Sens. 2020, 41, 2359–2373. [Google Scholar] [CrossRef]
- Marj, A.F.; Meijerink, A.M.J. Agricultural Drought Forecasting Using Satellite Images, Climate Indices and Artificial Neural Network. Int. J. Remote Sens. 2011, 32, 9707–9719. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Quintano, C.; Fernández-Manso, O. Forecast of NDVI in Coniferous Areas Using Temporal ARIMA Analysis and Climatic Data at a Regional Scale. Int. J. Remote Sens. 2011, 32, 1595–1617. [Google Scholar] [CrossRef]
- Das, M.; Ghosh, S.K. Deep-STEP: A Deep Learning Approach for Spatiotemporal Prediction of Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1984–1988. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y.; Peng, L.; Chen, L.; Ge, X. Knowledge Graph Representation Learning-Based Forest Fire Prediction. Remote Sens. 2022, 14, 4391. [Google Scholar] [CrossRef]
- Armenteras, D.; Gibbes, C.; Anaya, J.A.; Dávalos, L.M. Integrating Remotely Sensed Fires for Predicting Deforestation for REDD+. Ecol. Appl. 2017, 27, 1294–1304. [Google Scholar] [CrossRef]
- Olsson, P.-O.; Zhao, P.; Müller, M.; Mansourian, A.; Ardö, J. Combining Sentinel-2 Data and Risk Maps to Detect Trees Predisposed to and Attacked by European Spruce Bark Beetle. Remote Sens. 2024, 16, 4166. [Google Scholar] [CrossRef]
- Valle, D.; Hyde, J.; Marsik, M.; Perz, S. Improved Inference and Prediction for Imbalanced Binary Big Data Using Case-Control Sampling: A Case Study on Deforestation in the Amazon Region. Remote Sens. 2020, 12, 1268. [Google Scholar] [CrossRef]
- Kayitesi, N.M.; Guzha, A.C.; Tonini, M.; Mariethoz, G. Land Use Land Cover Change in the African Great Lakes Region: A Spatial–Temporal Analysis and Future Predictions. Environ. Monit. Assess. 2024, 196, 852. [Google Scholar] [CrossRef] [PubMed]
- Cushman, S.A.; Macdonald, E.A.; Landguth, E.L.; Malhi, Y.; Macdonald, D.W. Multiple-Scale Prediction of Forest Loss Risk across Borneo. Landsc. Ecol. 2017, 32, 1581–1598. [Google Scholar] [CrossRef]
- Poor, E.E.; Shao, Y.; Kelly, M.J. Mapping and Predicting Forest Loss in a Sumatran Tiger Landscape from 2002 to 2050. J. Environ. Manag. 2019, 231, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Voight, C.; Hernandez-Aguilar, K.; Garcia, C.; Gutierrez, S. Predictive Modeling of Future Forest Cover Change Patterns in Southern Belize. Remote Sens. 2019, 11, 823. [Google Scholar] [CrossRef]
- Mauri, A.; Girardello, M.; Strona, G.; Beck, P.S.A.; Forzieri, G.; Caudullo, G.; Manca, F.; Cescatti, A. EU-Trees4F, a Dataset on the Future Distribution of European Tree Species. Sci. Data 2022, 9, 37. [Google Scholar] [CrossRef]
- Wang, Z.; Bachofer, F.; Koehler, J.; Huth, J.; Hoeser, T.; Marconcini, M.; Esch, T.; Kuenzer, C. Spatial Modelling and Prediction with the Spatio-Temporal Matrix: A Study on Predicting Future Settlement Growth. Land 2022, 11, 1174. [Google Scholar] [CrossRef]
- Marconcini, M.; Metz-Marconcini, A.; Üreyen, S.; Palacios-Lopez, D.; Hanke, W.; Bachofer, F.; Zeidler, J.; Esch, T.; Gorelick, N.; Kakarla, A.; et al. Outlining Where Humans Live, the World Settlement Footprint 2015. Sci. Data 2020, 7, 242. [Google Scholar] [CrossRef]
- Senf, C.; Buras, A.; Zang, C.S.; Rammig, A.; Seidl, R. Excess Forest Mortality Is Consistently Linked to Drought across Europe. Nat. Commun. 2020, 11, 6200. [Google Scholar] [CrossRef] [PubMed]
- German Aerospace Center (DLR) Forest Canopy Cover Loss (FCCL)—Germany—Monthly, 10m. 2025. Available online: https://geoservice.dlr.de/data-assets/ef9wwc5sff75.html (accessed on 10 January 2025).
