Identifying the Latest Displacement and Long-Term Strong Earthquake Activity of the Haiyuan Fault Using High-Precision UAV Data, NE Tibetan Plateau
Abstract
:1. Introduction
2. The Haiyuan Fault and the 1920 Haiyuan Earthquake
3. Data Acquisition and Processing
3.1. Acquisition of Fine Geomorphic Data
3.2. Data Processing and Geomorphic Model
3.3. Measurement Methods for Fault Segment Offsets
4. Results
4.1. Displacement Measurements at the Tangjiapo Site
4.2. Displacement Measurements at the Shikaguan Site
5. Discussion
5.1. Maximum Co-Seismic Displacement of the 1920 Haiyuan Earthquake
5.2. Strong Earthquake Activity in the Middle Segment of the Haiyuan Fault
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwartz, D.P.; Coppersmith, K.J. Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault Zones. J. Geophys. Res. Solid Earth 1984, 89, 5681–5698. [Google Scholar] [CrossRef]
- Liu, Z.J.; Klinger, Y.; Xu, X.W.; Lasserre, C.; Chen, G.H.; Chen, W.B.; Tapponnier, P.; Zhang, B. Millennial recurrence of large earthquakes on the Haiyuan fault near Songshan, Gansu Province, China. Bull. Seismol. Soc. Am. 2007, 97, 14–34. [Google Scholar]
- McCalpin, J.P. Introduction to Paleoseismology. In Paleoseismology, 2nd ed.; Academic Press: New York, NY, USA, 2009; pp. 1–802. [Google Scholar]
- Ran, Y.; Wang, H.; Yang, H.; Xu, L. Key techniques and several cases analysis in paleoseismic studies in mainland China (4): Sampling and event analysis of paleoseismic dating methods. Seismol. Geol. 2014, 36, 939–955. (In Chinese) [Google Scholar]
- Zheng, W.; Bi, H.; Wang, X.; Zhang, D.; Huang, R.; Zhang, P.; Liu, X.; Ren, Z. Constraining Paleoearthquakes by Combining Faulted Stratigraphy and Microgeomorphology: A Case Study on the Haiyuan Fault, Northwestern China. Seismol. Res. Lett. 2020, 92, 895–908. [Google Scholar] [CrossRef]
- Zheng, W.; Peng, H.; Liu, X.; Zhang, Z.; Zhang, D.; Wei, S.; Wang, X. Strong earthquake activities around the Ordos active block in past 15,000 years and its implications. Chin. Sci. Bull. 2024, 69, 2632–2647. (In Chinese) [Google Scholar]
- Peng, H.; Zhang, D.; Zheng, W.; Zhang, Z.; Bi, H.; Liang, S.; Yang, J.; Sun, S. Recurrence and Clustering of Large Earthquakes along the Northern Boundary of Ordos Block: Constraining Paleoearthquakes by an Improved Multiple Trench Constraining Method. Lithosphere 2022, 2022, 6823155. [Google Scholar] [CrossRef]
- Sieh, K.E. Prehistoric large earthquakes produced by slip on the San Andreas fault at Pallett Creek, California. J. Geophys. Res. Solid Earth 1978, 83, 3907–3939. [Google Scholar] [CrossRef]
- Sieh, K.E.; Jahns, R.H. Holocene activity of the San Andreas fault at Wallace Creek, California. Geol. Soc. Am. Bull. 1984, 95, 883–896. [Google Scholar] [CrossRef]
- Liu, Z.J.; Shao, Y.; Klinger, Y.; Xie, K.; Yuan, D.; Lei, Z. Variability in magnitude of paleoearthquakes revealed by trenching and historical records, along the Haiyuan Fault, China. J. Geophys. Res. Solid Earth 2015, 120, 8304–8333. [Google Scholar]
- Bemis, S.P.; Micklethwaite, S.; Turner, D.; Jam, M.R.; Akciz, S.; Thiele, S.T.; Bangash, H.A. Ground-based and UAV-Based photogrammetry_ A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J. Struct. Geol. 2014, 69, 163–178. [Google Scholar] [CrossRef]
- Klinger, Y.; Le Béon, M.; Al-Qaryouti, M. 5000 yr of paleoseismicity along the southern Dead Sea fault. Geophys. J. Int. 2015, 202, 313–327. [Google Scholar] [CrossRef]
- Ran, Y.; Duan, R.; Deng, Q.; Jiao, D.; Min, W. 3-D trench excavation and palaeoseismology at Gaowanzi of the Haiyuan Fault. Seismol. Geol. 1997, 19, 97–107. (In Chinese) [Google Scholar]