- Blickensdörfer, L.; Oehmichen, K.; Pflugmacher, D.; Kleinschmit, B.; Hostert, P. National Tree Species Mapping Using Sentinel-1/2 Time Series and German National Forest Inventory Data. Remote Sens. Environ. 2024, 304, 114069. [Google Scholar] [CrossRef]
- Earth Resources Observation and Science (EROS) Center Landsat 8-9 Operational Land Imager/Thermal Infrared Sensor Level-2, Collection 2 2013. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-8-9-olitirs-collection-2-level-2 (accessed on 24 February 2025).
- Bauer-Marschallinger, B.; Freeman, V.; Cao, S.; Paulik, C.; Schaufler, S.; Stachl, T.; Modanesi, S.; Massari, C.; Ciabatta, L.; Brocca, L.; et al. Toward Global Soil Moisture Monitoring with Sentinel-1: Harnessing Assets and Overcoming Obstacles. IEEE Trans. Geosci. Remote Sens. 2019, 57, 520–539. [Google Scholar] [CrossRef]
- European Space Agency; Airbus Copernicus DEM 2022. Available online: https://dataspace.copernicus.eu/explore-data/data-collections/copernicus-contributing-missions/collections-description/COP-DEM (accessed on 8 January 2025).
- Deutscher Wetterdienst Raster Data Set Precipitation Sums in Mm for Germany—HYRAS-DE-PR, Version v6.0 2024. Available online: https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/precipitation (accessed on 8 January 2025).
- Panagos, P.; Van Liedekerke, M.; Borrelli, P.; Köninger, J.; Ballabio, C.; Orgiazzi, A.; Lugato, E.; Liakos, L.; Hervas, J.; Jones, A.; et al. European Soil Data Centre 2.0: Soil Data and Knowledge in Support of the EU Policies. Eur. J. Soil Sci. 2022, 73, e13315. [Google Scholar] [CrossRef]
- Rauthe, M.; Steiner, H.; Riediger, U.; Mazurkiewicz, A.; Gratzki, A. A Central European Precipitation Climatology Part I: Generation and Validation of a High-Resolution Gridded Daily Data Set (HYRAS). Meteorol. Z. 2013, 22, 235–256. [Google Scholar] [CrossRef]
- Healey, S.; Cohen, W.; Zhiqiang, Y.; Krankina, O. Comparison of Tasseled Cap-Based Landsat Data Structures for Use in Forest Disturbance Detection. Remote Sens. Environ. 2005, 97, 301–310. [Google Scholar] [CrossRef]
- Crawford, C.J.; Roy, D.P.; Arab, S.; Barnes, C.; Vermote, E.; Hulley, G.; Gerace, A.; Choate, M.; Engebretson, C.; Micijevic, E.; et al. The 50-Year Landsat Collection 2 Archive. Sci. Remote Sens. 2023, 8, 100103. [Google Scholar] [CrossRef]
- Nordkvist, M.; Eggers, J.; Fustel, T.L.-A.; Klapwijk, M.J. Development and Implementation of a Spruce Bark Beetle Susceptibility Index: A Framework to Compare Bark Beetle Susceptibility on Stand Level. Trees For. People 2023, 11, 100364. [Google Scholar] [CrossRef]
- Hislop, S.; Jones, S.; Soto-Berelov, M.; Skidmore, A.; Haywood, A.; Nguyen, T. Using Landsat Spectral Indices in Time-Series to Assess Wildfire Disturbance and Recovery. Remote Sens. 2018, 10, 460. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. NMDI: A Normalized Multi-band Drought Index for Monitoring Soil and Vegetation Moisture with Satellite Remote Sensing. Geophys. Res. Lett. 2007, 34, 2007GL031021. [Google Scholar] [CrossRef]
- Jin, S.; Sader, S.A. Comparison of Time Series Tasseled Cap Wetness and the Normalized Difference Moisture Index in Detecting Forest Disturbances. Remote Sens. Environ. 2005, 94, 364–372. [Google Scholar] [CrossRef]
- Xu, C.; Förster, M.; Beckschäfer, P.; Talkner, U.; Klinck, C.; Kleinschmit, B. Modeling European Beech Defoliation at a Regional Scale Gradient in Germany from Northern Lowlands to Central Uplands Using Geo-Ecological Parameters, Sentinel-2 and National Forest Condition Survey Data. For. Ecol. Manag. 2025, 576, 122383. [Google Scholar] [CrossRef]
- Marini, L.; Ayres, M.P.; Battisti, A.; Faccoli, M. Climate Affects Severity and Altitudinal Distribution of Outbreaks in an Eruptive Bark Beetle. Clim. Change 2012, 115, 327–341. [Google Scholar] [CrossRef]
- Netherer, S.; Matthews, B.; Katzensteiner, K.; Blackwell, E.; Henschke, P.; Hietz, P.; Pennerstorfer, J.; Rosner, S.; Kikuta, S.; Schume, H.; et al. Do Water-limiting Conditions Predispose Norway Spruce to Bark Beetle Attack? New Phytol. 2015, 205, 1128–1141. [Google Scholar] [CrossRef]
- Wittich, D.; Rottensteiner, F.; Voelsen, M.; Heipke, C.; Müller, S. Deep Learning for the Detection of Early Signs for Forest Damage Based on Satellite Imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, V-2-2022, 307–315. [Google Scholar] [CrossRef]
- Vasilev, I. Python Deep Learning—Understand How Deep Neural Networks Work and Apply Them to Real-World Tasks, 3rd ed.; Packt Publishing Limited: Birmingham, UK, 2023; ISBN 978-1-83763-345-6. [Google Scholar]
- Chollet, F. Keras 2015. Available online: http://keras.io (accessed on 3 January 2025).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014. [Google Scholar] [CrossRef]
- Ndama, O.; Bensassi, I.; En-Naimi, E.M. Optimizing Credit Card Fraud Detection: A Deep Learning Approach to Imbalanced Datasets. Int. J. Electr. Comput. Eng. IJECE 2024, 14, 4802–4814. [Google Scholar] [CrossRef]
- Reinosch, E.; Backa, J.; Adler, P.; Deutscher, J.; Eisnecker, P.; Hoffmann, K.; Langner, N.; Puhm, M.; Rüetschi, M.; Straub, C.; et al. Detailed Validation of Large-Scale Sentinel-2-Based Forest Disturbance Maps across Germany. For. Int. J. For. Res. 2025, 98, 437–453. [Google Scholar] [CrossRef]
- Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the Accuracy of Diagnostic Systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Hlásny, T.; Zimová, S.; Merganičová, K.; Štěpánek, P.; Modlinger, R.; Turčáni, M. Devastating Outbreak of Bark Beetles in the Czech Republic: Drivers, Impacts, and Management Implications. For. Ecol. Manag. 2021, 490, 119075. [Google Scholar] [CrossRef]
- Hlásny, T.; Krokene, P.; Liebhold, A.; Montagné-Huck, C.; Müller, J.; Qin, H.; Raffa, K.; Schelhaas, M.-J.; Seidl, R.; Svoboda, M.; et al. Living with Bark Beetles: Impacts, Outlook and Management Options; From Science to Policy; European Forest Institute: Joensuu, Finland, 2019. [Google Scholar]
- Zambrano, F.; Vrieling, A.; Nelson, A.; Meroni, M.; Tadesse, T. Prediction of Drought-Induced Reduction of Agricultural Productivity in Chile from MODIS, Rainfall Estimates, and Climate Oscillation Indices. Remote Sens. Environ. 2018, 219, 15–30. [Google Scholar] [CrossRef]