- Shao, Y.; Liu, Z.J.; Klinger, Y.; Xie, K.; Yuan, D.; Lei, Z. Research on various magnitudes of paleoearthquakes: A case study of non-characteristic earthquakes from the Salt Lake site of Haiyuan fault. Geol. Bull. China 2016, 35, 711–726. (In Chinese) [Google Scholar]
- Yuan, D.; Xie, H.; Su, R.; Li, Z.; Wen, Y.; Si, G.; Xuan, G.; Chen, G.; Liu, B.; Liang, X.; et al. Characteristics of co-seismic surface rupture zone of Menyuan MS6.9 earthquake in Qinghai Province on January 8, 2022 and seismogenic mechanism. Chin. J. Geophys. 2023, 66, 229–244. (In Chinese) [Google Scholar]
- Klinger, Y. High-Resolution Satellite Imagery Mapping of the Surface Rupture and Slip Distribution of the Mw∼7.8, 14 November 2001 Kokoxili Earthquake, Kunlun Fault, Northern Tibet, China. Bull. Seismol. Soc. Am. 2005, 95, 1970–1987. [Google Scholar] [CrossRef]
- Klinger, Y.; Etchebes, M.; Tapponnier, P.; Narteau, C. Characteristic slip for five great earthquakes along the Fuyun fault in China. Nat. Geosci. 2011, 4, 389–392. [Google Scholar] [CrossRef]
- Zielke, O.; Klinger, Y.; Arrowsmith, J. Fault slip and earthquake recurrence along strike-slip faults—Contributions of high-resolution geomorphic data. Tectonophysics 2015, 638, 43–62. [Google Scholar] [CrossRef]
- Bi, H.; Zheng, W.; Ge, W.; Zhang, P.; Zeng, J.; Yu, J. Constraining the distribution of vertical slip on the South Heli Shan Fault (northeastern Tibet) from high-resolution topographic data. J. Geophys. Res. Solid Earth 2018, 123, 2848–2863. [Google Scholar] [CrossRef]
- Bi, H.; Zheng, W.; Lei, Q.; Zeng, J.; Zhang, P.; Chen, G. Surface slip distribution along the West Helanshan Fault, Northern China, and its implications for fault behavior. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019983. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, Z.; Chen, T.; Yan, S.; Yin, J.; Zhang, P.; Zheng, W.; Zhang, H.; Li, C. Clustering of offsets on the Haiyuan fault and their relationship to paleoearthquakes. Geol. Soc. Am. Bull. 2015, 128, 3–18. [Google Scholar] [CrossRef]
- Chen, T.; Liu, Z.J.; Shao, Y.; Zhang, P.; Oskin, M.E.; Lei, Q.; Li, Z. Geomorphic offsets along the creeping Laohu Shan section of the Haiyuan fault, northern Tibetan Plateau. Geosphere 2018, 14, 1165–1186. [Google Scholar] [CrossRef]
- Arrowsmith, J.R.; Zielke, O. Tectonic geomorphology of the San Andreas Fault zone from high resolution topography: An example from the Cholame segment. Geomorphology 2009, 113, 70–81. [Google Scholar] [CrossRef]
- Institute of Geology, National Seismological Bureau and Ningxia Huizu Autonomous Region Seismological Bureau (IGNSB & NXSB). Earthquake Administration of Ningxia Hui Autonomous Region. In Hai-yuan Active Fault Zones; Seismological Press: Beijing, China, 1990; pp. 99–138. (In Chinese) [Google Scholar]
- Yuan, D.; Ge, W.; Chen, Z.; Li, C.Y.; Wang, Z.; Zhang, H.; Zhang, P.; Zheng, D.; Zheng, W.; Craddock, W.; et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies. Tectonics 2013, 32, 1358–1370. [Google Scholar] [CrossRef]
- Liang, S.; Zheng, W.; Chen, G.; Zhang, P.; Zhang, D.; Bi, H.; Yang, X.; Zhang, Y.; Duan, L.; Lu, B. Late Quaternary slip behavior of the Jinqianghe fault in the middle Qilian-Haiyuan fault Zone, northeastern Tibetan Plateau. Acta Geol. Sin.-Engl. Ed. 2022, 96, 825–843. [Google Scholar] [CrossRef]
- Liu, J.; Ren, Z.; Zhang, H.; Li, C.; Zhang, Z.; Zheng, W.; Li, X.; Liu, C. Slip rates along the Laohushan fault and spatial variation in slip rate along the Haiyuan fault zone. Tectonics 2022, 41, e2021TC006992. [Google Scholar] [CrossRef]
- Matrau, R.; Klinger, Y.; Van der Woerd, J.; Liu, Z.J.; Li, Z.; Xu, X.; Zheng, R. Late Pleistocene-Holocene slip rate along the Hasi Shan restraining bend of the Haiyuan fault: Implication for faulting dynamics of a complex fault system. Tectonics 2019, 38, 4127–4154. [Google Scholar] [CrossRef]