- Knapp, N.; Wellbrock, N.; Bielefeldt, J.; Dühnelt, P.; Hentschel, R.; Bolte, A. From Single Trees to Country-Wide Maps: Modeling Mortality Rates in Germany Based on the Crown Condition Survey. For. Ecol. Manag. 2024, 568, 122081. [Google Scholar] [CrossRef]
- Anders, T.; Hetzer, J.; Knapp, N.; Forrest, M.; Langan, L.; Tölle, M.H.; Wellbrock, N.; Hickler, T. Modelling Past and Future Impacts of Droughts on Tree Mortality and Carbon Storage in Norway Spruce Stands in Germany. Ecol. Model. 2025, 501, 110987. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 87–110. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljačić, M.; Hou, T.Y.; Tegmark, M. KAN: Kolmogorov-Arnold Networks. arXiv 2025. [Google Scholar] [CrossRef]
- Terven, J.; Cordova-Esparza, D.M.; Ramirez-Pedraza, A.; Chavez-Urbiola, E.A.; Romero-Gonzalez, J.A. Loss Functions and Metrics in Deep Learning. arXiv 2024. [Google Scholar] [CrossRef]
Data Source | Data Variable Used | Spatial Resolution | Time Period | Reference |
---|---|---|---|---|
German canopy cover loss dataset | Monthly canopy cover loss | 10 m | September 2017 to September 2024 | [14,62] |
Dominant Tree Species for Germany | Spruce forest mask | 2018 | [63] | |
Hydrometeorological raster datasets (HYRAS) | Daily precipitation | 1 km | 1931 to the present day | [67,69] |
Copernicus Digital Elevation Model GLO-30 | Elevation | 30 m | - | [66] |
European Soil Data Centre (ESDAC) | Soil texture | 1 km | - | [68] |
Surface Soil Moisture 2014-present (raster 1 km), Europe, daily | Surface soil moisture | 1 km | 2014-present | [65] |
Landsat 8-9 OLI/TIRS Collection 2 Level-2 | Spectral indices, Surface temperature | 30 m, 100 m | (April 2013 to present) | [64] |
Predictor Set Label | Predictor Set |
---|---|
M_onlySTMdata | STM layer, “no spruce” layer, STM metadata |
M_STM_elev | STM layer, “no spruce” layer, STM metadata, elevation |
M_STM_vegind | STM layer, “no spruce” layer, STM metadata, spectral indices (NDMI, NMDI) |
M_STM_tempprecip | STM layer, “no spruce” layer, STM metadata, surface temperature, precipitation |
M_STM_soilmos | STM layer, “no spruce” layer, STM metadata, soil moisture, soil texture |
M_STM_allenv | STM layer, “no spruce” layer, STM metadata, spectral indices (NDMI, NMDI), surface temperature, precipitation, elevation, soil moisture, soil texture |
Setups | Layer | Layer Type | Output Parameters |
---|---|---|---|
Convolutional setup | 1-CNN | Input layer for CNN | 15 × 15 × 2 |
2-CNN | Convolution layer (3 × 3) | 15 × 15 × 32 | |
3-CNN | Convolution layer (3 × 3) | 15 × 15 × 16 | |
4-CNN | Max Pooling layer (2 × 2) | 7 × 7 × 16 | |
5-CNN | Flatten | 784 | |
Simple ANN setup | 1-ANN | Input layer for ANN | * |
2-ANN | Dense layer | 32 | |
Combined setup | 1-Comb | Concatenating layer | 816 |
2-Comb | Dense layer | 64 | |
3-Comb | Dense layer | 32 | |
4-Comb | Dense layer (Final) | 2 |
Region | Overall AUC [%] | Best AUC [%] at Probability | Recall at Best AUC [%] | Precision at Best AUC [%] | Accuracy at Best AUC [%] |
---|---|---|---|---|---|
Frankenwald | 81.0 | 75.1 at 0.41 | 68.4 | 32.1 | 80.3 |
Harz | 82.0 | 74.8 at 0.40 | 64.6 | 49.0 | 81.3 |
Siegen | 82.1 | 74.5 at 0.42 | 65.5 | 47.3 | 80.1 |
Region | Overall AUC [%] | Best Accuracy [%] at Probability | Recall at Best Accuracy [%] | Precision at Best Accuracy [%] | AUC at Best Accuracy [%] |
---|---|---|---|---|---|
Frankenwald | 81.0 | 90.3 at 0.87 | 26.0 | 66.8 | 62.2 |
Harz | 82.0 | 85.4 at 0.7 | 37.8 | 67.3 | 66.9 |
Siegen | 82.1 | 85.6 at 0.73 | 39.3 | 69.6 | 67.7 |
Models Trained on | ||||
---|---|---|---|---|
Frankenwald | Harz | Siegen | ||
Region | Frankenwald | 81.0 | 76.0 | 76.7 |
Harz | 80.5 | 82.0 | 80.6 | |
Siegen | 80.5 | 82.1 | 82.1 |
Model Type | Overall AUC [%] | Best AUC [%] at Probability | Recall at Best AUC [%] | Precision at Best AUC [%] | Accuracy at Best AUC [%] |
---|---|---|---|---|---|
RF | 74.5 | 68.7 at 0.08 | 78.6 | 19.3 | 61.0 |
MLP | 80.2 | 74.3 at 0.07 | 70.6 | 28.7 | 77.1 |
CNN-ANN hybrid | 81.0 | 75.1 at 0.41 | 68.4 | 32.1 | 80.3 |
Validation Year | Overall AUC [%] | Best AUC [%] at Probability | Recall at Best AUC [%] | Precision at Best AUC [%] | Accuracy at Best AUC [%] |
---|---|---|---|---|---|
2022 (with model trained in 2021 loss) | 81.0 | 75.1 at 0.41 | 68.4 | 32.1 | 80.3 |
2023 (with model trained in 2021 loss) | 78.2 | 71.6 at 0.46 | 63.9 | 37.0 | 76.8 |
2023 (with model trained in 2022 loss) | 78.7 | 72.1 at 0.51 | 65.1 | 37.3 | 76.9 |
Predictors Set | Overall AUC [%] | Best AUC [%] at Probability | Recall at Best AUC [%] | Precision at Best AUC [%] | Accuracy at Best AUC [%] |
---|---|---|---|---|---|
M_onlySTMdata | 81.0 | 75.1 at 0.41 | 68.4 | 32.1 | 80.3 |
M_STM_elev | 80.6 | 74.7 at 0.43 | 66.7 | 32.6 | 80.9 |
M_STM_vegind | 80.7 | 75.1 at 0.43 | 67.3 | 33.2 | 81.2 |
M_STM_tempprecip | 82.3 | 75.7 at 0.42 | 69.6 | 32.5 | 80.5 |
M_STM_soilmos | 73.7 | 67.9 at 0.62 | 65.0 | 21.7 | 70.0 |
M_STM_allenv | 79.6 | 74.4 at 0.45 | 65.1 | 33.5 | 81.7 |
Region | Overall AUC [%] | Best AUC [%] at Probability | Recall at Best AUC [%] | Precision at Best AUC [%] | Accuracy at Best AUC [%] |
---|---|---|---|---|---|
Frankenwald | 71.0 | 69.5 at 0.43 | 56.5 | 55.6 | 75.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, S.N.; Thonfeld, F.; Dietz, A.; Kuenzer, C. Prediction of Canopy Cover Loss in German Spruce Forests Using a Spatio-Temporal Approach. Remote Sens. 2025, 17, 1907. https://doi.org/10.3390/rs17111907
Shrestha SN, Thonfeld F, Dietz A, Kuenzer C. Prediction of Canopy Cover Loss in German Spruce Forests Using a Spatio-Temporal Approach. Remote Sensing. 2025; 17(11):1907. https://doi.org/10.3390/rs17111907
Chicago/Turabian StyleShrestha, Samip Narayan, Frank Thonfeld, Andreas Dietz, and Claudia Kuenzer. 2025. "Prediction of Canopy Cover Loss in German Spruce Forests Using a Spatio-Temporal Approach" Remote Sensing 17, no. 11: 1907. https://doi.org/10.3390/rs17111907
APA StyleShrestha, S. N., Thonfeld, F., Dietz, A., & Kuenzer, C. (2025). Prediction of Canopy Cover Loss in German Spruce Forests Using a Spatio-Temporal Approach. Remote Sensing, 17(11), 1907. https://doi.org/10.3390/rs17111907