- Li, C.; Zhang, P.Z.; Yin, J.; Min, W. Late Quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau. Tectonics 2009, 28, 1–16. [Google Scholar] [CrossRef]
- Li, Y.; Ran, Y.; Wang, H.; Wu, F. Paleoseismic records of large earthquakes on the cross-basin fault in the salt lake pull-apart basin and cascade rupture events on the Haiyuan fault. Seismol. Geol. 2016, 38, 830–843. (In Chinese) [Google Scholar]
- Gaudemer, Y.; Tapponnier, P.; Meyer, B.; Peltzer, G.; Shumin, G.; Zhitai, C.; Huagung, D.; Cifuentes, I. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ’Tianzhu gap’, on the western Haiyuan Fault, Gansu (China). Geophys. J. Int. 1995, 120, 599–645. [Google Scholar] [CrossRef]
- Lasserre, C.; Morel, P.H.; Gaudemer, Y.; Tapponnier, P.; Ryerson, F.J.; King, G.C.P.; Metivier, F.; Kasser, M.; Kashgarian, M.; Baichi, L.; et al. Postglacial left slip rate and past occurrence of M≥8 earthquakes on the western Haiyuan fault, Gansu, China. J. Geophys. Res. Solid Earth 1999, 104, 17633–17651. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, P.; He, W.; Yuan, D.; Shao, Y.; Zheng, D.; Ge, W.; Min, W. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: Evidence from decadal GPS measurements and late Quaternary slip rates on faults. Tectonophysics 2013, 584, 267–280. [Google Scholar] [CrossRef]
- Liu, J.; Ren, Z.; Zheng, W.; Min, W.; Li, Z.; Zheng, G. Late Quaternary slip rate of the Aksay segment and its rapidly decreasing gradient along the Altyn Tagh fault. Geosphere 2020, 16, 1538–1557. [Google Scholar] [CrossRef]
- Zhang, P.; Burchfiel, B.; Molnar, P.; Royden, L.; Jiao, D.; Zhang, W.; Deng, Q.; Wang, Y.; Song, F. Late Cenozoic tectonic evolution of the Ningxia-Hui Autonomous Region, China. Geol. Soc. Am. Bull. 1990, 102, 1484–1498. [Google Scholar]
- Lasserre, C.; Gaudemer, Y.; Tapponnier, P.; Mériaux, A.S.; Van der Woerd, J.; Yuan, D.Y.; Ryerson, F.J.; Finkel, R.C.; Caffee, M.W. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault, Qinghai, China. J. Geophys. Res. Solid Earth 2002, 107, ETG 4–1–ETG 4–15. [Google Scholar] [CrossRef]
- Deng, Q.; Song, F.; Zhu, S.; Li, M.; Wang, T.; Zhang, W.; Burchfiel, B.C.; Molnar, P.; Zhang, P. Active faulting and tectonics of the Ningxia Hui Autonomous Region, China. J. Geophys. Res. 1984, 89, 4427–4445. [Google Scholar]
- Zhang, P.; Min, W.; Deng, Q.; Mao, F. Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault, northwestern China. Sci. China Ser. D Earth Sci. 2005, 48, 364–375. [Google Scholar] [CrossRef]
- Ran, Y.; Deng, Q. Paleoearthquake along Haiyuan Fault and discussion of grading on rupture of large earthquake. Quat. Sci. 1998, 18, 271–278. (In Chinese) [Google Scholar]
- Ran, Y.; Duan, R.; Deng, Q. Paleo- and strong earthquake on major active segments along Haiyuan fault. In Research on Active Fault; Seismological Press: Beijing, China, 1998; Volume 3, pp. 42–55. (In Chinese) [Google Scholar]
- Liang, S.; Zheng, W.; Zhang, D.; Peng, H.; Sun, X.; Wei, S. Holocene Earthquake Cycles of an Active Tectonic Block Boundary Fault Zone: A Case Study in the Qilian–Haiyuan Fault Zone, Northeastern Tibet Plateau. Lithosphere 2023, 2023, 7919174. [Google Scholar] [CrossRef]
- Deng, Q.; Chen, S.; Song, F.; Zhu, S.; Wang, Y.; Zhang, W.; Jiao, D.; Burchfiel, B.C.; Molnar, P.; Royden, L.; et al. Variations in the geometry and amount of slip on the Haiyuan (Nanxihaushan) fault zone, China, and the surface rupture of the 1920 Haiyuan earthquake. In Earthquake Source Mechanics; Das, S., Boatwright, J., Scholz, C.H., Eds.; American Geophysical Union Monograph: Washington, DC, USA, 1986; Volume 37, pp. 169–182. (In Chinese) [Google Scholar]
- Deng, Q.; Zhang, W.; Zhang, P.; Jiao, D.; Song, F.; Wang, Y.; Burchfiel, B.C.; Molnar, P.; Royden, L.; Chen, S.; et al. Haiyuan strike-slip fault zone and its compressional structures of the end. Seismol. Geol. 1989, 11, 1–14. (In Chinese) [Google Scholar]
- Zhang, P.; Molnar, P.; Burchfiel, B.; Royden, L.; Wang, Y.; Deng, Q.; Song, F.; Zhang, W.; Jiao, D. Bounds on the Holocene Slip Rate of the Haiyuan Fault, North-Central China. Quat. Res. 1988, 30, 151–164. [Google Scholar]
- Yin, J.H. Radiocarbon Dating for Geological Disaster Events. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 2006. (In Chinese). [Google Scholar]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ’Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Zielke, O.; Arrowsmith, J.R.; Grant Ludwig, L.; Akciz, S.O. High-Resolution Topography-Derived Offsets along the 1857 Fort Tejon Earthquake Rupture Trace, San Andreas Fault. Bull. Seismol. Soc. Am. 2012, 102, 1135–1154. [Google Scholar] [CrossRef]
- Zielke, O.; Arrowsmith, J.R.; Ludwig, L.G.; Akciz, S.O. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault. Science 2010, 327, 119–1122. [Google Scholar] [CrossRef]
- Salisbury, J.B.; Rockwell, T.K.; Middleton, T.J.; Hudnut, K.W. LiDAR and Field Observations of Slip Distribution for the Most Recent Surface Ruptures along the Central San Jacinto Fault. Bull. Seismol. Soc. Am. 2012, 102, 598–619. [Google Scholar] [CrossRef]
- Haddon, E.K.; Amos, C.B.; Zielke, O.; Jayko, A.S.; Bürgmann, R. Surface slip during large Owens Valley earthquakes. Geochem. Geophys. Geosystems 2016, 17, 2239–2269. [Google Scholar] [CrossRef]
- Stewart, N.; Gaudemer, Y.; Manighetti, I.; Serreau, L.; Vincendeau, A.; Dominguez, S.; Mattéo, L.; Malavieille, J. “3D_Fault_Offsets,” a Matlab Code to Automatically Measure Lateral and Vertical Fault Offsets in Topographic Data: Application to San Andreas, Owens Valley, and Hope Faults. J. Geophys. Res. Solid Earth 2018, 123, 815–835. [Google Scholar] [CrossRef]
- Sun, W.; He, H.; Wei, Z.; Gao, W.; Sun, H.; Zou, J. Interpretation and analysis of the fine fault geometry based on high-resolution DEM data derived from UAV photogrammetric technique: A case study of Tangjiapo site on the Haiyuan fault. Seismol. Geol. 2019, 41, 1350–1364. (In Chinese) [Google Scholar]
- Lei, S.; Ran, Y.; Li, Y.; Xu, L.; Guo, W.; Xie, J. Sedimentary evolution study on the Ganyanchi pull-apart basin along the Haiyuan fault. Seismol. Geol. 2018, 40, 1072–1085. (In Chinese) [Google Scholar]
- Dawers, N.H.; Anders, M.H.; Scholz, C.H. Growth of normal faults: Displacement length scaling. Geology 1993, 17, 607–614. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Zheng, W.; Zhang, D.; Zhou, H.; Bi, H.; Feng, Z.; Liu, B. Identifying the Latest Displacement and Long-Term Strong Earthquake Activity of the Haiyuan Fault Using High-Precision UAV Data, NE Tibetan Plateau. Remote Sens. 2025, 17, 1895. https://doi.org/10.3390/rs17111895
Sun X, Zheng W, Zhang D, Zhou H, Bi H, Feng Z, Liu B. Identifying the Latest Displacement and Long-Term Strong Earthquake Activity of the Haiyuan Fault Using High-Precision UAV Data, NE Tibetan Plateau. Remote Sensing. 2025; 17(11):1895. https://doi.org/10.3390/rs17111895
Chicago/Turabian StyleSun, Xin, Wenjun Zheng, Dongli Zhang, Haoyu Zhou, Haiyun Bi, Zijian Feng, and Bingxu Liu. 2025. "Identifying the Latest Displacement and Long-Term Strong Earthquake Activity of the Haiyuan Fault Using High-Precision UAV Data, NE Tibetan Plateau" Remote Sensing 17, no. 11: 1895. https://doi.org/10.3390/rs17111895
APA StyleSun, X., Zheng, W., Zhang, D., Zhou, H., Bi, H., Feng, Z., & Liu, B. (2025). Identifying the Latest Displacement and Long-Term Strong Earthquake Activity of the Haiyuan Fault Using High-Precision UAV Data, NE Tibetan Plateau. Remote Sensing, 17(11), 1895. https://doi.org/10.3390/rs17111895